LDA (Latent Dirichlet Allocation) 模型的原理及其应用

哈尔滨工业大学智能技术与自然语言处理实验室 报告人, 新久烽 2010-12-15

提纲

- 背景
- 准备知识
- · LDA模型的原理
- 一个简单应用
- Further Reading
- •一些有用的资源
- 主要参考资料

对不给完的一个与始佳会 我们相知道: <top>

<title> formula f1 </title>

<desc> Description: Blogs with interest in the formula one (f1) motor racing, perhaps with driver news, team news, or event news. </desc>

<narr> Narrative: Relevant blogs will contain news and analysis from the Formula fl

motor racing circuit. Blogs with documents not in English are not relevant.

</narr> </top>

*直见: 义狗条合的内谷衣规」多个主题

准备知识

- 概率分布
- Bayesian Network
- Expectation-Maximization (EM) 算法
- Variational Inference

概率分布—多项分布

· Question:投掷一枚硬币,可能的结果 有两种,正面向上(1)和反面向上(0)。 现用随机变量Y来表示这些结果,并设 P(Y=1)=p. 那么投掷N没硬币, 其中k 次为正面向上的概率是多少?

$$\binom{N}{k} p^k (1-p)^{N-k} = \frac{N!}{k!(N-k)!} p^k q^{N-k}$$

$$q = 1-p \Rightarrow p+q=1$$

$$X = (k, N-k)$$

$$=1-p \Rightarrow p+q=1$$
 $X=(k,$

•推广: 现在投掷N淡骰子, 已知在每淡投掷中;向上的概率为 P_i , i=1,2,...,6. 且 $\sum_{i=1}^{6} p_i=1$. 那么在N次中;出现 n_i 次, i=1, 2,...,6的概率是多少?

$$\frac{N!}{\prod_{i=1}^{6} n_i!} \left(\prod_{i=1}^{6} p_i^{n_i} \right)$$

$$\sum_{i=1}^{6} p_i = 1 \qquad \sum_{i=1}^{6} n_i = N \qquad X = (n_1, n_2, \dots, n_6)$$

$$\frac{N!}{k!(N-k)!} p^{k} q^{N-k} \quad p+q=1 \quad X = (k, N-k)$$

掷骰子

$$\frac{N!}{\prod_{i=1}^{6} n_i} \left(\prod_{i=1}^{6} p_i^{n_i} \right) \quad \sum_{i=1}^{6} p_i = 1 \quad \sum_{i=1}^{6} n_i = N \quad X = (n_1, n_2, \dots, n_6)$$

多项分布

多项分布 (Multinomial Distribution)
$$\frac{N!}{\prod_{i=1}^K n_i} \left(\prod_{i=1}^K p_i^{n_i}\right) \quad \sum_{i=1}^K p_i = 1 \quad \sum_{i=1}^K n_i = N \quad X = \left(n_1, n_2, \cdots, n_K\right)$$

$$(p_1 + p_2 + \dots + p_K)^N$$

概率分布—Dirichlet分布

·假设我们在和一个人玩掷骰子游戏。正常情况下我们都会认为骰子的每个面出现的概率是相等的,为1/6;但是现在我们看到掷骰子的人连续掷出6,不免心生猜测;

50%的可能:6出现的概率为2/7,其他各面为1/7;

25%的可能,6出现的概率为3/8,其他各面为1/8;

25%的可能:各面的概率为1/6

Probability of each face under each hypothesis about how the die is loaded

Belief	Face	1	2	3	4	5	6
.5	Probability	1/7	1/7	1/7	1/7	1/7	2/7
.25	Probability	1/8	1/8	1/8	1/8	1/8	3/8
.25	Probability	1/6	1/6	1/6	1/6	1/6	1/6

的果记我们所猜测的每个面出现的概率 为X, 那么表示X的最恰当的分布就是狄 立克雷分布(Dirichlet Distribution)。

$$p(X \mid \alpha) = \frac{\Gamma\left(\sum_{i=1}^{K} \alpha_i\right)}{\prod_{i=1}^{K} \Gamma(\alpha_i)} \left(\prod_{i=1}^{K} x_i^{\alpha_i - 1}\right)$$

$$X = (x_1, x_2, \dots, x_K) \quad \sum_{i=1}^K x_i = 1 \quad \alpha = (\alpha_1, \alpha_2, \dots, \alpha_K)$$

