Username and Password to Infocard
14

From Username and Password to “InfoCard”
Hands-on Lab
Notice
This document supports a preliminary release of a software product that may be changed substantially prior to final commercial release. This document is provided for informational purposes only and Microsoft makes no warranties, either express or implied, in this document. Information in this document, including URL and other Internet Web site references, is subject to change without notice. The entire risk of the use or the results from the use of this document remains with the user. Unless otherwise noted, the companies, organizations, products, domain names, e-mail addresses, logos, people, places, and events depicted in examples herein are fictitious. No association with any real company, organization, product, domain name, e-mail address, logo, person, place, or event is intended or should be inferred. Complying with all applicable copyright laws is the responsibility of the user. Without limiting the rights under copyright, no part of this document may be reproduced, stored in or introduced into a retrieval system, or transmitted in any form or by any means (electronic, mechanical, photocopying, recording, or otherwise), or for any purpose, without the express written permission of Microsoft Corporation.

Microsoft may have patents, patent applications, trademarks, copyrights, or other intellectual property rights covering subject matter in this document. Except as expressly provided in any written license agreement from Microsoft, the furnishing of this document does not give you any license to these patents, trademarks, copyrights, or other intellectual property.

© 2006 Microsoft Corporation. All rights reserved.

Microsoft, MS-DOS, Windows, Windows Server, Windows Vista, Microsoft Visual Studio, Microsoft SQL Server Express are either registered trademarks or trademarks of Microsoft Corporation in the United States and/or other countries.

All other trademarks are property of their respective owners.

Introduction
This hands-on lab is targeted at developers of website that wish to understand how to create self-issued information cards, and convert an existing website to use self-issued information cards as an alternative to username and password for authentication.
The exercises in this document assume a good familiarity with Microsoft Windows, HTML, C# and SQL.

Requirements
This hands-on lab needs the Mix/06 InfoCard Virtual Machine.

InfoCard Virtual Machine Details

The username is “Administrator” and the password is “pass@word1”. All InfoCard-related content can be found under the C:\Infocard directory.

The virtual machine includes:

-
Windows XP SP2 time-bombed until July 22, 2007 (check using winver)

-
Visual Studio 2005 Team System and docs

-
.NET Framework 2.0

-
WCF Build 3.0. *FIXME*

-
Internet Explorer 7.0 Build *FIXME*
Sample Web Site
The exercises here take a sample website (Fabrikam Friends) that uses username and password for authentication purposes, and enhancing it to use information Cards.

An original copy of the website is found at (C:\INFOCARD\websites\fabrikam\original) which is found with Internet Explorer at (http://www.fabrikam.com/original).

The virtual machine also contains a copy of this sample web site for you to modify, at (C:\INFOCARD\websites\fabrikam\exercise) which is found with Internet Explorer at (http://www.fabrikam.com/exercise)

An InfoCard-enhanced version that you can look at as well is at at (C:\INFOCARD\websites\fabrikam\infocard) which is found with Internet Explorer at (http://www.fabrikam.com/infocard)
Exercises
Exercise 1: Create an information card using the Identity Selector
In the control panel, you will find a “Digital Identities” applet that allows you to manage your digital identities. When you run the applet, you will see the following dialog:

[image: image3.png]
Notice that the Add Cards window is running on a separate, secure desktop. The background is frozen and grayed out and you cannot access your normal desktop – including Task Manager - until you close the window. This UI is running on a separate Windows desktop and is very difficult for a bad guy to reproduce, especially from within a browser.

Notice also that in Task Manager two new processes have been launched: icardagt.exe, running as the user (Administrator), and infocard.exe, running as SYSTEM. The icardagt.exe process takes care of the InfoCard user interface, the infocard.exe process is the main InfoCard engine. The two processes communicate with one another using RPC. If you’re really eagle-eyed, you might also see rundll32.exe which is used to launch the infocardcpl.cpl control panel applet.

Cards represent your identity using a set of claims (one claim might be your age, another might be your address, and so on). When you select a card a security token is generated containing the claims and is presented, pending your approval, to the web site or service requesting your identity. You can use the same card at many web sites and you can use many cards at the same web site.

There are two types of InfoCard: personal cards and provider cards. Neither type of card contains personally identifiable information (PII) (eg. “Frank Lee”, “One Microsoft Way”, “Male” or “+1 425 705 8080”). Cards contain metadata about where to obtain security tokens containing PII. They also state the token type(s) supported and which PII claims are available (eg. “surname and address claims can be provided in a SAML 1.0 or an XrML token and the service endpoint is xyz”).

