
Promblem A Deterministic Skip List

Huige Cheng

August 20, 2009

Abstract

This document is written for the implementation of 1-2-3 skip list
based on the paper “Deterministic Skip Lists”.

1 Program Flow

create an empty skip_list_tree
open input_file
open output_file

while(can read input_file )
read one line from input_file, parse it to get command
switch(command)

case: INS value
skip_list_tree.Insert(value)
if (can not allocate memory during Insert)

goto end
case: FIND value

skip_list_tree.Search(value)
case: REM value

skip_list_tree.Remove(value)
write result to output_file
end:
clear skip_list_tree
close input_file
close output_file

2 Code Explanation

In the file named skip list.h, I declared an abstruct class SkipList which
serves as an interface for differnt types of skiplists, here I only implemented
the 1-2-3 skip list, other possible implementations can be added later.

template <typename ElemType>

1



class SkipList {
public:

virtual void Clear() = 0;
virtual bool Search(const ElemType &value) const = 0;
virtual bool Insert(const ElemType &value) = 0;
virtual bool Remove(const ElemType &value) = 0;
virtual void Print() const = 0;

};

The following two classes are used for implementing the deterministic
skip list (actually the 1-2-3 deterministic skip list).All the two classes SkipN-
ode and DeterminSkipList are written in determine skip list.h.

2.1 SkipNode

template <typename ElemType>
class SkipNode {

public:
template <typename T> friend class DeterminSkipList;
SkipNode();
SkipNode(const ElemType &key_input,

SkipNode *right_input = NULL,
SkipNode *down_input = NULL);

private:
DISALLOW_COPY_AND_ASSIGN(SkipNode);
ElemType key;
SkipNode *right;
SkipNode *down;

};

SkipNode defines the node type for the skip list.
ElemType key:

The data member key is used for user to search.
SkipNode ∗right:

The data member right is a pointer pointing to the right SkipNode.
SkipNode ∗down:

The data member down is a pointer pointingg to the down side SkipN-
ode.
Below are some explanations of pointer right and down. Say for one node
which p points to is on level h, there is another skip node which q points to:
If q = p− > right node ∗q is on the same level h and is the successor of ∗p.
If q = p− > down Let p = p left− > right, q = q left− > right. Node ∗q
is on the lower level h-1 and is the successor of ∗q left, and q left− > key
equals to p left− > key.

2



Node ∗q is on the lower level h-1 and is the successor of ∗q left, and
q left− > key equals to p left− > key.(Please refer to the Figure 2 below)
So if you go down you get to the right position of the level below.

Figure 1: 1-2-3 Skip List (Abstract)

Figure 2: 1-2-3 Skip List (Implemetation)

Actually ∗p left and ∗q left represent the same node(in abstract sense
the node with key 25) in different levels(∗p left represent the node with key
25 of level 2, and ∗q left represent level 1). If a node in abstract sense has
max height h,then in our skip list we will have h skip nodes representing it,
each skip node corresponding to one unique level.

The SkipNode class is invisible to the user, so I let all the data member
(key, right, down) be private and for code simplicity let DeterminSkipList
be its friend class so DeterminSkipList can visit its private data. Another
possible implementation could be that let SkipNode be a nested class in-
side DeterminSkipList, but the complier seems not supporting this feature
well for templated class so currently I still let the SkipNode class be an
independent class.

3



2.2 DeterminSkipList

template <typename ElemType>
class DeterminSkipList :public SkipList<ElemType>{

public:
DeterminSkipList(const ElemType &max,

const ElemType &max_1);
~DeterminSkipList();
void Clear();
bool Search(const ElemType &value) const;
bool Insert(const ElemType &value);
bool Remove(const ElemType &value);
void Print() const;
bool IsValid() const;

private:
DISALLOW_COPY_AND_ASSIGN(DeterminSkipList);
void Init();
void ClearHelp(SkipNode<ElemType> *current);
void FindAndModifyRemoveHelp(const ElemType &value,

const ElemType &other_value);
void LowerHeadRemoveHelp();

private:
SkipNode<ElemType> *head;
SkipNode<ElemType> *bottom;
SkipNode<ElemType> *tail;
const ElemType Max;
const ElemType Max_1;

};

Currently, to use DeterminSkipList, the client must provide one value for
Max, another value for Max 1 and make sure Max 1 ¿ Max ¿ any input key
value. Since for code simplicity as the paper stated we need those two values
Max and Max 1 as lookout.

