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Many properties of a (sufficiently nice) function  are reflected in its Fourier transform , defined

by the formula 

For instance, decay properties of  are reflected in smoothness properties of , as the following table shows:

If  is… then  is… and this relates to…

Square-integrable square-integrable Plancherel’s theorem

Absolutely integrable continuous Riemann-Lebesgue lemma

Rapidly decreasing smooth theory of Schwartz functions

Exponentially decreasinganalytic in a strip

Compactly supported entire and at most exponential growthPaley-Wiener theorem

Another important relationship between a function  and its Fourier transform  is the uncertainty principle, which

roughly asserts that if a function  is highly localised in space, then its Fourier transform  must be widely dispersed in

space, or to put it another way,  and  cannot both decay too strongly at infinity (except of course in the degenerate

case ). There are many ways to make this intuition precise. One of them is the Heisenberg uncertainty principle,

which asserts that if we normalise

then we must have

thus forcing at least one of  or  to not be too concentrated near the origin. This principle can be proven (for

sufficiently nice , initially) by observing the integration by parts identity

and then using Cauchy-Schwarz and the Plancherel identity.

Another well known manifestation of the uncertainty principle is the fact that it is not possible for  and  to both be

compactly supported (unless of course they vanish entirely). This can be in fact be seen from the above table: if  is

compactly supported, then  is an entire function; but the zeroes of a non-zero entire function are isolated, yielding a

contradiction unless  vanishes. (Indeed, the table also shows that if one of  and  is compactly supported, then the

other cannot have exponential decay.)

On the other hand, we have the example of the Gaussian functions , , which both

decay faster than exponentially. The classical Hardy uncertainty principle asserts, roughly speaking, that this is the

fastest that  and  can simultaneously decay:
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Theorem 1 (Hardy uncertainty principle) Suppose that  is a (measurable)

function such that  and  for all  and some 

. Then  is a scalar multiple of the gaussian .

This theorem is proven by complex-analytic methods, in particular the Phragmén-Lindelöf principle; for sake of

completeness we give that proof below. But I was curious to see if there was a real-variable proof of the same theorem,

avoiding the use of complex analysis. I was able to find the proof of a slightly weaker theorem:

Theorem 2 (Weak Hardy uncertainty principle) Suppose that  is a non-zero

(measurable) function such that  and  for all  and

some . Then  for some absolute constant .

Note that the correct value of  should be , as is implied by the true Hardy uncertainty principle. Despite the weaker

statement, I thought the proof might still might be of interest as it is a little less “magical” than the complex-variable one,

and so I am giving it below.

— 1. The complex-variable proof —

We first give the complex-variable proof. By dilating  by  (and contracting  by ) we may normalise .

By multiplying  by a small constant we may also normalise .

The super-exponential decay of  allows us to extend the Fourier transform  to the complex plane, thus

for all . We may differentiate under the integral sign and verify that  is entire. Taking absolute values, we

obtain the upper bound

completing the square, we obtain 

for all . We conclude that the entire function

is bounded in magnitude by  on the imaginary axis; also, by hypothesis on , we also know that  is bounded in

magnitude by  on the real axis. Formally applying the Phragmen-Lindelöf principle (or maximum modulus principle),

we conclude that  is bounded on the entire complex plane, which by Liouville’s theorem implies that  is constant,

and the claim follows.

Now let’s go back and justify the Phragmén-Lindelöf argument. Strictly speaking, Phragmén-Lindelöf does not apply,

since it requires exponential growth on the function , whereas we have quadratic-exponential growth here. But we can

tweak  a bit to solve this problem. Firstly, we pick  and work on the sector

Using (2) we have
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Thus, if , and  is sufficiently close to  depending on , the function  is bounded in magnitude by 

on the boundary of . Then, for any sufficiently small ,  (using the standard branch of 

on ) is also bounded in magnitude by  on this boundary, and goes to zero at infinity in the interior of , so is

bounded by  in that interior by the maximum modulus principle. Sending , and then , and then ,

we obtain  bounded in magnitude by  on the upper right quadrant. Similar arguments work for the other quadrants,

and the claim follows.

— 2. The real-variable proof —

Now we turn to the real-variable proof of Theorem 2, which is based on the fact that polynomials of controlled degree

do not resemble rapidly decreasing functions.

Rather than use complex analyticity , we will rely instead on a different relationship between the decay of  and the

regularity of , as follows:

Lemma 3 (Derivative bound) Suppose that  for all , and some 

. Then  is smooth, and furthermore one has the bound 

 for all  and every even integer .

Proof: The smoothness of  follows from the rapid decrease of . To get the bound, we differentiate under the integral

sign (one can easily check that this is justified) to obtain

and thus by the triangle inequality for integrals (and the hypothesis that  is even)

On the other hand, by differentiating the Fourier analytic identity

 times at , we obtain

expanding out  using Taylor series we conclude that

�

Using Stirling’s formula , we conclude in particular that 

for all large even integers  (where the decay of  can depend on ).
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We can combine (3) with Taylor’s theorem with remainder, to conclude that on any interval , we have an

approximation

where  is the length of  and  is a polynomial of degree less than . Using Stirling’s formula again, we obtain 

Now we apply a useful bound.