The InfoCard UI allows the user to create personal cards, to install provider cards and to restore both types of cards from backups.

Personal cards – commonly referred to as self-issued cards – are created and maintained by the user in the InfoCard user interface. They have a small and fixed set of claims. The cards are stored locally and the PII associated with the cards is also stored locally.

Provider cards – commonly referred to as managed cards – are supplied to the user in the form of a signed .CRD file by an identity provider (e.g. an employer, a financial institution or a government) and installed into the InfoCard system by the user. The set of claims associated with a provider card is not limited in any way but it is instead determined by the identity provider (eg. an employer might provide an employee number claim, a bank might provide an account number claim). Provider cards, once installed, are stored locally but the PII associated with a card is not stored locally. The data is owned and stored by the identity provider who supplied the card.

Functionally, personal cards and provider cards are the same. They both point to a location where information about the user can be retrieved and presented in the form of a security token. It’s just that for one type of card that information is created by the user and stored locally and for the other the data is created by and stored by a third party.

Go ahead and create some personal cards. Create at least two, putting in whatever information you feel like. Check the Card Details window:

[image: image2.jpg]
Although it says the card “contains” the claims you entered and “This card has never been sent.” the card itself only contains claim metadata (in this case that there is a First Name claim, a Last Name claim, a Locality claim and so on) and the card is never sent – unless you explicitly export it and email it to someone! The card contains information about how to generate a security token containing the claim data and it is this security token which travels over the wire not the card.

However, from the user’s perspective the natural thing to imagine is that the card is being presented to a web site or service – this is our experience in the real world and it is this language and metaphor that is used in the user interface.

Note that personal cards are assigned a card ID at creation time by the InfoCard system. This globally unique URI is used to uniquely identify a card and also to help create a per site private personal identifier (PPID) to identify the user to a site. This PPID is included as a claim in security tokens created using personal cards and it enables a site to identify returning users and thus provide a consistent experience. Otherwise, if the only claims you provided were First Name = John and Last Name = Smith a site wouldn’t be able to tell you apart from every other John Smith and any attempt at personalizing your experience would be wasted (or at least shared with a lot of people!).

With provider cards it is left to the identity provider to generate a unique card ID. Identity providers are free to create private personal identifiers in whichever way they prefer. Indeed an identity provider may not choose to provide a PPID claim. Your employer, for example, may use an “Employee Number” claim to uniquely identify you. However, PPID is available and it is a good idea for identity providers to use it for consistency.

Try exporting your personal cards, deleting some and importing them again. When you are done close down the Digital Identities UI and go on to the next exercise.

A word about claims with information cards
Self issued information cards support only a select number of claims. Each of these claims is associated with an URI that we use to look up the claim inside the token.

The claims that are supported are:

 Given Name = "http://schemas.microsoft.com/ws/2005/05/identity/claims/givenname";
 Email Address = "http://schemas.microsoft.com/ws/2005/05/identity/claims/emailaddress";
 Surname = "http://schemas.microsoft.com/ws/2005/05/identity/claims/surname";
 Street Address = "http://schemas.microsoft.com/ws/2005/05/identity/claims/streetaddress";
 Locality = "http://schemas.microsoft.com/ws/2005/05/identity/claims/locality";
 State/Province = "http://schemas.microsoft.com/ws/2005/05/identity/claims/stateorprovince";
 Postal Code = "http://schemas.microsoft.com/ws/2005/05/identity/claims/postalcode";
 Country = "http://schemas.microsoft.com/ws/2005/05/identity/claims/country";
 Home Phone = "http://schemas.microsoft.com/ws/2005/05/identity/claims/homephone";
 Other Phone = "http://schemas.microsoft.com/ws/2005/05/identity/claims/otherphone";
 Mobile Phone = "http://schemas.microsoft.com/ws/2005/05/identity/claims/mobilephone";
 Date of Birth = "http://schemas.microsoft.com/ws/2005/05/identity/claims/dateofbirth";
 Gender = "http://schemas.microsoft.com/ws/2005/05/identity/claims/gender";
 PPID = "http://schemas.microsoft.com/ws/2005/05/identity/claims/privatepersonalidentifier";
We use the URIs with the TokenHelper class to extract out the values for the claims.