概率分布—The Exponential Family

• 在指数分布族中,随机变量(或向量)的概率分布(或密度)函数具有的下形式,

$$p(x|\eta) = h(x)g(\eta)\exp\{\eta^{T}u(x)\}$$

其中,刀为参数,8(刃)为归一化因子

概率分布—共轭光验(Conjugate Prior)

- •对于概率分布(或密度)函数P(x|η), 若P(η) 满足的下条件,则称P(η) 为P(x|η)的共轭 光验:
 - (1) 后验分布 $p(\eta|x)$ 与 $p(\eta)$ 有相同的函数形式。
- •指数分布族中的每一个成员均具有的下形式的共轭先验,

$$p(\eta \mid \chi, v) = f(\chi, v)g(\eta)^{v} \exp\{v\eta^{T}\chi\}$$

秋立克雷分布是多项分布的共轭先验

$$p(\eta \mid x) = \frac{p(\eta)p(x \mid \eta)}{p(x)}$$

概率分布—可交換性及de Finetti 定理

•可交换性,随机变量z₁,z₂,···,z_n 称为是可交换的,此果满足此下条件;

$$p(z_1, z_2, \dots, z_n) = p(z_{\pi(1)}, z_{\pi(2)}, \dots, z_{\pi(n)})$$

· 无限可交换性,随机变量的无限序列 Z1,Z2,··· 称为是无限可交换的, 此果其中 任何一个有限子序列都是可交换的

de Finetti 定理

More precisely, suppose $X_1, X_2, X_3, ...$ is an infinite exchangeable sequence of Bernoulli-distributed random variables. Then there is some probability distribution m on the interval [0, 1] and some random variable Y such that

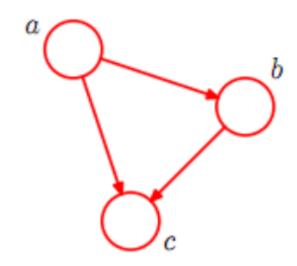
- The probability distribution of Y is m, and
- The conditional probability distribution of the whole sequence X₁, X₂, X₃, ... given the value of Y is described by saying that
 - $X_1, X_2, X_3, ...$ are conditionally independent given Y, and
 - For any i ∈ {1, 2, 3, ...}, the conditional probability that X_i = 1, given the value of Y, is Y.

$$p(X_1, X_2, \dots) = \int_{y} p(y) \left(\prod_{i} p(X_i \mid y) \right) dy$$

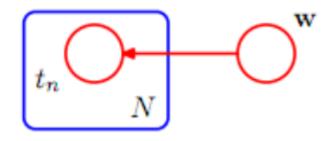
$$p(X_i = 1 | y) = y$$

Bayesian Network

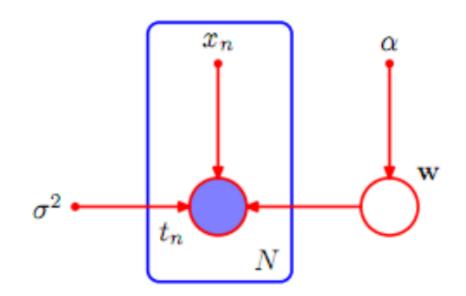
• 对于联合概率P(a,b,c)=P(a)P(b|a)P(c|a,b), 的何用图形进行表示呢?



• 复杂一点:对于联合概率 $P(t,w) = P(w) \prod_{n=1}^{N} P(t_n \mid w)$ 怎么表示呢?



