
Chapter 43

Deterministic Skip

J. Ian Munrot Thomas Papadakist

Lists*

Robert Sedgewick*

Abstract

Reexplore techniques based on the notion of askip list to

guarantee logarithmic search, insert and delete costs. The

basic idea is to insist that between any pair of elements

above a given height are a small number of elements of

precisely that height. Thedesired behaviour can reachieved

byeither using some extra space for pointers, or by adding

the constraint that the physical sizes of the nodes be

exponentially increasing. The first approach leads to simpler

code, whereas the second is ideally suited to a buddy system

of memory allocation. Our techniques are competitive in

terms of time and space with balanced tree schemes, and,

we feel, inherently simpler when taken from first principles.

1 Introduction

We address the classic problem of designing a data

structure to support the operations of search, insert,

delete and find-closest value in logarithmic time in the

worst case. There are several well-known solutions, the

AVL tree [1], the B-tree [2] and its special case the 2-3

tree, the red-black tree [4], etc., all of which are bal-

anced search trees, but which are rarely used for main

memory applications in (non research) computational

practice. Evidently, they seem too hard or complicated

to implement for the “root mean square programmer”.

Our general question then becomes “how hard is it to

understand and implement such a data structure?)’ or

“how many neurons must fire in the head of the pro-

grammer to solve the dictionary problem in logarithmic

time?” Intriguing as a lower bound for the latter form

may be, we restrict ourselves to what we feel is a new

upper bound.

We start with the skip list, that was recently

introduced by Pugh [8] as an alternative to search

*This research was supported in part by the National Science
and Engineering Research Council of Canada under grant No. A-

8237, the Information Technology Research Centre of Ontario,
and the National Science Foundation under Grant No. CCR-
8918152

t DePmtment of Computer Science, University of Waterloo,

Waterloo, Ont N2L 3G1, Canada

t Department of Computer Science, Princeton University,

Princeton, NJ 08544, USA

trees. It is a very simple data structure; Lewis and

Denenberg, for exampl~, in their introductory data

structures textbook [5] introduce the skip list in leading

to the binary search tree. Unlike other data structures,

the skip list is probabilistic in nature, that is, given a

set of values to be stored in a skip list and the insertion

sequence of these values, the shape of the skip list that

will be formed is not determined, but depends on the

outcomes of coin flips. It therefore makes sense to

talk about the average cost for the search of the mth

element in a skip list of n elements (where this average

is taken over all outcomes of coin flips) and about the

average cost for the search of the aver-age element in

a skip list of n elements (where this average is taken

over all outcomes of coin fiips and over all search keys).

These costs are [8,7] log; n + ~ log~ m + 6)(1) and

~ log: n + @(l) respectively, where p is the probability

that the coin used to build the skip list decides to

increase the height of the new node to be inserted.

Similar results hold about the average insert and delete

costs .

Despite the fact that the average insert and update

costs for the skip lists are low, the worst case insert

and update costs are technically unbounded as functions

of n, and they remain linear even if the skip list is

capped at some level, as suggested by Pugh [8]. Thus

the balanced search tree schemes (AVL, red-black, etc.)

remain the refuge of one who wants a firm logarithmic

upper bound for any individual operation.

In this paper, we present several deterministic ver-

sions of the skip list that have a @(lg n) worst case

search cost. We begin by demonstrating our discipline

in its simplest form, which requires a total of at most

2n pointers and haa a @(lg2 n) worst case update cost.

This update behaviour is improved to @(lg n) with a to-

tal of at most 6n pointers in one version, or a total of at

most 2 .3n pointers in another. The 6n pointers version

has the advantage of easier coding. The 2.3n version

is ideally suited to an environment in which the buddy

memory allocation system is employed (e.g. BSD Unix),

since in this version, there is no increase in the stor-

age requirement over the initial form having @(lgz n)

worst case update cost, aa we are given this extra stor-

367

368 MUNRO ET AL.

age whether we want it or not.

Finally we present deterministic versions of skip

lists in which updates are done in a top-down manner.

