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Abstract— Vessel segmentation is an essential task in many
computer-aided medical systems. However, the topology
complexity of vascular structures and the intensity inho-
mogeneity of angiogram make it a challenging problem. We
propose a level set based predictor-corrector algorithm to
meet these challenges. In the predictor step, the overall con-
tour of vessel structures is delineated by piecewise constant
(PC) model, which is insensitive to the initial contour and
adaptive to the complex morphological variations of vessel
structures. In the corrector step, the segmented results are
refined by an improved local binary fitting (LBF) model,
which can efficiently deal with intensity inhomogeneity in
the angiogram, especially in the distal part of the vessels.
Compared to original LBF model, our approach can avoid
the emergence of new contour in non-vascular regions. The
proposed algorithm takes both global and local information
into consideration and combines the advantages of PC model
and LBF model. Experimental results on MRA images
demonstrate the feasibility of our algorithm.

I. INTRODUCTION

Vessel segmentation is an essential task in many
computer-aided medical systems. It is usually a prereq-
uisite to the implementation of other modules such as
vascular modeling, biomechanical and hemodynamical
analysis and surgical planning and simulation. However,
automatic vessel segmentation is a challenging task in
clinical practice because of the high degree of topolog-
ical complexity of vascular structures and the inevitable
intensity inhomogeneity in almost all imaging modalities,
including 3D rotational angiography (3DRA), computer
tomography angiography (CTA) and magnetic resonance
angiography (MRA). The intensity inhomogeneity may
cause more difficulties in the distal part of vessels, where
the contrast between blood vessels and surrounding tis-
sues is usually lower than other regions due to signal loss
or other technical limitations.

Recent years, a lot of algorithms have been proposed
to meet these challenges [1]. In this work, we focus on
level set based method, which is a suitable approach for
vessel segmentation, as it can efficiently track interfaces
and shapes of complex topology and allow for simple
calculation of geometrical properties of moving surfaces.
Chan and Vese’s piecewise constant (PC) model [2]
is one of initial region-based level set models, which
has great flexibility of handling the large morphological
variations and insensitive to the initial contour. However,

the main disadvantage of PC model is that it tends to
rely on intensity homogeneity in each of the regions to
be segmented.

To deal with intensity inhomogeneity, Li et al. [3]
proposed a new model, namely local binary fitting (LBF)
model, which introduces a kernel function to define a
local binary fitting energy in a variational formulation,
so that local intensity information can be embedded into
a region-based active contour model. Although it can
handle intensity inhomogeneity in some simple images,
the main disadvantage of this model is that new contours
of surrounding tissues may emerge during the curve
evolution because it only takes local intensity information
into account. In addition, the segmented results are usually
sensitive to initial contour.

In this paper, we propose an improved LBF model
by employing a new Heaviside function to avoid the
emergence of new contour of non-vascular regions dur-
ing the evolution. A novel predictor-corrector algorithm
is further developed by combining PC model and the
improved LBF model. Our approach not only can deal
with the intensity inhomogeneity in angiogram but is
adaptive to the high degree of topology complexity of
vascular structures and insensitive to initial contour and
other noises. Experiments demonstrate that our algorithm
can achieve better results than PC model and original
LBF model. In the following section, we first review some
existing algorithms for vessel extraction. In section III, we
give the implementation details of the proposed method.
In section IV, we provide experimental results. Finally, we
give a short discussion and draw conclusion in section V.

II. RELATED WORK

A lot of vessel segmentation algorithms have been
proposed recent years. The simplest method is threshold
based algorithm [4] where an iso-surface is directly ex-
tracted based on image intensity. However, it may fail in
many cases where the image intensity is inhomogeneous
and tissues with similar intensity of vessels exist. Region
growing approaches [4], [5] are also proposed for vessel
segmentation. The disadvantage of it is that the growth
process may leak into non-vascular structures during the
growing process due to the complex topology of vascular
structures.



Fig. 1. Overview of proposed method.

Deformable models [6], [7] are also employed for
vessel segmentation. In these algorithms, an initial surface
is first constructed to represent vascular topology. Then,
the surface deforms to approach the boundaries of vessels
under internal elastic forces between neighboring nodes
and external forces derived from local image intensity
gradient. However, this method tends to rely on the correct
topology of vascular structures as initial condition, which
is usually not easy to be obtained automatically, especially
in the cases that the topology is complex.

Extracting vessels based on level set methods has
been an active research topic recent years. In order to
overcome above-mentioned difficulties of PC model in
segmenting images with intensity inhomogeneity, piece-
wise smooth (PS) model [8], [9] are proposed. However,
several computation-intensive tasks in the algorithm make
it computationally expensive. Some improved PS mod-
els [10], [11], [12] have taken the local information into
consideration to further remove the segmented artifacts
caused by intensity inhomogeneity, but the computational
performance is still a problem.

Recently, Wang et al. proposed an algorithm that com-
bined the global model and the LBF model for brain
segmentation [13]. To the best of our knowledge, this is
the most similar work to this paper. However, the method
is just a simple combination of the two models and fails
to solve some disadvantages of LBF model, such as the
undesired emergence of new contours at strong object
boundaries and the sensitivity to initialization.