再复杂一点,对于一些概率模型,有些变量是我们观测到的,有些则是我们需要估计的,这两种节点有必要在图中区分开来



EM算法

• EM (Expectation-Maximization) 算法是一种用于求解含有隐含变量的模型的极大似然解的方法

单个高斯分布

 假设我们有一个观测数据集{x₁,x₂,...,x_N}, 我们想用一个高斯分布来对该数据集进 行建模

$$(\mu^*, \Sigma^*) = \arg\max \prod_{n=1}^N p(x_n \mid \mu, \Sigma)$$

$$\mu^* = \frac{1}{N} \sum_{n=1}^{N} x_n \qquad \Sigma^* = \frac{1}{N} \sum_{n=1}^{N} (x_n - \mu^*) (x_n - \mu^*)^T$$

多个高斯分布—高斯混合模型

• 现在我们改用一个髙斯混合模型来对上面的数据集进行建模

$$p(x) = \sum_{k=1}^{K} \pi_k p(x | \mu_k, \Sigma_k)$$

$$\prod_{n=1}^{N} \left(\sum_{k=1}^{K} \pi_{k} p(x_{n} \mid \mu_{k}, \Sigma_{k}) \right)$$

$$\mu_{k}^{*} = \frac{1}{N_{k}} \sum_{n=1}^{N} \gamma(z_{nk}) x_{n} \qquad \Sigma_{k}^{*} = \frac{1}{N_{k}} \sum_{n=1}^{N} \gamma(z_{nk}) (x_{n} - \mu_{k}^{*}) (x_{n} - \mu_{k}^{*})^{T} \qquad \pi_{k}^{*} = \frac{N_{k}}{N}$$

$$\gamma(z_{nk}) = \frac{\pi_k p(x_n \mid \mu_k, \Sigma_k)}{\sum_{i=1}^K \pi_j p(x_n \mid \mu_j, \Sigma_j)} \qquad N_k = \sum_{n=1}^N \gamma(z_{nk})$$

依赖关系

$$\mu_k^* = \frac{1}{N_k} \sum_{n=1}^N \gamma(z_{nk}) x_n$$

$$\mu_{k}^{*} = \frac{1}{N_{k}} \sum_{n=1}^{N} \gamma(z_{nk}) x_{n} \qquad \Sigma_{k}^{*} = \frac{1}{N_{k}} \sum_{n=1}^{N} \gamma(z_{nk}) (x_{n} - \mu_{k}^{*}) (x_{n} - \mu_{k}^{*})^{T} \qquad \pi_{k}^{*} = \frac{N_{k}}{N}$$

$$\mu_k \leftarrow \gamma(z_{nk}) \leftarrow \pi_k, \Sigma_k, \mu_k$$

$$\Sigma_k \leftarrow \gamma(z_{nk}) \leftarrow \pi_k, \mu_k, \Sigma_k$$

$$\pi_k \leftarrow N_k \leftarrow \gamma(z_{nk}) \leftarrow \mu_k, \Sigma_k, \pi_k$$

相互依赖

迭代求解!

混合高斯中的隐含变量

$$p(x) = \sum_{k=1}^{K} \pi_k p(x \mid \mu_k, \Sigma_k)$$

$$p(z_k=1) = \pi_k \implies p(z) = \prod_{k=1}^K \pi_k^{z_k}$$

$$p(x | z_k = 1) = p(x | \mu_k, \Sigma_k) \implies p(x | z) = \prod_{k=1}^K p(x | \mu_k, \Sigma_k)^{z_k}$$

$$p(x) = \sum_{z} p(z)p(x|z) = \sum_{z} p(x,z)$$
 乙就是隐含变量

EM的一般过程

给定联合分布 $p(X,Z|\theta)$,其中X为观测到的变量,Z为隐含变量, θ 为参数,以下过程用来求解似然函数 $p(X|\theta)$ 的极大值,

- √设定参数的初始值 θold
- ✓ E step: 计算 $p(Z|X,\theta^{old})$
- ✓ M step: $\mathcal{H} \not \exists \theta^{new} = \arg \max Q(\theta, \theta^{old})$

$$Q(\theta, \theta^{old}) = \sum_{Z} p(Z \mid X, \theta^{old}) \ln p(X, Z \mid \theta)$$