Although these new skip lists are essentially simple ex-

tensions of the previous versions, their implementations

are simpler, and if we become a bit cavalier with storage,

we are able to achieve an implementation simpler than

that of the 2-3-4 trees implemented directly or through

the red-black formalism.

2 The starting point

A natural starting point is with the idea of a perfectly

balanced skip list, namely one in which every kth

node of height at least h is of height at least h + 1

(for some fixed k). Although searches in balanced

skip lists take logarithmic time, the insert and delete

costs are prohibitive. We should therefore examine the

consequences of relaxing a bit the strict requirement

“every kth node”.

Assuming that in a skip list of n elements there

exists a Oth and a (n+l)st node of height 1 higher than

the height of the skip list, we require that between any

two nodes of height h (h > 1) or higher, there exist

either 1 or 2 nodes of height h – 1. We call this skip

list a 1-2 skip list. As we see from Fig. 1, there exists

a one-to-one correspondence between 1-2 skip lists and

2-3 trees. We feel that, taken from first principles, the

skip list view of the structure is simpler than the search

tree view.

What is the number of (horizontal) pointers of a

1-2 skip list in the worst case? Clearly, the header

has at most Llg(n + I)j pointers. In addition to

these, there exist exactly n pointers at level 1, at

most l~j pointers at level 2, at most
1)

*=

[+1
pointers at level 3, and, in general, at most

[,-I ‘J= 1*J -1 pointers at level i.
n–(1+2+4+... +2’–2

Therefore, the maximum number of pointers, including

the pointers of the header, is ~~~f”+l)j [*J. This

sum is well-known (see, for example, [3, pp. 113–114]),

and so we get that the maximum number of pointers

(including those of the header) in a 1-2 skip list of n

elements is exactly

2n – v~(n+ 1)+ 1, for all n ~ 1,

where V2 (n + 1) is the numbers of 1‘s in the binary

represent at ion of n+l. Therefore, the maximum number

of pointers never exceeds 2n.

A search in a 1-2 skip list is performed in the same

manner as in the probabilistic skip list. We may want

to throw in an extra line of code to take advantage of

the fact that after 2 horizontal steps at each level we

are guaranteed to drop down a level, without looking at

the 3rd element ahead at the same level. This will bring

down the worst case number of key comparisons from

3 [lg(n + 1)] to 2 Llg(n + 1)].

An insertion in a 1-2 skip list is made by initially

adding an element of height 1 in the appropriate spot.

This may, of course, trigger the invalid configuration of

3 elements of height 1 in a row. This is easily rectified

by letting the middle of these 3 elements grow to height

2. If this now results in 3 elements of height 2 in a row,

we let the middle of these three elements grow to height

3, etc. For example, the insertion of element 15 in the

skip list of Fig. l(a) will cause 13 to grow from height 1

to height 2, that will cause 17 to grow from 2 to 3, and

that will cause 17 again to grow from 3 to 4.

In general, the insertion algorithm described above

may cause up to ~lg(n + l)J elements to grow. In the

2-3 tree analogy, this is not a great problem, since each

increase of an element’s height takes constant time.

However, in our setting, if we insist on implementing

the sets of horizontal pointers of the nodes as arrays

(rather than as linked lists) of pointers, then, when

a node grows, we have to allocate space for a larger

node, and we have to copy all pointers in and out of

the old node into the new node. Therefore, the growth

of a single node from height h to height h+ 1 requires

the change of @(h) pointers. Since in the worst case

all nodes of heights 1,2, Llg(n + 1)] will have to be

raised, an insertion may take up to ~(lg2 n) time.

A deletion of an element from a 1-2 skip list is done

in a way completely analogous to the way it is done

in the corresponding 2-3 tree. The deletion of 5 for

example from the 1-2 skip list of Fig. 1(a), will cause

3 to shrink, and this will cause 10 to shrink and 17

to grow. In general, up to Llg(n + l)J elements may

have to grow, and up to [lg(n + l)j may have to shrink,

resulting thus in a @(lg2 n) worst case cost as well.