Lemma 4 (Doubling bound) Let  be a polynomial of degree at most  for some 

, let  be an interval, and suppose that  for all 

and some . Then for any  we have the bound  for all 

 and for some absolute constant .

Proof: By translating we may take ; by dilating we may take . By dividing  by , we may normalise 

. Thus we have  for all , and the aim is now to show that  for all 

.

Consider the trigonometric polynomial . By de Moivre’s formula, this function is a linear combination of 

 for . By Fourier analysis, we can thus write , where

Since  is bounded in magnitude by , we conclude that  is bounded in magnitude by . Next, we use de

Moivre’s formula again to expand  as a linear combination of  and , with coefficients of size 

; expanding  further as , we see that  is a polynomial in  with coefficients 

. Putting all this together, we conclude that the coefficients of  are all of size , and the claim follows. �

Remark 1 One can get slightly sharper results by using the theory of Chebyshev

polynomials. (Is the best bound for  known? I do not know the recent literature on

this subject. I think though that even the sharpest bound for  would not fully

recover the sharp Hardy uncertainty principle, at least with the argument given

here.)

We return to the proof of Theorem 2. We pick a large integer  and a parameter  to be chosen later. From (4)

we have

for , and some polynomial  of degree . In particular, we have

for . Applying Lemma 4, we conclude that
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for . Applying (4) again we conclude that

for . If we pick  for a sufficiently small absolute constant , we conclude that

(say) for . If  for large enough , the right-hand side goes to zero as  (which also implies 

), and we conclude that  (and hence ) vanishes identically.
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new LaTeX-to-HTML converter]

My mistake. (Why on earth would they do that?!)
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Hi Dr. Tao

do you think that Luca Trevisan would be interested in making this LaTeX to WordPress-

HTML converter available to more users?

Thanks
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By the way: Lemma 4 has a formula that doesn’t parse.
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Dear Prof. Tao,

There’s a related result, which seems to go back to Schrödinger (1926): the only minimisers

of Heisenberg’s uncertainty principle are precisely the Gaussians (up to scaling, translation and modulation; I’m not sure

if Schrödinger proved the “only” part). In quantum mechanics, these are called coherent states, although this name came

much later (I think it was given by Klauder in the sixties).
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Dear Terry,

I was just wondering: What is your favorite movie? Because in the Tomb Raider post you

mentioned that you played this game when you were younger. But do you like the movies today?

Thanks
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you may want to have a look at Bruno Demange’s PhD thesis, which has some

interesting generalizations of Hardy’s theorem (building up on a theorem by Beurling).

Still complex analysis, tho. A PDE oriented perspective may be found in a recent paper by

Kenig-Ponce-Vega, and this is real analysis ;-)

http://www.univ-orleans.fr/mapmo/publications/theses/DemangeTHE.pdf

http://arxiv.org/abs/0802.1608
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[...] Tao has tested it on a couple of posts. Thanks to his feedback, the current version,
while surely bug-filled and very limited, is stable [...]
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Hi Terry,

thanks for this post. If I remember well, there was a similar proof of Hardy’s Uncertainty

Principle (UP) in Thangavelu’s book on the subject. A real variable proof would also help to get some progress on

versions of Hardy’s UP for (say) the Heisenberg group, that would characterize the heat kernel (the natural analogue of

gaussians). This was, I believe,

one of Thangavelu’s motivation.

I would also like to mention that there is a proof of Hardy’s UP du to B. Demange that works in the distributional setting

(if f is a tempared distribution such that  and  are also tempered distributions, then  where

P is a polynomial). This relies on transforming the problem into a complex analysis one via the Bargman transform and

Phragmen Lindelöf. Demange’s result generalizes several extensions of Hardy’s UP most notably Beurling-Hörmander’s

version of the UP (and the extension thereoff by Bonami-Demange and myself in 2003). He’s proof

should appear soon in Memoires de la Société Math. Française

(as far as I know).

Finally, there is a series of recent papers by L. Escauriaza, C.E. Kenig, G. Ponce, L. Vega (sorry if I forget somebody)

on the UP from the PDE

point of view (Shrödinger equation) that mainly relies on real analysis too.

Best regards

Philippe
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[...] Tao, who amongst other things is a harmonic analyst, wrote a
post a few weeks ago thinking about a similar question. Of course

he thinks about it in a much deeper way, with much more advanced technology, and actually [...]
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I keep coming back to this post because I think it must have to do with a problem that has

occupied my mine for a long time. In particular, what triggered my attention was Lemma 3.

Unfortunately I cannot use it because it holds only (?) for even order derivatives. Is that the case?

The problem I am talking here appears here:

http://mathoverflow.net/questions/16771/lower-bounds-on-truncated-fourier-transform-of-functions-of-constant-

modulus-an
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Good to see you at Terry’s blog Kaveh!
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[...] formalisations of this principle, most famously the Heisenberg uncertainty principle and the Hardy uncertainty principle – but in
many situations, it is the heuristic formulation of the principle that is more [...]
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