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It is shown that the multiplier for the ball is restricted weak type on radial 
functions in Lp(lR”) when p = 2n/(n + 1). Interpolation then yields a theorem of 
Herz. 

We wish to examine here the weak behavior of a certain multiplier 
operator. Let B = {l E m”, I<\ < 1). Let ^ denote the Fourier transform. We 
wish to study the operator 7”‘) = x,(<)~(c$). A theorem of Herz (3 1 shows 
that for Lp([R”) radial functions we have, 

In contrast a celebrated theorem of Fefferman (21 shows that for general 
functions in Lp(IRn), the operator T is bounded if and only ifp = 2. Recently 
Kenig and Tomas [S] have shown that the operator T is not weak type on 
Lp(IR”) radial functions when p = 2n/(n + 1). We prove here the following 
theorem. 

THEOREM, Let xE(x) be radial, then, for I, > 0, 

I(X~[R”:/TXE(x)/>~)I~(c/~2”‘(“+‘))IE(, n > 2. 

The constant c does not depend on E or A. 

This means that the operator T is restricted weak type at the index 
2n/(n + 1). Using a well-known interpolation result due to Stein and Weiss 
[6], we may use our theorem above and the trivial estimate )( Tf Ill < c 11 f (I2 
and by interpolation on the space (IF iS(r rn-’ dr)“” obtain the result of 
Herz. The method of proof parallels our earlier result on Legendre 
polynomials (11. 
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There is another motivation for our theorem and it comes from restriction 
phenomena for the Fourier transform. For functions which are compactly 
supported and for (xl large, one roughly has. 

Thus iff(x) is radial,f(x/jxj) . IS a constant and the question of weak type at 
2n/(n + 1) is quickly seen to be connected with the estimate. 

s ‘I ’ being the surface of the sphere in n dimensions. It is easy to see that 
the inequality above fails for arbitrary radial functions thus explaining the 
result of (5 1, but does hold whenf(x) = K~:(x) and x,.(x) radial. 

Before we begin with the proofs we note that given a set E c r)“, such that 
x,.(x) is radial we may consider it to be a set i? in (0, co) equipped with the 
measure r” - ‘dr, i.e., 

With a slight abuse of notation we shall henceforth denote J!? by E itself. We 
also need the following basic estimate for the Bessel functions. 

Here c depends only on the order m. This may be found in 16 1 or ( 7 1. 
To prove the theorem we begin with the following lemma. 

LEMMA. For any set E c (0, co), 

[ ' X,-(r) #fl- I)/2 
(17 t I) 211 

. 0 i 

Proof. We rewrite the integral on the left as, 

.r* 

!, xF(r) r- (‘~ I”’ r” ’ dr. 

Now we note that r-‘“-‘)‘2 E L(2n/(n - l), co) with respect to the measure 
r”-’ dr. We may thus apply Theorem (4.5) of 14) to obtain the conclusion of 
the lemma. Q.E.D. 
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Proof of Theorem. Let s = (Cy=, xi) ’ ‘I’. Then from [5 1 or [ 7, p. 134) we 
know that for any radial functionf(r), 

co 
?‘fW=~jo 

w,,-2,,2 (274 Jn,*W) - rJ(“-*),2 (271s) J,,*Wr)) 

s2-r2 

xf(r) rni2 dr. (1) 

Let I, = {r: 2k < r < Zk+’ }. We decompose XE(r) as follows. Let 
fl,k(r>=xE(r)x(r < 2k-1)3 f2,k(r)=xE(r)x(2k-’ Gr < 2k+2)y and .h,k@)= 
XE(r) X(r > 2k+2). Note now that, 

Now, 
xE@-) =fi,k@) +.h,k@) +~$,k(~). 

is: 1 %+)I > A) = u is: 1 T&-(s)1 > A} n Ik. 
k 

(21 

We further decompose (2) by noting that the right side above is contained in, 

(3) 

We now claim that, 

To see this, we use (1). Thus for s E I,, we have s > 2r, if r is in the support 
Offi,k(d. Thus, 

1 rf,,k(s)l <&js,2, s*‘2r-“2 : r1’2s-1’2 &(r) r*‘* dr 

<A p t I)/2 1’ s,2r (r-“’ + r’J2s-‘)x,(r) rnj2 dr. 