3 Achieving logarithmic worst case update

costs

One solution to the problem of the @(lg2 n) worst

case update costs encountered in the preceding section,

would be to implement the set of horizontal pointers of

each node as a linked list of pointers. This can almost

triple the space requirement of our data structure; each

horizontal pointer will be substituted by a right pointer,

a down pointer, and a pointer to the key (or the key

itself). Therefore, this linked list version of the 1-2 skip

list will require up to 6n pointers in the worst case. We

will return to this notion because of its simplicity.

If the above space overhead is considered unaccept-

able, we may implement the set of horizontal pointers

of each node as an array of pointers, if we choose these

DETERMINISTIC SKIP LISTS 369

(a)

3

(2)(5)(12 13

(b)

Figure 1: A 1-2 skip list and corresponding 2-3 tree

II

II

II

1,

H

Figure 2: Array implementation of 1-2 skip list

arrays to have exponentially increasing physical heights.

For simplicity, let’s say that all nodes will have physical

heights 2i, for some i = 0,1,2,3, The logical heights

of the nodes will never exceed their physical heights, and

they will be equal to the heights of the nodes in the 1-2

skip list considered in the last section. We reserve the

term array implementation of the 1-2 skip list for this

variant of deterministic skip list. If we insert 15 into the

skip list of Fig. l(a), the resulting skip list under the just

described scheme will be the one shown in Fig. 2.

It turns out that our new skip list does not increase

the storage requirements by very much. It is not hard

to see that the header has at most 2LW lk(~+l)~ -1)1 +1

pointers, for n > 3. In addition to these, there ex-

ist exactly n pointers at level 1, at most 1~~ point-

122J
ers at level 2, at most 2 - pointers at levels 3

[

2~—1
and 4, and, in general, at most 2i ‘-(1+2$+2

‘1

2’ (Ml -1) p0intersat1eve1s2i+12 i+1 Ther~

fore, the maximum number of pointers is exactly

Llg(Llg(n+l)j -l)]

n+l+
II

z 2* * 1 Jf0ra11n~3
i=o

and if we remove the floors and we define

{

[lg(Llg(n+l)j-l)j

def
E

2i–21
forn>3

an =
i=O

o forn=l,2

we get the upper bound

(%+ l)n + % + 1, for all n ~ 1

for the maximum number of pointers in the array

implementation of a 1-2 skip list of n elements. The sum

defining an can be computed fast to a high accuracy,

since it hss only a few terms which grow very fast;

wehavecw = . . . = ff6 = .5, I-Y7 = ‘“”cY30 = 1,

a31=.. . awo = 1.25, and cr~ cx 1.281 for n ~ 511.

Hence, we never allocate more than 2.282n pointers.

370 MUNRO ET AL.

When, doing an insertion, a node has to grow,

we use the higher level pointer field, if one exists. If

not, a new node has to be created, and all pointers in

and out of the old node have to be copied to the new

node. At this point, we achieve the @(lg n) insertion

cost. Consider the 2i (i > 1) nodes of logical heights

2i + 1,..., 2i+l. All of them are of physical height 2i+l.

When the heights of all of them have to be increased

by 1, only the node of logical height 2i+1 has to be

copied into a new node; the remaining nodes will merely

increase their logical heights, and their physical heights

allow them to do so in constant time. Hence, the time

required for an insertion, is proportional to the sum of

the heights of the nodes that will be copied, that is,

To delete an element, we apply the same technique,

achieving thus a worst case ~(lg n) cost as well.

Having achieved logarithmic worst case update

costs with the array implementation of the 1-2 skip list,

which uses only 2.282n pointers, we might be wondering

what are the advantages of the linked list implementa-

tion of the 1-2 skip list, which also achieves logarithmic

worst case update costs, but which uses 6n pointers.

The answer is code simplicity. In the linked list imple-

ment ation, in order to raise or lower a skip list node

we only have to change a few pointers. Of course, we

may have to do that for all Llg(n + l)J levels, but any

reasonable coder will include this piece of code in the

insert /delete routines. On the other hand, in the array

implement ation, in order to change the height of a skip

list node, we have to initiate a search for the key in that

node, so that we can splice at the proper place and in-

sert the new node. This will more likely be a separate

procedure (admittedly, similar to the search routine),

adding a time overhead when invoked.