Exercise 2: Modify the database to hold information card identities
In order to allow users to use information cards to sign into your web site, you will need to associate their current identity with a thumbprint of the card they present. In our example application users are currently uniquely identified by ApplicationId and UserId. We’re going to link that with a UniqueHash (the thumbprint from the card). We’ll start by modifying the database.
Step 1: Open up the InfoCard Web Exercises Visual Studio 2005 solution file icon, found on the desktop. Using the solution explorer on the right hand side of the screen, drill down into the APP_DATA directory and right click on the ASPNETDB, and select ‘Open’.

On the left hand side of the screen, drill down to the ASPNETDB->Tables folder, right click and select “Add New Table”.

Create the information card association table like this:
[image: image1.jpg]
In the right hand corner of the screen you will see the properties pane. Change the name of the table to aspnet_Infocards. Once you are happy with your table, press ctrl-s to save the table to the database.
Step 2: Create an “association” stored procedure
This time, on the left hand side of the screen, drill down to the ASPNETDB->Stored Procedures folder, right click and select “Add New Stored Procedure”. Add the following stored procedure, and press ctrl-s to commit it to the database:
CREATE PROCEDURE dbo.aspnet_infocard_associate

(@ApplicationName nvarchar(256),

 @UserName nvarchar(256),

 @infocard nvarchar(50)
)

AS

 DECLARE @ApplicationId uniqueidentifier

 SELECT @ApplicationId = NULL

 DECLARE @UserId uniqueidentifier

 SELECT @UserId = NULL

 EXEC dbo.aspnet_Applications_CreateApplication @ApplicationName, @ApplicationId OUTPUT

SELECT @UserId = UserId

FROM dbo.aspnet_Users WHERE

LOWER(@UserName) = LoweredUserName AND @ApplicationId = ApplicationId

insert into

aspnet_Infocards (ApplicationId, UserId, UniqueHash)

values

(@ApplicationId, @UserId , @infocard)

RETURN

Step 3: Create a “lookup” stored procedure

And now, create the lookup stored procedure:

CREATE PROCEDURE dbo.aspnet_Infocard_lookup

(
@UniqueHash nvarchar(50)
)

AS

select

aspnet_Users.username

from

aspnet_Users,

aspnet_Infocards

where

aspnet_Infocards.uniqueHash = @UniqueHash and

aspnet_users.ApplicationId = aspnet_infocards.ApplicationId and

aspnet_users.UserId = aspnet_infocards.UserId ;

RETURN
These stored procedures will allow us to associate and retrieve users by their thumbprint. When you are finished, you may close the server explorer on the left by clicking the ‘x’ in the top right corner of the pane, and close any open editor windows by clicking the ‘x’ at the right hand corner of the tab bar, until all the windows are closed.

Exercise 3: Update the application settings and add some code to the project.
Add the EncryptedData.cs, SqlMembershipProviderHelper.cs and TokenHelper.cs files to the project, by dragging them from the “Infocard Web Lab” folder.
Note: you can also drag the other files from that folder overtop of the files that they are replacing if you don’t want to manually edit the files (in the following exercises too.)

The code in these files help the developer in consuming the token posted to the web site, and extracting out the claims.

Next, we have to update the web.config file to add the configuration data for decrypting the token and add a reference to the System.IdentityModel.Selectors assembly.

You can see the references to the certificate file and certificate password in the certfile and certpass keys. The IdentityClaimType has the URI that we are going to use as part our unique hash for the user, in this case the private personal identifier.

Also, you can note the System.IdentityModel.Selectors assembly reference.

Change the Web.config:

<?xml version="1.0"?>

<configuration xmlns="http://schemas.microsoft.com/.NetConfiguration/v2.0">

 <appSettings>

 <add key="certfile" value="C:\Infocard\Certificates\HighAssurance\fabrikam.pfx"/>

 <add key="certpass" value="xyz"/>

 <add key="IdentityClaimType" value="http://schemas.microsoft.com/ws/2005/05/identity/claims/privatepersonalidentifier" />

 </appSettings>

<connectionStrings>

<add name="Personal" connectionString="Data Source=.\SQLExpress;Integrated Security=True;User Instance=True;AttachDBFilename=|DataDirectory|Personal.mdf" providerName="System.Data.SqlClient"/>

<remove name="LocalSqlServer"/>

<add name="LocalSqlServer" connectionString="Data Source=.\SQLExpress;Integrated Security=True;User Instance=True;AttachDBFilename=|DataDirectory|aspnetdb.mdf"/>