For example if the key type is integer. The client could use it like below:

const int Max_1 = std::numeric_limits<int>::max();
const int Max = Max_1 - 1;
DeterminSkipList<int> skip_list(Max, Max_1);

If the user want to use std::string as key type and for any input string each
character’s ascii value < 128. Then client could use like:

char a[2];
a[0] = char(254); a[1] = ’\0’;

4



const string Max(a);
a[0] = char(255);
const string Max_1(a);
DeterminSkipList<string> skip_list(Max, Max_1);

For the user, he(she) can use the functions like Insert,Search,Remove and
Clear. In order to help debug I have also added fuction Print and IsValid.
Print will simply print the current skip list tree structure, not have good
output effect but enough for the user to see the internal list structure eg.Max
value is 100, Max 1 value is set to 101. So the head with its key 100 right
pointer pointing to tail and down pointer pointing to the element whose key
is 25.

100(25) 101[tail]
25(10) 100(45) 101[tail]
10(5) 25(15) 45(35) 100(50) 101[tail]
5(10) 10(10) 15(10) 20(10) 25(10) ... 50(10) 100(10) 101[tail]

IsValid will tell if the current skip list tree structure is correct, eg. if it finds
one gap whose size > 4 it will return false.

3 Algorithm Summarize

3.1 Search

The key concept of searching is :

Step1: Start from head compare the current skip node key
with the given value to search.

Step2: If the current skip node key > given value,then
go to right else go down.

Repeat step 2 until come to the level 1(current skip node
p,p->down == bottom).
Compare current node key with the given value,
if equal than

return true(find).
else

return false(could not find).

3.2 Insert

The insert process is similar to search it uses the same flow except in order
to keep the list as 1-2-3 skip list, we have to make sure no more than 3
elements of level h-1 between any elements of level h. To solve this problem,
when going down from one level if we find the gap is 3 we will first raise the
middle element of the 3 h-1 elements before we going the the lower level.

5



By doing this we can guarantee we always keep the correct 1-2-3 skip list
structure. You can find detailed algorithm and one example of insertion
figure from the paper,

Here one more thing to mention is there is a minor but fatal error in the
code the paper presents. Say the current head is at level h. We may need to
raise the head to level h + 1 if we need to raise one element of the level h - 1.
If that happened ,even if we find the value v when we at the level 1, we do
not need to insert but we still need to raise the head to keep our structure
consistent. But the code the paper given shows that it immediately returned
false after knowing the value has already exists at level 1. That will destroy
the list structure and make subsequent operations to the tree resulting in
wrong result. The fix is easy. See below:

int Insert(v)
{

....
bool can_insert = true;
while(x!= bottom) {

....
if ((x->d == bottom) && (v == x->key)) {

can_insert = false;
break;

}
....

}
if (head->r != tail) {

....
}
return can_insert;

}

Another thing to mention is I used x− > key > x− > down− >
right− > right− > key as the expression to judge if the gapsize is 3 instead
of x− > key == x− > down− > right− > right− > right− > key , the
effect is the same, but should run faster some how.

3.3 Remove

The remove process also uses the same flow as Search , now the problem
occurs when we are facing a 1 element gap. The idea here is if we find we will
go down when facing a gap whose size is 1. We will have to at first enlarge
this gap. Neither by borrowing elements from neighboring gap or just merge
with neighboring gap. (Actually we first try to merge with neighboring gap
and if we find after mergence the gap size is 3 or less that’s fine, otherwise
we will have to raise one element to make our gap size equal to 2).

6



I used exactly the same strategy as the paper stated , on each level two
pointers are needed this time, SkipNode ∗previous and SkipNode ∗current.
One for the current node and the other points to the one on the left side of
current node if we have advanced toward right on this level.