III. IMPLEMENTATION

The proposed model employs a predictor-corrector
scheme to tackle the intensity inhomogeneity exists in
vacular medical images. Figure 1 shows an overview of
the proposed approach. In the prediction step, a global
level set evolution tries to predict a rough object boundary
which may contain errors. Then, in the corrector step,
this roughly segmented result is used as initial contour
and subjected to a local level set evolution. An improved
LBF model is proposed to precisely extract boundaries
at blurry regions or regions with intensity inhomogeneity.
We will now introduce the related details in these two
steps in the following of this section.

A. The Predictor Step : PC model

In the predictor step, PC model is employed to obtain
an initial contour that well delineates the overall vascular

topology. For an image I(x, y), the global energy func-
tional EG(C) is

EG(C) = λ1

∫
in(C)

|I(x)− c1|2dx

+ λ2

∫
out(C)

|I(x)− c2|2dx + ν|C| (1)

In the level set formulation, with C = {(x, y)|φ(x, y) =
0} and φ being a level set function, EG(C) can be
expressed as a function of φ:

EG(φ) = λ1

∫
Ω

|I(x)− c1|2H(φ)dxdy

+λ2

∫
Ω

|I(x)− c2|2(1−H(φ))dxdy + ν

∫
Ω

|∇H(φ)| (2)

where λ1,λ2 > 0, ν ≥ 0 are fixed parameters, H is
the Heaviside function, in(C) and out(C) represent the
region inside and outside of the contour C, and c1 and c2

are two constants that approximate the image intensity in
in(C) and out(C), respectively.

Minimizing the energy function in Eq.(2) with respect
to φ, we obtain:

∂φ

∂t
= δε(φ)[νdiv

( ∇φ

|∇φ|
)
− λ1(I − c1)2 + λ2(I − c2)2)] (3)

where δ is the Dirac delta function, and c1 and c2 are
defined by

c1 =
∫

I(x)H(φ(x))dx∫
H(φ(x))dx

c2 =
∫

I(x)(1−H(φ(x)))dx∫
(1−H(φ(x)))dx

(4)

The prediction segmentation results φp can be obtained
by solving the Eq.(3). We employ finite difference scheme
to approximate the partial derivatives of φ with respect to
x and y in the calculation. More implementation details
can be found in [2].

B. The Corrector Step: an Improved LBF Model

After the prediction step, blood vessel with high inten-
sity contrast at boundaries can be segmented. Usually, it
works well if blurry or noisy boundaries do not exist.
Figure 1 shows such an example of the intermediate
segmented result. We can find the extracted segment
has consistent shape as the vessels globally, while some



artifacts can be found in some parts of the boundary when
looking closely. Blurry boundaries (usually in the distal
part of vessels) need to be further corrected by taking
local information into consideration. Therefore, in the
corrector step, we use an improved LBF model to refine
the segmented results obtained from the prediction step.
The local energy can be formulated as

EL(φ) = εLBF (φ, f1, f2) + µP(φ) + νL(φ) (5)

where µ and ν are nonnegative constants. The three terms
in the right of the equation are the local data fitting term,
the level set regularization term and the arc length term
respectively. The arc length term is proposed to smooth
the zero level set contour which is computed by

L(φ) =
∫
|∇H(φ(x))|dx (6)

The level set regularization term, which is proposed
in [14] , serves to maintain the regularity of the level
set function:

P(φ) =
∫

1
2
(|∇H(φ(x))| − 1)2dx (7)

It penalizes the deviation of the function φ from a signed
distance function. Thus, the level set function needs no
re-initialization on the evolution.

The local data fitting term εLBF (φ, f1, f2) is defined
as:

εLBF (φ, f1, f2)

= λ1

∫ ∫
Kσ(x− y)|I(y)− f1(x)|2H(φ(y))dydx

+ λ2

∫ ∫
Kσ(x− y)|I(y)− f2(x)|2

(1−H(φ(y)))dydx (8)

where λ1 and λ2 are two positive constants, H is Heavi-
side function, and Kσ is a Gaussian kernel with standard
deviation σ. The local data fitting energy is dominated
by the intensities I(y) in a neighborhood of x due to
the localization property of the kernel function, and this
localization property enables the LBF model to deal with
intensity inhomogeneity. The f1(x) and f2(x) are two
spatially varying fitting functions which are introduced to
approximate the local intensities on the two sides of the
contour, and they are defined by

f1(x) =
Kσ(x) ∗ [H(φ(x))I(x)]

Kσ(x) ∗H(φ(x))

f2(x) =
Kσ(x) ∗ [(1−H(φ(x)))I(x)]

Kσ(x) ∗ [1−H(φ(x))]
(9)

Minimization of the energy function in Eq.(5) with
respect to φ is achieved by solving the gradient descent
flow equation :

∂φ

∂t
= −δ(φ)(λ1e1 − λ2e2) + νδ(φ)div

( ∇φ

|∇φ|
)

+ µ
(
∇2φ− div

( ∇φ

|∇φ|
))

(10)

where δ is the Dirac delta function, and ei =∫
Ω

Kσ(y − x)|I(x)− fi(y)|2dy, i = 1, 2.
When solving the corrector model in the formulation

(10), segmented results of the prediction step φp is used
as the initial value of the differential equation.