</connectionStrings>

<system.web>

<pages styleSheetTheme="Mix"/>

<customErrors mode="RemoteOnly"/>

<compilation debug="true">

<assemblies>

<add assembly="System.IdentityModel.Selectors, Version=3.0.0.0, Culture=neutral, PublicKeyToken=B77A5C561934E089"/></assemblies></compilation>

<authentication mode="Forms">

<forms loginUrl="anonymous/login.aspx" protection="Validation" timeout="300"/>

</authentication>

<authorization>

<allow users="*"/>

</authorization>

<globalization requestEncoding="utf-8" responseEncoding="utf-8"/>

<roleManager enabled="true"/>

<siteMap defaultProvider="XmlSiteMapProvider" enabled="true">

<providers>

<add name="XmlSiteMapProvider" description="SiteMap provider which reads in .sitemap XML files." type="System.Web.XmlSiteMapProvider, System.Web, Version=2.0.0.0, Culture=neutral, PublicKeyToken=b03f5f7f11d50a3a" siteMapFile="web.sitemap" securityTrimmingEnabled="true"/>

</providers>

</siteMap>

</system.web>

<location path="Admin">

<system.web>

<authorization>

<allow roles="Administrators"/>

<deny users="*"/>

</authorization>

</system.web>

</location>

</configuration>

Exercise 4: Create a page to associate an information card with a user account

In order to accept information cards as an authentication mechanism, we will first create a page that is accessible by authenticated users (meaning that they will have had to enter their current username and password to get there), and allow them to send a self-issued information card.
Add the files to the project, by dragging from the “Infocard Web Lab” or by creating them manually and typing them in.
Associate.aspx

<%@ Page Language="C#" MasterPageFile="~/Default.master" Title="Fabrikam Friends | Manage My Account"

 CodeFile="Associate.aspx.cs" Inherits="Associate_aspx" ValidateRequest="false" %>

<asp:Content ID="Content1" ContentPlaceHolderID="Main" runat="server">

<!-- Copyright (c) Microsoft Corporation. All rights reserved. -->

 <div class="shim column">

 </div>

 <div class="page" id="resume">

 <div id="contentx" class="resume">

 <div runat="server" id="associateinfocarddiv">

 <h3>

 Associate an Information Card</h3>

 In order to associate your account with an

 infomation card:

 <button onclick="javascript:return infocardlogin.submit();">

 Sign in with your Information Card</button>

 </div>

 </div>

 </div>

</asp:Content>

<asp:Content ID="outsidetheform" ContentPlaceHolderID="outsidetheform" runat="server">

 <form name="infocardlogin" id="infocardlogin" target="_self" method="post">

 <object type="application/x-informationcard" name="xmlToken">

 <param name="tokenType" value="urn:oasis:names:tc:SAML:1.0:assertion">

 <param name="issuer" value="http://schemas.microsoft.com/ws/2005/05/identity/issuer/self">

 <param name="requiredClaims" value="http://schemas.microsoft.com/ws/2005/05/identity/claims/givenname,http://schemas.microsoft.com/ws/2005/05/identity/claims/surname,http://schemas.microsoft.com/ws/2005/05/identity/claims/emailaddress,http://schemas.microsoft.com/ws/2005/05/identity/claims/privatepersonalidentifier">

 </object>

 </form>

</asp:Content>

In the highlighted section, you can see the button that we are using to submit the form that contains the InfoCard object (<object type="application/x-informationcard" name="xmlToken">) When this form is submitted, the browser will bring up the identity selector, and submit the selected identity to the server in the POST. The data will arrive at the server in the xmlToken field.

You will also know the parameters of the object contain the token type (saml 1.0 in this case), the issuer(self-issued) and the claims which are comma separated URIs.

After that, you can add the code behind to process the token for Associate.aspx.cs:
/*

 * Copyright (c) Microsoft Corporation. All rights reserved.

 */

using System;

using System.Data;

using System.Configuration;

using System.Web;

using System.Web.Security;

using System.Web.UI;

using System.Web.UI.WebControls;

using System.Web.UI.WebControls.WebParts;

using System.Web.UI.HtmlControls;

using System.Security.Cryptography;

using System.Security.Cryptography.X509Certificates;

using System.Xml;

using Microsoft.Samples.InformationCards;

public partial class Associate_aspx : System.Web.UI.Page

{

 protected void Page_Load(object sender, EventArgs e)

 {

 // if there is a xml token, then this is a Infocard Post

 string xmlToken = Request["xmlToken"];

 if (xmlToken != null && xmlToken.Trim() != "")

 {

 TokenHelper tokenHelper = new TokenHelper(xmlToken);

 // get the unique id

 string uniqueID = tokenHelper.getUniqueID();

 if (uniqueID != null && uniqueID != "")

 {

 //store it with the account.

