求 $\min \mathrm{J}=\int_{a}^{b} F\left(x, f(x), f^{\prime}(x)\right) d x$
Add一个扰动，$g_{\varepsilon}=f(x)+\varepsilon \cdot \eta(x)$ ，where $\eta(a)=\eta(b)=0$

$$
\begin{gathered}
\mathrm{J}_{\varepsilon}=\int_{a}^{b} F\left(x, g_{\varepsilon}(x), g_{\varepsilon}{ }^{\prime}(x)\right) d x \\
\frac{d \mathrm{~J}_{\varepsilon}}{d \varepsilon}=\frac{d}{d \varepsilon} \int_{a}^{b} F\left(x, g_{\varepsilon}(x), g_{\varepsilon}{ }^{\prime}(x)\right) d x=\int_{a}^{b} \frac{d}{d \varepsilon} F\left(x, g_{\varepsilon}(x), g_{\varepsilon}{ }^{\prime}(x)\right) d x
\end{gathered}
$$

We know that，
$\frac{d}{d \varepsilon}=\frac{\partial}{\partial \varepsilon}+\frac{d g_{i}}{d \varepsilon} \cdot \frac{\partial}{\partial g_{i}}$ ，where g_{i} is reference to g_{ε} and $g_{\varepsilon}{ }^{\prime}$,

$$
\frac{d F}{d \varepsilon}=\frac{d x}{d \varepsilon} \cdot \frac{\partial F}{\partial \varepsilon}+\frac{d g_{\varepsilon}}{d \varepsilon} \cdot \frac{\partial F}{\partial g_{\varepsilon}}+\frac{d g_{\varepsilon}{ }^{\prime}}{d \varepsilon} \cdot \frac{\partial F}{\partial g_{\varepsilon}{ }^{\prime}}
$$

Because 不存在单独的 ε ，即：ε 都包含在函数 g_{ε} 或者 $g_{\varepsilon}{ }^{\prime}$ 中，所以 $\frac{d x}{d \varepsilon}=0$

$$
\begin{gathered}
\frac{d \mathrm{~J}_{\varepsilon}}{d \varepsilon}=\int_{a}^{b}\left[\eta(x) \cdot \frac{\partial F}{\partial g_{\varepsilon}}+\eta^{\prime}(x) \cdot \frac{\partial F}{\partial g_{\varepsilon}}\right] d x, \text { and } g_{\varepsilon}(\varepsilon=0)=f, \\
\text { so } \frac{d \mathrm{~J}_{\varepsilon}}{d \varepsilon}\left(0 \neq \int_{a}^{b}\left[\eta(x) \cdot \frac{\partial F}{\partial f}+\eta^{\prime}(x) \cdot \frac{\partial F}{\partial f^{\prime}}\right] d x=0\right.
\end{gathered}
$$

由于 snake model，即

$$
\begin{aligned}
& \int\left[E_{\text {int }}(C(s))+E_{\text {ext }}(C(s))\right] d s \\
& =\int\left[\frac{1}{2}\left(\alpha(s) \cdot\left\|C^{\prime}(s)\right\|^{2}+\beta(s) \cdot\left\|C^{\prime \prime}(s)\right\|^{2}\right)+I(C(s))\right] d^{\prime}
\end{aligned}
$$

that is to say，

$$
J=\int_{a}^{b} F\left(x, f(x), f^{\prime}(x), f^{\prime \prime}(x)\right) d
$$

若 $J=\int_{a}^{b} F\left(x, f(x), f^{\prime}(x), f^{\prime \prime}(x)\right) d$ ，则同理，有

$$
\frac{d \mathrm{~J}_{\varepsilon}}{d \varepsilon}(0)=\int_{a}^{b}\left[\eta(x) \cdot \frac{\partial F}{\partial f}+\eta^{\prime}(x) \cdot \frac{\partial F}{\partial f^{\prime}}+\eta^{\prime \prime}(x) \cdot \frac{\partial F}{\partial f^{\prime \prime}}\right] d x=0
$$

