Problem 4

Find the largest palindrome made from the product of two 3-digit numbers.

Let our palindrome be $P=a b$ with a and b the two 3 -digit numbers. If a and b are 3 -digits long then they must lie between 100 and 999 inclusive. So an initial solution to the problem might be:

```
function reverse(n)
    reversed = 0
    while n > 0
        reversed = 10*reversed + n mod 10
        n = n/10
    return reversed
function isPalindrome(n)
    return n = reverse(n)
largestPalindrome = 0
a = 100
while a <= 999
    b = 100
    while b <= 999
        if isPalindrome(a*b) and a*b > largestPalindrome
        largestPalindrome = a*b
        b = b+1
    a =a+1
output largestPalindrome
```

This is fast enough for this case but could be improved. For starters, the current method checks many numbers multiple times. For example the number 69696 is checked both when $a=132$ and $b=528$ and when $a=528$ and $b=132$. To stop checking numbers like this we can assume $a \leq b$, roughly halving the number of calculations needed.

Copyright Project Euler, further distribution without the consent of the author(s) prohibited.
Author: Lster

This would change the code as follows:

```
/ / ...
largestPalindrome = 0
a = 100
while a <= 999
    b = a //Now b=a instead of 100
    while b <= 999
        if isPalindrome(a*b) and a*b > largestPalindrome
            largestPalindrome = a*b
        b = b+1
    a = a+1
output largestPalindrome
```

Next we should consider counting downwards from 999 instead of counting upwards from 100. This makes the program far more likely to find a large palindrome earlier, and we can quite easily stop checking a and b that would be too small to improve upon the largest palindrome found so far.

```
largestPalindrome = 0
a = 999
while a >= 100
    b = 999
    while b >= a
        if a*b <= largestPalindrome
            break //Since a*b is always going to be too small
        if isPalindrome(a*b)
            largestPalindrome = a*b
        b}=\textrm{b}-
    a = a-1
output largestPalindrome
```

Copyright Project Euler, further distribution without the consent of the author(s) prohibited.
Author: Lster

This is fast but can be sped up further with some analysis. Consider the digits of P - let them be x, y and z. P must be at least 6 digits long since the palindrome $111111=143 \times 777-$ the product of two 3 -digit integers. Since P is palindromic:

$$
\begin{aligned}
& P=100000 x+10000 y+1000 z+100 z+10 y+x \\
& P=100001 x+10010 y+1100 z \\
& P=11(9091 x+910 y+100 z)
\end{aligned}
$$

Since 11 is prime, at least one of the integers a or b must have a factor of 11 . So if a is not divisible by 11 then we know b must be. Using this information we can determine what values of b we check depending on a:

```
largestPalindrome = 0
a = 999
while a >= 100
    if a mod 11=0
        b = 999
        db = 1
    else
        b = 990 //The largest number less than or equal 999
                //and divisible by 11
            db}=1
        while b >= a
            if a*b <= largestPalindrome
                        break
            if isPalindrome(a*b)
                largestPalindrome = a*b
            b = b-d.b
        a = a-1
output largestPalindrome
```

Copyright Project Euler, further distribution without the consent of the author(s) prohibited.
Author: Lster