 MembershipUser user = Membership.GetUser();

 SqlMembershipProviderHelper.AssociateUser(user.UserName, uniqueID, Membership.ApplicationName);

 }

 }

 }

}

In the code behind, you can see that we take the xmlToken and use the TokenHelper class to process the XML, and provides us with convenience methods for extracting the identity thumbprint (getUniqueID()).

If this is successful, we use our MembershipProviderHelper to call the stored procedure to associate the account to the information card.

Finally, we’ll add the page to the sitemap:

Sitemap:

<?xml version="1.0" encoding="utf-8" ?>

<siteMap>

<siteMapNode title="Home" url="Default.aspx">

<siteMapNode title="Resume" url="friends/Resume.aspx" />

<siteMapNode title="Links" url="friends/Links.aspx" />

<siteMapNode title="Albums" url="friends/Albums.aspx" >

<siteMapNode title="Photos" url="friends/Photos.aspx" >

<siteMapNode title="Details" url="friends/Details.aspx" />

</siteMapNode>

</siteMapNode>

<siteMapNode title="Register" url="anonymous/Register.aspx" />

 <siteMapNode title="Manage" url="Admin/Albums.aspx" >

<siteMapNode title="Photos" url="Admin/Photos.aspx" >

<siteMapNode title="Details" url="Admin/Details.aspx" />

</siteMapNode>

</siteMapNode>

 <siteMapNode title="Account Details" url="friends/Associate.aspx" />

 </siteMapNode>

</siteMap>
Exercise 5: Modify the login page to use an information card to sign in
Here, we will modify the login.aspx page to use an information card to sign in (again, you can copy the code in from the folder on the desktop):
<%@ Page Language="C#" MasterPageFile="~/Default.master" Title="Fabrikam Friends | Register"

 EnableEventValidation="false" ValidateRequest="false" CodeFile="Login.aspx.cs"

 Inherits="Register_aspx" %>

<asp:Content ID="Content1" ContentPlaceHolderID="Main" runat="server">

 <!-- Copyright (c) Microsoft Corporation. All rights reserved. -->

 <div class="shim column">

 </div>

 <div class="page" id="register">

 <div id="thelogin" runat="server">

 <asp:LoginView ID="LoginArea" runat="server">

 <AnonymousTemplate>

 <table width="100%" border="0">

 <tr>

 <td width="50%" valign="middle" align="center">

 <asp:Login ID="Login1" runat="server">

 <LayoutTemplate>

 <div class="login">

 <h4>

 Login to Fabrikam</h4>

 <asp:Label runat="server" ID="UserNameLabel" CssClass="label" AssociatedControlID="UserName">User Name</asp:Label>

 <asp:TextBox runat="server" ID="UserName" CssClass="textbox" AccessKey="u" />

 <asp:RequiredFieldValidator runat="server" ID="UserNameRequired" ControlToValidate="UserName"

 ValidationGroup="Login1" ErrorMessage="User Name is required." ToolTip="User Name
is required.">*</asp:RequiredFieldValidator>

 <asp:Label runat="server" ID="PasswordLabel" CssClass="label" AssociatedControlID="Password">Password</asp:Label>

 <asp:TextBox runat="server" ID="Password" TextMode="Password" CssClass="textbox"

 AccessKey="p" />

 <asp:RequiredFieldValidator runat="server" ID="PasswordRequired" ControlToValidate="Password"

 ValidationGroup="Login1" ToolTip="Password is
required.">*</asp:RequiredFieldValidator>

 <div>

 <asp:CheckBox runat="server" ID="RememberMe" Text="Remember me
next time" /></div>

 <asp:ImageButton runat="server" ID="LoginButton" CommandName="Login" AlternateText="login"

 SkinID="login" CssClass="button" />

 or

 <asp:Image ID="Image1" runat="server" AlternateText="create
a new account" SkinID="create" />

 <p>

 <asp:Literal runat="server" ID="FailureText" EnableViewState="False"></asp:Literal></p>