We may now observe that the array implementation

of the 1-2 skip list is serendipitous in the programming

environment in which many of us find ourselves into,

namely programming in C under Unix. In most of

Berkeley-based versions of Unix (e.g. 4.3 BSD), memory

blocks less than 512 bytes are allocated by a (binary)

buddy system. In particular, a request for memory of

modest size results in the allocation of a number of

bytes equal to the smallest power of 2 (reduced by 4

bytes used for administrative purposes) adequate for the

request. It is therefore convenient to tune our structure

by choosing physical element heights to be such that the

entire node will fit exactly into the space allocated by

the memory manager. For example, if we have l-word

keys, and if we also store the logical height of each skip

list node in the node itself, then we should choose nodes

of physical heights 2i – 3, for i = 2, 3, . . . (assuming that

each pointer is 1 word = 4 bytes long).

We would like to emphasize at this point that the

array implement ation of our 1-2 skip list can be done

in any environment. It is simply that in a buddy

environment, if the array implementation is tuned as

described, it doesn’t require more space than its naive

counterpart described in Section 2, and it improves

the @(lg2 n) worst case update cost to O(lg n). In a

non-buddy environment, the array implement ation may

require up to 15% more pointers than its naive version,

also achieving the @(lg n) worst case update cost.

It is also worth noting that our array implemen-

t ation can be streamlined somewhat. We can sidestep

most of the @(lg lg n) calls to the storage manager, by

simply keeping, along with the structure, O(lg lg n) free

nodes, one of each size. When an insertion takes place,

we initially request a free node of size 1 from our set

of free nodes, and if some elements have to grow, we

repeatedly request a new node one size larger and we

release the old one. This leaves our set of free nodes

with one node of each size except for the final node

requested. A single call now to the memory manager

rectifies the situation.

The @(lg lg n) calls to the storage manager can also

be avoided if we choose to raise the elements’ heights

top-down, rather than bottom-up. We can do so, if,

during our search, we record whether we drop from

level h to level h – 1 before the first, between the first

and the second, or after the second element of height h.

We can then determine which element haa to grow to

which height, Suppose that we find out that the highest

element that has to grow is of height i and that it has

to grow to height i+ j. Then, the next lowest element

that will grow, will grow to height exactly i. Thus, we

can make only one call to the memory manager for an

element of height i+j, since we may subsequently reuse

the freed element of height i for the new element to grow

to height i, etc.

4 Top-down 1-2-3 skip lists

The correspondence between 2-3 trees and 1-2 skip lists

can be easily generalized. For any B-tree of order m,

we can define a deterministic skip list that will allow

(’Y1 -1, [~1, -. .,m–2, m-l nodes of the same height

in a row. Fig. 3 shows a 2-3-4 tree and its corresponding

skip list, that we will call 1-2-3 skip list for obvious

reasons.

As noted in [4], insertions in a 2-3-4 tree can

be performed top-down, eliminating thus the need to

maintain a stack with the search path. Adopting this

approach, we insert an element in a 1-2-3 skip list by

splitting any gap of size 3 into two gaps of size 1, when

searching for the element to be inserted. We ensure in

this way that the structure retains the gap invariant

DETERMINISTIC SKIP LISTS 371

(a)

(b)

Figure 3: A 1-2-3 skip list and corresponding 2-3-4 tree

- — ● Ill
— —

● b ● b ● ● ● b ● {1,
-

- - 0- - 0- - + * o- * o- + 0- - 0- - 0- + 6 + 0- + 0- +11

HEADER 9 13 /20 30 39 ~ ~ 51 53 55 60

Figure 4: Top-down 1-2-3 skip list insertion

+ — ● Ill

+ — ● ● 0-- ● ● Ill

— - -

- d c- + o- --+ 0- + o- + 0- - 0- + 0- - 0- + s- + o- +11

HEADER 9 13 20 30 39 41 48 51 53 60

Figure 5: Top-down 1-2-3 skip list deletion

with or without the inserted element. To be more

precise, we start our search at the header, and at level

1 higher than the height of the skip list. When we find

the gap that we are going to drop, we look at the level

below and if we see 3 nodes of the same height in a row,

we raise the middle one; after that we drop down a level.