✓判断仍然函数或者参数值是否收敛,不收敛时进行的下更新。

$$\theta^{old} \leftarrow \theta^{new}$$

为什么是这样

• 对于任意的分布: 成立:

$$\mathcal{L}(q, oldsymbol{ heta})$$
 $\ln p(\mathbf{X}|oldsymbol{ heta})$

$$\ln p(X \mid \theta) = L(q, \theta) + KL(q \mid\mid p)$$

$$L(q,\theta) = \sum_{Z} q(Z) \ln \left\{ \frac{p(X,Z \mid \theta)}{q(Z)} \right\}$$

$$KL(q \parallel p) = -\sum_{Z} q(Z) \ln \left\{ \frac{p(Z \mid X, \theta)}{q(Z)} \right\}$$

$$L(q,\theta) = \sum_{Z} p(Z \mid X, \theta^{old}) \ln p(X, Z \mid \theta)$$
$$-\sum_{Z} p(Z \mid X, \theta^{old}) \ln p(Z \mid X, \theta^{old})$$
$$= Q(\theta, \theta^{old}) + const$$

在迭代的过程中, 似然函数的值是单调增加的

Variational Inference

• 变分推理是一种用来近似计算后验概率的方法。

限制 q(Z) 的可远范 围来近似求解

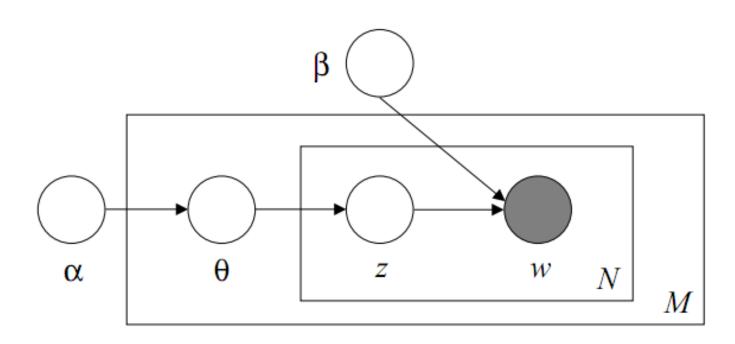
$$q(Z) = \prod_{i=1}^{M} q_i(Z_i)$$

LDA模型的原理

- LDA (Latent Dirichlet Allocation)模型希望 通过将文档表示为一个主题向量来达到 特征降维的目的
- 假设文档、文档中词的顺序是无关紧要的
- 符号说明:
 - √词表大小V,每个词用一个V维向量进行表示 (0,1,0,···,0)
 - \checkmark 一个由N个词构成的文档记为 $w=(w_1,w_2,\cdots,w_N)$
 - \checkmark 一个由M篇文档构成的语料记为 $D=\{w_1,w_2,\cdots,w_M\}$

- 一篇文档的生成过程:
- 第一步: 这样文档长度N, $N \square$ Poisson(ξ)
- 第二步:这样 Θ, θ□ Dirichlet(α),这里 Θ
 是头量,表示每个主题发生的概率,α
 是 Dirichlet 分布的参数
- · 第三步,对N个单词中每一个;
 - ✓ 这样主题 Z_n , $Z_n \square$ Multinomial (θ)
 - ✓这样 W_n ,根据多项分布 $P(W_n|z_n,\beta)$

图形化表示



模型的执行过程

主要分为两步;

• 训练,进行参数估计

$$(\alpha^*, \beta^*) = \arg\max \prod_{d=1}^{M} p(w_d \mid \alpha, \beta)$$

•测试,计算后验分布

$$p(\theta, z | w, \alpha, \beta)$$

后验分布的计算

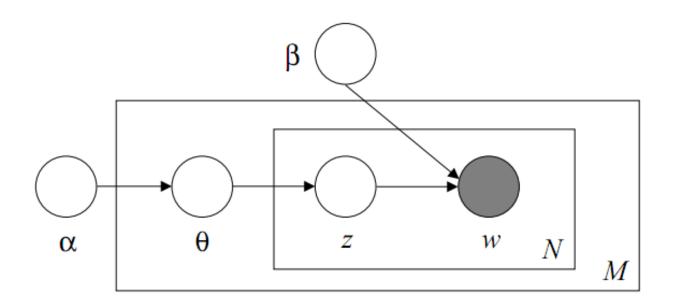
$$p(\theta, z | w, \alpha, \beta) = \frac{p(\theta, z, w | \alpha, \beta)}{p(w | \alpha, \beta)}$$