But because s > 2r, the last expression is bounded by, 

c O” 
p+ 1)/Z I xEW r 

(n- 1)/2 d,.< 
0 
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By the lemma, the term above is bounded by. 

c 
s(“t I)/2 ii 

a’ (n*ll!?n 
xf:(r) rn- ’ dr 

c ,qw+ 11 211 
= 

0 S,n * II’? 

Thus, we have shown that, 

i 
s: IEl 

(n- I)‘??? 

pi c I I;? > cd 
1. 

Now, for s E Ikr we have 2s <r, for r in the support off,,,(r). Thus. 

1 rfi.k(S)l <&j2cLr ( s”2r-~“z : ““’ ’ -) X,(r) rn” dr. 

liZr 112 1: I? r s 
S2 

+ 
rs 1 

xF(r) r” ’ dr. 

< p& 10 xl,(r) rln ~- I’ ’ dr. 

Thus again by the lemma, the expression above is bounded by. 
cs ~(nt I)‘2 JEJ(?H w2n. We have thus proved that, 

Thus (5) and (6) together prove (4) as claimed. 
Now consider Tfz,k(~). We rewrite it as follows: 

Tfz.k(S) = $& 
-00 
j 

(sJ+~),~ (2xr)Jn,2(2nS) - rJ~,-~2,~2P~s) J,,,W)) 

.o s-r 

x (--& -+]&(r) r(“l’)-’ dr 

71 
1 
m 

+---- 
sJ,, -2j,2(27rr) J,,#rs) .&(r) F2) ’ 

p 2112 dr 
“0 s-r 

71 -~ 
So-2v2 ! 

-a rJ,,-,,,,(2~s) J,,,(2~r)f2.,(r) r’n’2’ ’ dr 
0 s-r 

5% A,(s) + Bk(S) + C,(s). 
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Now because r/(s + r) - 4 = (r - s)/2(r + s), 

lAk(s)( <-$& j2T;: (s”2r-1’2 + r”2s-1’2) x,(r) r(“‘*)-l dr. 
r+s 

Thus for s E I,, 

IA&)( < & j”‘x,(r) r(n-1)/2 dr < c ‘;j;++,:);” . (7) 
0 

We now denote the Hilbert transform by H. Then, 

B,&) = ‘~~$,~’ ff(fZ,k(r) P”)-’ J,,-,,,,(2nr))(s), 

C,(s) = - d;;n-::(:l (2ns) H(f2,k(r) rni2 J,,,(Zw))(s). 

Thus from (3), (4), 

+ f I{sEI,:l~,(s)l>c~}I 
k=-m 

+ ,=f,; i{SEI,:(B,(S)l>Ci}[ 

+ ke:,> IIs E ‘k: ick(s)l > Cl],). 

In view of (7) and because the Zk’s are disjoint, the right side above is 
bounded by, 

But, 
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Now. 

X i N(fZ,k(r)rqn’7) I J,, ,,,,(2nr))(s)j’” tn . ‘I ds. 

Using the M. Riesz inequality for the Hilbert transform the last term is 
bounded by, 

But the expression above is bounded by, 

The last inequality follows because the supports of fZ.r(r) have bounded 
overlaps and lie in the sets (Y: 2k-’ < r < 2ki ’ ). 

We now estimate CT --ci 1 (SE I,: j C,(s), > CA}; in a similar fashion. 
Now. 
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G c 
cc 

~2mli 1) 
r 

k=k, 

2k(n-1-n(n- l)/Cn+ 1)) 

F? 

x (H(f2,k(r) rn’2 J,,z(2nr))(s)~2”““+ ‘) ds. 

Thus by the M. Riesz inequality the expression above is bounded by, 

c cc 

~2n/(n+ 1) 
&km 

y 2k(n-I-Nn-‘)l(n+l)) IP~f2,k(r)~2ni(n+l)yn(n-l);(n+l) d,. 

I 

f 

k=-m 

j (f2,k(r)(2nl(n+‘) FL dr. 

By bounded overlaps again, the last term is bounded by, cIE\A~~~‘(“+ I). 
Thus all three terms in (8) may be bounded by c (E( A-2n’(nt ‘). This proves 
the theorem. Q.E.D. 
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