 </div>

 </LayoutTemplate>

 </asp:Login>

 </td>

 <td width="4" valign="middle" align="center">

 <hr style="height: 150px; width: 4px; left: 5px; position: relative;" />

 <center>

 or</center>

 <hr style="height: 150px; width: 4px; left: 4px; position: relative;" />

 </td>

 <td width="50%" valign="middle" align="center">

 <button onclick="javascript:return infocardlogin.submit();">

 Sign in with your Information Card</button>

 </td>

 </tr>

 </table>

 </AnonymousTemplate>

 </asp:LoginView>

 <center>

 If you have forgot your username or password,

 or want to use a different Information Card on your

 account, type in your email address:

 <asp:TextBox runat="server" ID="emailaddress" CssClass="textbox" AccessKey="u" />

 <asp:Button runat="server" ID="RecoverButton" CommandName="recover" CssClass="button"

 Text="Email Me" OnClick="RecoverButton_Click" />

 </center>

 </div>

 <div id="therecovery" visible="false" runat="server">

 <hr />

 From:

 Fabrikam Friends Website

 Sent: Monday, March 13, 2006 9:02 AM

 To:

 <asp:Label ID="youremail" runat="server"></asp:Label>

 Subject: Account Reset

 Someone from this email address has requested to reset your account password.

 If this was you, you may click on

 <asp:LinkButton ID="LinkButton1" runat="server" OnClick="LinkButton1_Click">this link</asp:LinkButton>

 to reset your password.

 If this was not you, someone may be trying to steal your identity.

 Thanks.

 The Fabrikam Friends Team.

 </div>

 <div id="step2" visible="false" runat="server">

 <table width="100%" border="0">

 <tr>

 <td width="50%" valign="middle" align="center">

 For your account (<asp:Label ID="youremail2" runat="server"></asp:Label>)

 Answer the following question:

 <asp:Label ID="question" runat="server"></asp:Label>

 <asp:TextBox runat="server" ID="answer" CssClass="textbox" />

 Enter your new password:

 <asp:TextBox runat="server" ID="newpassword" CssClass="textbox" AccessKey="u"

 TextMode="Password" />

 <asp:Button runat="server" ID="resetpw" CommandName="resetpw" CssClass="button"

 Text="Reset Password" OnClick="resetpw_Click" />

 </td>

 <td width="4" valign="middle" align="center">

 <hr style="height: 150px; width: 4px; left: 5px; position: relative;" />

 <center>

 or</center>

 <hr style="height: 150px; width: 4px; left: 4px; position: relative;" />

 </td>

 <td width="50%" valign="middle" align="center">

 To Replace the Information Card associated

 with your account,answer the following question:

 <asp:Label ID="question2" runat="server"></asp:Label>

 <input id="answer2" class="textbox" type="text" />

 and:

 <button onclick="javascript:return resetInfocard();">

 Sign in with your Information Card</button>

 </td>

 </tr>

 </table>

 </div>

 </div>

</asp:Content>

<asp:Content ID="outsidetheform" ContentPlaceHolderID="outsidetheform" runat="server">

 <form name="infocardlogin" id="infocardlogin" target="_self" method="post">

 <object type="application/x-informationcard" name="xmlToken">

 <param name="tokenType" value="urn:oasis:names:tc:SAML:1.0:assertion" />

 <param name="issuer" value="http://schemas.microsoft.com/ws/2005/05/identity/issuer/self" />

 <param name="requiredClaims" value="http://schemas.microsoft.com/ws/2005/05/identity/claims/givenname,http://schemas.microsoft.com/ws/2005/05/identity/claims/surname,http://schemas.microsoft.com/ws/2005/05/identity/claims/emailaddress,http://schemas.microsoft.com/ws/2005/05/identity/claims/privatepersonalidentifier" />

 </object>

 <input type="hidden" value="" id="resetanswer" name="resetanswer" />

 </form>

 <script type="text/javascript">

 function resetInfocard()

 {

 document.all.resetanswer.value = document.all.answer2.value;

 return infocardlogin.submit();

 }

 </script>

</asp:Content>

You will note this page also contains the code for a simple identity recovery mechanism as well, both for username and password and for the information card.

Note: Because we lack the ability to send mail in this example, we will assume the second step actually happens over email.
Add the code to process the token

/*

 * Copyright (c) Microsoft Corporation. All rights reserved.