且对 $\eta(x)$ 还有要求，

$$
\eta^{\prime}(a)=\eta^{\prime}(b)=0
$$

下面采用分步积分法

$$
\partial(a b)=a \cdot \partial b+b \cdot \partial a
$$

于是，

$$
\begin{aligned}
& \eta^{\prime}(x) \cdot \frac{\partial F}{\partial f^{\prime}} \xrightarrow{a=\frac{\partial F}{\partial f^{\prime}}, b=\eta(x)} \frac{d}{d x}\left[\eta \cdot \frac{\partial F}{\partial f^{\prime}}\right]-\eta \cdot \frac{d}{d x} \cdot \frac{\partial F}{\partial f^{\prime}} \\
& \eta^{\prime \prime}(x) \cdot \frac{\partial F}{\partial f^{\prime \prime}} \xrightarrow{a=\frac{\partial F}{\partial f^{\prime \prime}} b=\eta^{\prime}(x)} \frac{d}{d x}\left[\eta^{\prime} \cdot \frac{\partial F}{\partial f^{\prime \prime}}\right]-\eta^{\prime} \cdot \frac{d}{d x} \cdot \frac{\partial F}{\partial f^{\prime \prime}} \\
& \xrightarrow{a=\frac{d}{d x} \cdot \frac{\partial F}{\partial f^{\prime \prime}} b=\eta(x)} \longrightarrow \frac{d}{d x}\left[\eta^{\prime} \cdot \frac{\partial F}{\partial f^{\prime \prime}}\right]-\left[\frac{d}{d x}\left(\eta \cdot \frac{d}{d x} \cdot \frac{\partial F}{\partial f^{\prime \prime}}\right)-\eta \cdot \frac{d^{2}}{d x^{2}} \cdot \frac{\partial F}{\partial f^{\prime \prime}}\right] \\
& =\frac{d}{d x}\left[\eta^{\prime} \cdot \frac{\partial F}{\partial f^{\prime \prime}}-\eta \cdot \frac{d}{d x} \cdot \frac{\partial F}{\partial f^{\prime \prime}}\right]+\eta \cdot \frac{d^{2}}{d x^{2}} \cdot \frac{\partial F}{\partial f^{\prime \prime}}
\end{aligned}
$$

于是，

$$
\begin{gathered}
\frac{d \mathrm{~J}_{\varepsilon}}{d \varepsilon}\left(0 \not \equiv \int_{a}^{b}\left[\eta(x) \cdot \frac{\partial F}{\partial f}-\eta(x) \cdot \frac{d}{d x} \cdot \frac{\partial F}{\partial f^{\prime}}+\eta(x) \cdot \frac{d^{2}}{d x^{2}} \cdot \frac{\partial F}{\partial f "}\right] d x+\right. \\
{\left.\left[\eta \cdot \frac{\partial F}{\partial f^{\prime}}\right]\right|_{a} ^{b}+\left.\left[\eta^{\prime} \cdot \frac{\partial F}{\partial f^{\prime \prime}}-\eta \cdot \frac{d}{d x} \cdot \frac{\partial F}{\partial f^{\prime \prime}}\right]\right|_{a} ^{b}=0} \\
0 \equiv \int_{a}^{b}\left[\frac{\partial F}{\partial f}-\frac{d}{d x} \cdot \frac{\partial F}{\partial f^{\prime}}+\frac{d^{2}}{d x^{2}} \cdot \frac{\partial F}{\partial f^{\prime}}\right] \cdot \eta(x) d x
\end{gathered}
$$

而 $\eta(x) \neq 0$ ，so

$$
\frac{\partial F}{\partial f}-\frac{d}{d x} \cdot \frac{\partial F}{\partial f^{\prime}}+\frac{d^{2}}{d x^{2}} \cdot \frac{\partial F}{\partial f^{\prime \prime}}=0
$$

所以，对于目标函数

$$
\min \quad \mathrm{J}=\int\left[\frac{1}{2}\left(\alpha(s) \cdot\left\|C^{\prime}(s)\right\|^{2}+\beta(s) \cdot\left\|C^{\prime \prime}(s)\right\|^{2}\right)+I(C(s))\right] d
$$

此时，

$$
\begin{gathered}
F=\left[\frac{1}{2}\left(\alpha(s) \cdot\left\|C^{\prime}(s)\right\|^{2}+\beta(s) \cdot\left\|C^{\prime \prime}(s)\right\|^{2}\right)+I(C(s))\right] \\
x=s, f=C(s), f^{\prime}=C^{\prime}(s), f^{\prime \prime}=C^{\prime \prime}(s)
\end{gathered}
$$

于是，

$$
\begin{gathered}
\frac{\partial F}{\partial f}=\frac{\partial F}{\partial C}=\nabla \cdot I(C(s))=\nabla E_{\text {ext }}(C(s)) \\
\frac{\partial F}{\partial f^{\prime}}=\frac{\partial F}{\partial C^{\prime}}=\alpha(s) \cdot C^{\prime}(s) \\
\frac{\partial F}{\partial f^{\prime \prime}}=\frac{\partial F}{\partial C^{\prime \prime}}=\beta(s) \cdot C^{\prime \prime}(s) \\
\Rightarrow \nabla E_{\text {ext }}(C(s))-\left(\alpha(s) \cdot C^{\prime}(s)\right)^{\prime}+\left(\beta(s) \cdot C^{\prime \prime}(s)\right)^{\prime}=0 \text { 得证。 }
\end{gathered}
$$