On each level we advance toward right until we must stop and should
go down. We see if we face a gap with its gap size == 1 and if so judging
whether this is the first gap on this level. (Here first means when we come
to this level we have not advanced toward right before we should go down.)
If it is not the first gap we will merge with the gap on our right side, by
lowering separator node, if the gap size after merge > 3 we will have to
raise the first element of the right gap. If it is the first gap then we will
merge with the gap on our left side, by lowering separator node. If the gap
size after merge > 3 we will have to raise the last element of the right gap.
Notice if after mergence the gap size is 1 or 2 or 3, we will have to delete
one node, otherwise since we have to raise one element also we just need to
swap value. When coming down to the level 1, we can safely delete the node
if it is a height 1 node, otherwise we can swap it’s key with its neighbor
(left neighbor actually, suppose it has key = x) and delete it’s neighbor.To
implement this on our skip list data structure, we have go from head to
search all the node with the key we want to delete and set its key to x. At
last we will check if we need to lower the head pointer so to keep structure
consistent. Below is all the related code for Remove operation of 1-2-3 skip
list.

template <typename ElemType>
void DeterminSkipList<ElemType>::FindAndModifyRemoveHelp(

const ElemType &value,
const ElemType &other_value)

{
SkipNode<ElemType> *current;
current = head;
while (current != bottom) {

while (value > current->key)
current = current->right;

if (value == current->key)
current->key = other_value;

current = current->down;
}

}
template <typename ElemType>
void DeterminSkipList<ElemType>::LowerHeadRemoveHelp()
{

SkipNode<ElemType> *temp;

7



if (head->down->right == tail) {
temp = head->down;
head->down = temp->down;
delete temp;

}
}
template <typename ElemType>
bool DeterminSkipList<ElemType>::Remove(const ElemType &value)
{

if (head->down == bottom)
return false;

SkipNode<ElemType> *current, *previous, *next, *temp;
current = head->down;
int visit_num = 0;
bool can_remove = true;
for(;;) {
previous = NULL;
while (value > current->key) {

previous = current;
current = current->right;

}
if (value == current->key)

visit_num++;
if (current->down == bottom) {

if (visit_num == 0) {
LowerHeadRemoveHelp();
can_remove = false;
return false;

}
else {

if(visit_num == 1) {
temp = current->right;
current->key = current->right->key;
current->right = temp->right;
delete temp;
LowerHeadRemoveHelp();

} else {
LowerHeadRemoveHelp();
FindAndModifyRemoveHelp(current->key,

previous->key);
previous->right = current->right;
delete current;

}
return true;

8



}
}
next = current->down;
if (current->key == current->down->right->key) {

if (previous == NULL) {
if (current->right->key >

current->right->down->right->key) {
current->key = current->right->down->key;
current->right->down = current->right

->down->right;
} else {

temp = current->right;
current->key = temp->key;
current->right = temp->right;
delete temp;

}
} else {

if (previous->key > previous->down
->right->key) {

temp = previous->down->right;
if (temp->right->key != previous->key)

temp = temp->right;
previous->key = temp->key;
current->down = temp->right;

} else {
previous->key = current->key;
previous->right = current->right;
delete current;

}
}

}
current = next;

}
}

In the paper, the author has given one example of deleting element, now
I will illustrate another one which delete one element whose height > 1,
suppose we are going to delte the element whose key is 25 of the 1-2-3 skip
list as figure 1 shows.

First, at level 3, we will go down in the first gap, ant it’s gap size is only
1, so consider the first gap and the gap on the right.Since after merge the
gap size will be 3. So we just need to lower down the element whose key is
25, Pay attention to the fact that we also need to lower the head. The figure
below shows the result,lowering the elment with key 25 as well as the head.

9



Next on level 2, we are at the element a whose key is 10 and then go
right to the element b whose key is 25. This time the gap size between a
and b is 2, so we can go down safely.

Then we come to the final level and starting from the element whose key
is 15 until get to the element whose key is 25, then we will have to delete
this element. But it’s height is 2, so we will swap key with the left element
whose key is 20 before deleting the neigbour.The figure below illustrates the
final result of deleting the element with key 25.

4 Test and Performance

The correctness of the algorithm can be tested by comparing the result
of skip list with std::set. To test the performance I used random insert
(3332964 times), search(3332964 times) and remove(3330534 times) of ran-
dom data(integer, random generated ranging from 0 to 21747483645), exper-
iments showed 1-2-3 skip list performed as well as std::set, the skip list used
66.17s while the latter used 67.72s. (I am running on my virtual machine
,so quite slow and the result may change a lot for different running, but it
did show skip list operations are of the same time complexity as std::set,
O(log(n))).

10