 */

using System;

using System.Data;

using System.Configuration;

using System.Web;

using System.Web.Security;

using System.Web.UI;

using System.Web.UI.WebControls;

using System.Web.UI.WebControls.WebParts;

using System.Web.UI.HtmlControls;

using System.Security.Cryptography;

using System.Security.Cryptography.X509Certificates;

using System.Xml;

using Microsoft.Samples.InformationCards;

public partial class Register_aspx : System.Web.UI.Page {

 protected void RecoverButton_Click(object sender, EventArgs e)

 {

 try

 {

 String username = Membership.GetUserNameByEmail(emailaddress.Text);

 MembershipUser user = Membership.GetUser(username);

 youremail.Text = emailaddress.Text;

 youremail2.Text = emailaddress.Text;

 {

 thelogin.Visible = false;

 therecovery.Visible = true;

 }

 }

 catch

 {

 emailaddress.Text = "";

 }

 }

 protected void LinkButton1_Click(object sender, EventArgs e)

 {

 therecovery.Visible = false;

 step2.Visible = true;

 String username = Membership.GetUserNameByEmail(emailaddress.Text);

 MembershipUser user = Membership.GetUser(username);

 question.Text = user.PasswordQuestion;

 question2.Text = user.PasswordQuestion;

 }

 protected void resetpw_Click(object sender, EventArgs e)

 {

 String username = Membership.GetUserNameByEmail(emailaddress.Text);

 MembershipUser user = Membership.GetUser(username);

 String newpw = user.ResetPassword(answer.Text);

 user.ChangePassword(newpw, newpassword.Text);

 therecovery.Visible = false;

 thelogin.Visible = true;

 step2.Visible = false;

 emailaddress.Text = "";

 }

 protected void Page_Load(object sender, EventArgs e)

 {

 // if the user is authenticated then just redirect back to the home page.

 if (User != null && User.Identity != null && User.Identity.IsAuthenticated)

 Response.Redirect("..");

 // If an xmlToken is passed in the post, then this is an Infocard Post.

 string xmlToken = Request["xmlToken"];

 if (xmlToken != null && xmlToken.Trim() != "")

 {

 TokenHelper tokenHelper = new TokenHelper(xmlToken);

 // Gets the Unique id from the token

 string username = SqlMembershipProviderHelper.GetUser(tokenHelper.getUniqueID());

 if (username != null)

 {

 MembershipUser user = Membership.GetUser(username);

 if (user != null)

 {

 // give the cookie back to the browser.

 FormsAuthentication.RedirectFromLoginPage(user.UserName, false);

 }

 }

 }

 }

}

The code behind shows that it is fairly trivial to get the thumbprint of the identity and match that for the user. Once we have the user object, we will simply issue the token and redirect them as if it was a regular login.
Exercise 6: Modify the registration page to use an information card to accelerate the sign-up process
Finally, it would be nice if the a new user could sign up without having to fill out the forms to enter. In this case, we can use several claims in the object tag to ask for the relevant information, and create the account that way.

So, to modify the Register.aspx page:
<%@ Page Language="C#" MasterPageFile="~/Default.master" Title="Fabrikam Friends | Register"

 CodeFile="Register.aspx.cs" Inherits="Register_aspx" ValidateRequest="false" %>

<asp:Content ID="Content1" ContentPlaceHolderID="Main" runat="server">

 <!-- Copyright (c) Microsoft Corporation. All rights reserved. -->

 <div class="shim column">

 </div>

 <div class="page" id="register">

 <div id="">

 <table width="100%" border="0">

 <tr>

 <td width="50%" valign="middle" align="center">

 <h3>

 Request an Account</h3>

 <p>

 Accounts will be activated pending the approval of the Administrator.</p>

 <asp:CreateUserWizard ID="CreateUserWizard1" runat="server" ContinueDestinationPageUrl="../default.aspx"

 DisableCreatedUser="False" EmailRegularExpression="\S+@\S+\.\S+" EmailRegularExpressionErrorMessage="The email format is invalid."

 OnCreatedUser="CreateUserWizard1_CreatedUser" OnFinishButtonClick="CreateUserWizard1_FinishButtonClick">

 </asp:CreateUserWizard>

 </td>

 <td width="4" valign="middle" align="center">

 <hr style="height: 150px; width: 4px; left: 5px; position: relative;" />

 <center>

 or</center>

 <hr style="height: 150px; width: 4px; left: 4px; position: relative;" />

 </td>

 <td width="50%" valign="middle" align="center">

 Create an Account using your Information Card

 <button onclick="javascript:return infocardlogin.submit();">

 Sign in with your Information Card</button>

 </td>

 </tr>

 </table>

 </div>

 </div>

</asp:Content>

<asp:Content ID="outsidetheform" ContentPlaceHolderID="outsidetheform" runat="server">