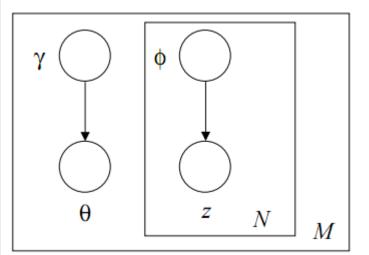
$$p(w \mid \alpha, \beta) = \int p(\theta \mid \alpha) \left(\prod_{n=1}^{N} \sum_{z_{n}} p(z_{n} \mid \theta) p(w_{n} \mid z_{n}, \beta) \right) d\theta$$

$$= \frac{\Gamma(\sum_{i} \alpha_{i})}{\prod_{i} \Gamma(\alpha_{i})} \int \left(\prod_{i=1}^{k} \theta_{i}^{\alpha_{i}-1} \right) \left(\prod_{n=1}^{N} \sum_{i=1}^{k} \prod_{j=1}^{V} (\theta_{i} \beta_{ij})^{w_{n}^{j}} \right) d\theta$$

直接计算很难,怎么办?

近似





$$q(\theta, z \mid \gamma, \phi) = q(\theta \mid \gamma) \prod_{n=1}^{N} q(z_n \mid \phi_n)$$

$$(\gamma^*, \phi^*) = \arg \min KL(q(\theta, z \mid \gamma, \phi) || p(\theta, z \mid w, \alpha, \beta))$$

算炫描述

```
initialize \phi_{ni}^0 := 1/k for all i and n initialize \gamma_i := \alpha_i + N/k for all i repeat for n = 1 to N for i = 1 to k \phi_{ni}^{t+1} := \beta_{iw_n} \exp(\Psi(\gamma_i^t)) normalize \phi_n^{t+1} to sum to 1. \gamma^{t+1} := \alpha + \sum_{n=1}^{N} \phi_n^{t+1} until convergence
```

参数估计

$$(\alpha^*, \beta^*) = \arg\max \prod_{d=1}^{M} p(w_d \mid \alpha, \beta)$$

- · 变分EM算法:
 - \checkmark 设定 α,β 的初始值
 - ▼E step: 利用 variational inference 计算 γ,φ 来近似似然函数
 - ✓M step: 根据α,β 极大化 E step 中的结果
 - ✓结束准则判断

LDA模型是怎么得出来的?

假设文档、文档中的词的顺序无关紧要

可交换性 de Finetti 定理

$$p(w \mid \alpha, \beta) = \int p(\theta \mid \alpha) \left(\prod_{n=1}^{N} \sum_{z_n} p(z_n \mid \theta) p(w_n \mid z_n, \beta) \right) d\theta$$

 $p(z_n|\theta)$ 是多项分布 — de Finetti 定理 $p(\theta|\alpha)$ 是 Dirichlet分布 — 共轭先验 $p(w_n|z_n,\beta)$ 是多项分布 — 指数分布族

参数估计,后验分布计算

一个简单应用

·将LDA模型应用于1篇文档,进行关键 词抽取

√依据,LDA模型能够得到每个主题生成 每个词的概率,那么我们就可以把每个 主题中的TOPK个词取出来作为该文档 的关键词(移除重复出现的词)

步骤

- 第一步,准备数据
 - ✓word_frequent.txt 格式: [word num] [wordid:occ_num] [...]
 - ✓words.txt 格式:每行一个词
- 第二步,模型计算
 - ✓ Ida est [alpha] [k] [settings] [data] [random/seeded/*] [directory]
 - ✓ 輸 出 final.other, final.beta, final.gamma, word-assignments.dat
- 第三步: 获取关键词