When we reach the bottom level, we simply insert a new

node of height 1. Since our algorithm allowed only gaps

of sizes 1 and 2, the newly inserted element leaves us

with a valid 1-2-3 skip list.

As an example, consider the case of inserting 20 in

the skip list of Fig. 3(a). We start at level 3 of the

header, we look at level 2 and we raise 48, then we drop

to level 2 of the header, we move to level 2 of 13, we

raise 39, then we drop to level 1 of 13, and we insert a

new node of height 1 having the key 20. The resulting

skip list is shown in Fig. 4.

To delete an element from a 1-2-3 skip list, we work

in a top-down manner as well. We want the search for

the element that will be removed to have the side-effect

that each gap is of legal — but above minimal — size as

we pass through it. This is handled by either merging

with a neighbour, or borrowing an element from that

neighbour. More precisely, we start our search at the

header and at level h equal to the height of the skip list.

If we are going to drop down in the first gap and there

is only 1 node of height h – 1 there, then we lower the

node of height h that we see ahead of us, and if there

exist at least 2 nodes of height h — 1 in the second gap,

we raise the first of them. If we are not going to drop

in the first gap, we find the (i + l)st (for some i ~ 1)

gap that we are going to drop, and we also keep track

of the ith gap. If there is only one node of height h – 1

in the (i + l)st gap, then we lower the separator node

372

head

bottom

MUNRO ET AL.

tail

Figure 6: Linked list representation for the empty 1-2-3 skip list

of the ith and (i+ l)st gaps, and if there exist at least 2

nodes of height h – 1 in the ith gap, we raise the last of

them. We then drop to level h – 1. We continue in this

way, until we reach the bottom level, where we remove

the node of height 1 (if the key to be deleted is not in a

node of height 1, we swap it with its neighbour of height

1, and we remove its neighbour). Since our algorithm

didn’t allow any gaps to be of size 1, what we are left

with after the removal of the mode of height 1, is a valid

1-2-3 skip list.

As an example, consider the case of deleting 55 from

the structure of Fig. 4. We start at level 3 of the header,

and we lower J8 and raise 39. We then continue from

level 2 of 48, we move to level 2 of 53, then to level 1

of 53, and we finally remove 55. The resulting tree is

shown in Fig. 5.

The top-down 1-2-3 skip list can be implemented by

using either linked lists of pointers or arrays of pointers

of exponential sizes for the skip list nodes. Both of these

implementations are simpler than their counterparts for

the 1-2 skip list because all of the work is done on

one pass down through the structure, just as in [4].

Moreover, the linked list implementation of top-down

2-3-4 trees represented as skip lists is much simpler than

the corresponding implement ation using red-black trees

and other balanced tree algorithms; such algorithms are

notoriously complicated because of the numerous cases

that arise involving single and double rotations on the

left and the right.

To avoid having special cases in our code, we

intro duce a dummy head node and two sentinel nodes

bottom and tail. Furthermore, to avoid a level of

indirection, we also pull the keys back into the nodes

in which the comparisons are actually made (see Fig. 6

and 7). Admittedly, this moves us to a representation

between what one might view as a skip list and a binary

tree.

Assuming the data type definition

struct node {int key; node *r, *cl; }

where r is a right pointer and d is a down pointer, the

function to search for key value v can be written as

node * Search(v)

int v;

{
node * x;

x = head-

bottom->~ey = v;

while (v ! = x–>key)

x = (v < x->key) ? x->d : x->r;

return(x) ;

}
or as

node * Seaxch(v)

int v;

{
node * x;

x = head;

while (x ! = bottom) {

while (v > x->key) x = x–>r;

if (x->d == bottom)

return((v == x–>key) ? x : bottom) ;

X = x–>d;

}
}

These functions return a pointer to the node containing

the key sought, or a pointer to bottom if the search was

unsuccessful. Observe that the first version uses 3-waY

branches in each node, and it is identical to the search

procedure for a binary search tree. The second version

tests for equality only at the lowest level, and it is skip

list in flavour.