 <form name="infocardlogin" id="infocardlogin" target="_self" method="post">

 <object type="application/x-informationcard" name="xmlToken">

 <param name="tokenType" value="urn:oasis:names:tc:SAML:1.0:assertion">

 <param name="issuer" value="http://schemas.microsoft.com/ws/2005/05/identity/issuer/self">

 <param name="requiredClaims" value="http://schemas.microsoft.com/ws/2005/05/identity/claims/givenname,http://schemas.microsoft.com/ws/2005/05/identity/claims/surname,http://schemas.microsoft.com/ws/2005/05/identity/claims/emailaddress,http://schemas.microsoft.com/ws/2005/05/identity/claims/postalcode,http://schemas.microsoft.com/ws/2005/05/identity/claims/privatepersonalidentifier">

 </object>

 </form>

</asp:Content>

And then add the code to process the token, and sign up the user:
/*

 * Copyright (c) Microsoft Corporation. All rights reserved.

 */

using System;

using System.Data;

using System.Configuration;

using System.Web;

using System.Web.Security;

using System.Web.UI;

using System.Web.UI.WebControls;

using System.Web.UI.WebControls.WebParts;

using System.Web.UI.HtmlControls;

using System.Security.Cryptography;

using System.Security.Cryptography.X509Certificates;

using System.Xml;

using Microsoft.Samples.InformationCards;

public partial class Register_aspx : System.Web.UI.Page

{

 protected void CreateUserWizard1_CreatedUser(object sender, EventArgs e)

 {

 String name = CreateUserWizard1.UserName;

 Roles.AddUserToRole(name, "Friends");

 }

 protected void CreateUserWizard1_FinishButtonClick(object sender, WizardNavigationEventArgs e)

 {

 Response.Redirect("..");

 }

 protected void Page_Load(object sender, EventArgs e)

 {

 // If an xmlToken is passed in the post, then this is an Infocard Post.

 string xmlToken = Request["xmlToken"];

 if (xmlToken != null && xmlToken.Trim() != "")

 {

 TokenHelper tokenHelper = new TokenHelper(xmlToken);

 // Gets the claims from the token

 string emailAddress = tokenHelper.GetClaim("http://schemas.microsoft.com/ws/2005/05/identity/claims/emailaddress");

 string ppid = tokenHelper.GetClaim("http://schemas.microsoft.com/ws/2005/05/identity/claims/privatepersonalidentifier");

 string username = tokenHelper.GetClaim("http://schemas.microsoft.com/ws/2005/05/identity/claims/givenname") + " " +

 tokenHelper.GetClaim("http://schemas.microsoft.com/ws/2005/05/identity/claims/surname");

 string postalcode = tokenHelper.GetClaim("http://schemas.microsoft.com/ws/2005/05/identity/claims/postalcode");

 // Gets the Unique id from the token

 string uniqueID = tokenHelper.getUniqueID();

 if (uniqueID != null && uniqueID != "")

 {

 // if the unique id is good, create an account.

 //

 // we are going to put in the q/a for the user based off their postal code

 //

 MembershipCreateStatus status;

 Membership.Provider.CreateUser(username, Membership.GeneratePassword(8, 2), emailAddress, "What is your postal code", postalcode, true,System.Guid.NewGuid() , out status);

 SqlMembershipProviderHelper.AssociateUser(username, uniqueID, Membership.ApplicationName);

 Roles.AddUserToRole(username, "Friends");

 FormsAuthentication.RedirectFromLoginPage(username, false);

 }

 }

 }

}

Looking at the code, we have taken the claims from the token and assembled a new account, with the values, and associating the information card’s thumbprint with the account.

Exercise Summary
This was a quick walkthrough that shows a developer using ASP.NET how simple it is to start using information cards with a web site. This example focuses on the ‘happy-path’ of the scenario, in a live web site, you would also need to handle some exceptions which could be generated if the user doesn’t respond in the expected way.
References and Additional Information

Windows Vista Developer Center: InfoCard

http://msdn.microsoft.com/windowsvista/building/infocard/
The Identity Blog

http://www.identityblog.com/
The Laws of Identity

http://msdn.microsoft.com/windowsvista/building/infocard/default.aspx?pull=/library/en-us/dnwebsrv/html/lawsofidentity.asp
Microsoft's Vision for an Identity Metasystem

http://msdn.microsoft.com/windowsvista/building/infocard/default.aspx?pull=/library/en-us/dnwebsrv/html/identitymetasystem.asp