实验结果

Puppet: 网络数据中心自动化配置管理								
tfidf	ictclas	lda_2topic	lda_3topic	lda_4topic				
Puppet	系统	Puppet	Puppet	Puppet				
审计	配置	管理	系统	系统				
设施	管理	配置	管理	管理				
社区	一个	系统	配置	配置				
成千上万	基础	一个	一个	一个				
陈述	社区	社区	社区	基础				
活跃	提供	基础	中心	数据				
数百	数据	使用	基础	中心				
自动化	模块	数据	模块	社区				
Puppet:	用户	设施	用户	用户				
PuppetSecure	中心	模块	帮助	提供				
Puppeties	模型	支持	利用	帮助				
Puppetmaster	设施	用户	模型	支持				
SuSE	利用	中心	优势	模型				
机架	帮助	提供	数据	集中				
Forge	使用	状态	状态	模块				
Fedora	需要	利用	管理员	控制				
introduction	支持	组织	使用	需要				
Debian	状态	需要	集中	状态				
www.puppetlabs.com	平台	图形	提供	执行				
CentOS	模式	开源	操作	平台				
2010.10.11	控制	模型	资源	活跃				
中心	开源	帮助	支持	设施				
不须	集中	知道	是否	成千上万				
纠偏	操作	资源	开源	是否				
puppet	灵活	优势	Unix	知道				
红帽	操作系统	自动化	设施	操作系统				
配置	测试	活跃	希望	陈述				
Unix	当前	容易	自动化	使用				
审批	问题	数百	需要	问题				

Mac OS X: 修改SMART Utility期限限制								
tfidf	ictclas	lda_2topic	lda_3topic	lda_4topio				
S. M. A. R. T	软件	软件	使用	里面				
SMART	使用	使用	软件	文件				
Libraray	里面	里面	信息	软件				
Utility	一个	技术	里面	使用				
措施	文件	没有	限制	信息				
保密	信息	一个	一个	一个				
貌似	当前	问题	文件	Utility				
硬盘	技术	硬盘	技术	技术				
加密	限制	信息	加密	没有				
com.volitans-software.smartutility.plist	问题	文件	需要	硬盘				
com. apple. services	措施	看到	硬盘	限制				
Volitans-Software	硬盘	S. M. A. R. T	没有	问题				
Verified	没有	需要	措施	措施				
Registration.plist	需要	加密	问题	S. M. A. R. T				
手气	注册	措施	保密	需要				
安全系数	加密	限制	开发	加密				
苹果	看到	注册	Utility	看到				
限制	提供	程序	提供	简单				
缜密	提高	Utility	注册	貌似				
探讨	探讨	保密	苹果	注册				
试用期	是否	Preferences	方面	当前				
Preferences	上面	安全	容易	Libraray				
注册	容易	简单	看到	可能				
出品	开发	考虑	上面	保密				
软件	程序	来说	提高	苹果				
里面	后来	开发	S.M.A.R.T	方面				
Disk	今天	貌似	可能	Preference				
欠缺	保密	苹果	当前	上面				
试用	方面	可能	SMART	开发				
Support	可能	提高	Libraray	SMART				

Further Reading

- Correlated Topic Models. Neural Information Processing Systems, 2006
- Dynamic topic models. In Proceedings of the 23rd International Conference on Machine Learning, 2006
- Online Learning for Latent Dirichlet Allocation.
 Neural Information Processing Systems, 2010
- Markov Chain Monte Carlo and Gibbs Sampling.
 2004

一些有用的资源

Topic Model领域的一些大牛:

- DM Blei (LDA的提出者): http://www.cs.princeton.edu/~blei/
- Thomas Hofmann (pLSA的提出者): http://www.cs.brown.edu/~th/
- Andrew McCallum: http://www.cs.umass.edu/~mccallum/

主要参考资料

- David M. Blei, Andrew Y. Ng, Michael I.
 Jordan. Latent Dirichlet Allocation. Journal of Machine Learning Research 2003
- David M. Blei, John Lafferry. Modeling Science. 2008
- Zhou Li. Latent dirichlet allocation note
- Steffen Lauritzen. Exchangeability and de Finetti's Theorem. University of Oxford 2007
- Christopher M. Bishop. Pattern Recognition and Machine Learning第2、8、9、10章

Thank You!