If we choose the second version for the search code,

then the code to insert a key v into a 1-2-3 skip list

is just a matter of filling in a few gaps in the above

code; we simply have to add a node in a horizontal link

whenever necessary,

DETERMINISTIC SKIP LISTS 373

.- ‘ ‘~
header- ‘a

maz
+1

‘ 40 I ~ ma

+
,, 1r .

20 ~ 30 ‘ 40 “ 50

1 I

v T 1 v 1

bottom ~

I +

Figure 7: A 1-2-3 skip list and its corresponding linked list representation

int Insert(v)

int v;

{
node *t, *x;

x = head;

bottom->key = v;

while (x != bottom) {

while (v > x->key) x = x->r;

if ((x->d == bottom) && (v == x->key))

return(0);

if ((x->d == bottom)

II (x->key == x->d->r->r->r->key)) {

t = (node*)malloc(sizeof(struct node));

t->r = x–>r; t->d = x->d->r->r; x->r = t;

t->key = x->key; x->key = x->d->r->key;

}
X = x->d;

}
if (head->r != tail) {

t = (node*)malloc(slzeof(struct node));

t->d = head; t->r = tail; t->key = maxkey;

head = t;

}
return(i);

}

This function returns 1 if kev value v was inserted in.
the skip list, and Oifv was already in theskip list and

it was not re-inserted.

We would like to emphasize here again that our

purpose ofgiving the above rough Ccodeistoshow that

this fully debugged and working code is much shorter

and simpler than other published implementations of

insertion for balanced trees. There are several tradeoffs

in developing an implementation of the basic strategy

that we have outlined. For example, one can maintain

a field that counts the number of skipped nodes and

thus not only simplify thetest ofwhen tosplit but also

allow for trivial extension tohigher-order skip lists. We

are currently studying such implementation tradeoffs in

detail.

Note also that, as discussed in [4], other standard

balanced tree algorithms, such as AVL trees, can be

transformed into simplified implementations througha

skip list representation.

Similarly, the deletion algorithm is quite easy to

code. Despite the fact that it is a bit longer than the

insertion code, it is an even greater reduction in coding

difficulty than is the case for insertion.

user
Note

user
Highlight

user
Highlight

374

5 Conclusion

We have introduced several versions of deterministic

skip lists, simple data structures with guaranteed loga-

rithmic search and update costs. We observed (Fig. 1

and 3) that a skip list can be viewed w a multiway

search tree in which the path length from the root to

any leaf is the same; this path length corresponds to

the height of the skip list, or to the number of verti-

cal steps in the path for the search of any element in

the skip list. As noted in [4], a multiway search tree,

and hence a skip list, can be viewed as a binary search

tree in which an element to the right, in the same node

of the multiway tree, or in the same level of the skip

list, can be viewed aa a (possibly flagged) right child.

While Pugh introduced the skip list as a probabilistic

structure, we have moved away from that point, and

we have focused on several representational distinctions

that impact the ease of manipulation. One obvious dis-

tinction is that Pugh’s skip list nodes have a key value

and a varying number of pointers; our node may be

implemented as linked lists of pointers. A search for

an element in a skip list may encounter the same value

several times (e.g. searching for 23 in the example of

Fig. 1 involves two comparisons with 25). These redun-

dant comparisons, and indeed extra pointers, have the

advantage of threading the structure, and also produc-

ing a representation in which splitting a multiway node

(or merging two multiway nodes) in the tree framework

becomes a much easier operation of allowing a linked list

of horizontal pointers to grow (or shrink) by one. On

the other hand, a standard rotation in a general search

tree would require time proportional to the size of the

entire subtree in the skip list setting.