In the original LBF model, function H is approximated
by a smooth function Hε defined by

Hε(x) =
1
2
[1 +

2
π

arctan(
x

ε
)] (11)

Its derivative δε is the smoothed Dirac delta function given
as follows,

δε(x) = H ′
ε(x) =

1
π

ε

ε2 + x2
(12)

However, when the above approximation is applied
to segmentation of vascular images, it may cause emer-
gence of contours at non-vascular regions which possess
strong intensity contrast. The main reason behind this
phenomena is related to the factor δε in the equation.
At regions with strong intensity contrast or intensity
inhomogeneity, the data fitting term (λ1e1 − λ2e2) may
not be close to zero. Therefore, when δε takes small values
at the regions far away from the zero level set, the term
δε(φ)(λ1e1−λ2e2) will be much larger than zero at these
regions and cause new contours appear there.

Although in [15], the authors suggested to use a larger
λ2 than λ1 to avoid the emergence of new contours
far away from the initial contour, such as the skull
boundaries. In our case, however, if we choose a larger
λ2 than λ1, we found that the total iteration will increase
significantly to reach the same segmented results. In
order to keep the computation efficiency, we introduce
a function of Hα, which improves the deficiency caused
by Hε, to approximation the function of H .

Hα(x) =

 1 if x > α
0 if x < −α
1
2 [1 + x

α + 1
π sin(πx

α )] if |x| ≤ α
(13)

The derivative of Hα(x) is

δα = H ′
α(x) =

{
0 if |x| > α
1
2α [1 + cos(πx

α )] if |x| ≤ α
(14)

where α is a positive parameter to control the degree
to supress emergence of new contours. In our proposed
model, even (λ1e1 − λ2e2) is still large at high contrast
regions, δα will be zero if it is far away from the zero level
set, as δα(φ) = 0 when |φ| > α. Thus, the data fitting
term δα(φ)(λ1e1 − λ2e2) will also be zero. Therefore,
new unexpected contours will not emerge at high contrast
regions which is far away from the zero level set.



Fig. 2. Two approximations of the Heaviside function H and delta
function δ

The advantage of formulating Hα as in Equation 13
can be more easily understood by looking at Fig. 2. We
can find that supp(Hα) ⊆ supp(Hε). Thus, it not only
effectively avoids the emergence of new contours, but still
keeping Hα ∈ C2 hold.

IV. RESULTS

A series of experiments have been conducted to validate
the feasibility of the proposed modifications in the level
set model. First, we employ our method to MRA images
with relatively simple vascular structures. The results are
shown in Fig. 3 and Fig. 4. In Fig. 3, we employ the
following parameters: σ = 3.0, µ = 1, ν = 0.002 ×
255 × 255, α = 0.9, while in Fig. 4 the corresponding
parameters are λ1 = λ2 = 1.0, λ2 = 1.1 and λ1 = 1.0.

In Fig. 3(b), the result using PC model fails to extract
the distal parts of vessels, where the contrast between
blood vessels and surrounding tissues is relatively low.
Meanwhile, the original LBF model shown in Fig. 3(c)
also cannot achieve desirable results, new contours of
non-vascular tissues emerge. In contrast, our algorithm
shows a satisfactory segmentation result in Fig. 3(d). It
not only finely extracts the distal parts of vessels but also
avoids the emergence of new contours at non-vascular
tissues. Similarly, in Fig. 4, one can find from the enlarged
regions at the bottom, the proposed method is capable to
extract even some fine vessels.

Fig. 3. (a)Original image. (b)The result of PC model. (c)The result of
LBF model. (d)The result of our model.

For MRA images with more complex vascular struc-
tures as shown in Fig. 5(a), we can compare our result
with the two previous methods in Fig. 5. Again, our
method can produce tidy segmentation of the whole vas-
cular structure with high degree of topology complexity.
All the above examples demonstrate that our algorithm
achieve better results than both PC model and LBF model
in vascular segmentation. Experiments are also performed
on images suffered from noise (Fig. 6) which is common
in medical images. Our method can consistently perform
well in these examples. It also means that our proposed
method has better noise-resistance compared to PC model
and LBF model.

V. CONCLUSION

We have presented a novel level set based predictor-
corrector algorithm for vessel segmentation. The proposed
algorithm takes both the global and local information into
account. In the prediction step, the PC model is applied
to obtain the predicted segmentation contour. Then in the
corrector step, an improved LBF model is proposed to
produce a final segmentation result at the basis of the
predicted contour. Our algorithm combines the advantages
of the PC model and the LBF model. It can precisely
extract the vessel from angiogram without the emergence
of new contours of non-vascular tissues. Meanwhile, it is
insensitive to initial contour and robust to noise. Exper-
imental results have demonstrated the advantages of our
model. Future improvements include further evaluating
our algorithm on 3DRA and CTA, implementing it on
GPU to achieve better performance and integrating it into
some clinical computer-aided medical systems.
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