The worst case number of comparisons in our 1-

2 and 1-2-3 skip list is 21gn + @(l) and 31gn + @(l)

respectively. The expected number of comparisons for

both of them seem to be about 1.2 Ig n + (3(1), better

than the 1.9 lg n + ~(l) expected number of comparisons

in the probabilistic skip list (tuned to minimize this

value). Note though, that our data structures, unlike

their probabilistic cousins, and like other balanced

search tree schemes (AVL, red-black, etc.), are not

history-independent.

The array implementations of our schemes require

2.282n pointers in the worst case, and the linked lists

implement ations require 6n pointers in the worst case.

Probabilistic skip lists, minimizing the asymptotic ex-

pected search cost, require 1.582n pointers on average,

and n lg n pointers in the worst case (when they are

capped at level lg n).

One might think that our deterministic skip lists

require more space than balanced search trees. This

is not the case though, for casual implementations

MUNRO ET AL.

in environments many of us program. Consider, for

example, programming in C under Unix. For simplicity,

assume that the keys are 1 word long each. Most

Berkeley Unix-based systems allocate only powers of 2

number of bytes, and they keep 4 of these bytes for

administrative purposes. So, to store 1 key, 2 pointers

and 1 (or 2) bits per node, we have to allocate 8 words.

Thus, AVL and red-black trees will always take 8n

words. The linked list implementation of our skip lists

will take at most 8n pointers in the worst case. The

array implementation of our skip lists, even if we assume

that we also store the height of each node in the node,

will take 4 words for elements of height 1, 4 more words

for the at most ~ of the elements of heights 2 to 5, 8

more words for the at most & of the elements of heights

6 to 13, etc. Hence, the array implementation of our skip

lists will take 6.25n words in the worst case, which is less

than 4/5 of the space always taken by the AVL and red-

black trees. The probabilistic skip list will take 4.56n

words on average, the array implementation of the 1-2

skip list about 5 .77n (4.74n if heights are not stored in

nodes) words on the average, the array implementation

of the 1-2-3 skip list about 5.49n (4.54n if heights are

not stored in nodes) words on the average} the linked list

implement ation of the 1-2 skip list about 6 .58n words

on the average, and the linked list implementation of

the 1-2-3 skip list about 6.26n words on the average.

The “skip list” representation of binary trees can

lead to substantially simpler implementations of stan-

dard abstract data structures such as 2-3 trees, top-

down 2-3-4 trees, and AVL trees. Moreover, it provides

a systematic way to view the “cross” pointers that are

used in advanced data structures based on balanced

trees [6] that should lead to substantially simpler im-

plementations of a number of algorithms on such struc-

tures, and perhaps to the development of new methods.

References

[1]

[2]

[3]

[4]

[5]

[6]

G. M. Adel’son-Vel’skii and E. M. Landis. “An algo-

rithm for the Organization of Information”. Dolclady

Akademia Nauk SSSR, vol. 146, 1962, pp. 263–266. En-

glish translation in Soviet Mathematics Doklady, vol. 3,

pp. 1259–1263.

R. Bayer and E. McCreight. “Organization and Main-

tenance of Large Ordered Indexes”. Acts h~orrnatica,
vol. 1, 1972, pp. 173–189.

R. L. Graham, D. E. Knuth and O. Pataahnik. Con-

crete Mathematics. Addison- Wesley, 1989.

L. Guibas and R. Sedgewick. “A dichromatic frame-

work for balanced trees”. lgth Annual Symposium in

Foundations of Computer Science IEEE Computer So-

ciet y. Ann Arbor, Michigan, Ott. 1978, pp. 8–21.

H. R. Lewis and L. Denenberg. Data Structures and

their Algorithms. Harper Collins, 1991.

K. Mehlhorn. Data Structures and Algorithms, vol. 1.

DETERMINISTIC SKIP LISTS

Springer-Verlag, 1984.

[7] T. Papadakis, J, I. Munro and P. Poblete. “Average

Search and Update Costs in Skip Lists”. BIT, to

appear.

[8] W. Pugh. “Skip Lists: A Probabilistic Alternative to

Balanced Trees”. Communications of the A CM, vol. 33,

no. 6, June 1990, pp. 668–676.

375

