JE k. http://java.sun.com/docs/books/tutorial/java/concepts/index.html

#iF#3E. Daniel<nevernet@msn.com>

What Is an Object?
2R —4 Object(*1%)

Objects are key to understanding object-oriented technology. Look around
right now and you'll find many examples of real-world objects: your dog, your
desk, your television set, your bicycle.

Objects J& HfiF 1 [X R BRI AN SR o IAERUE B IR JE L fRas RIAR 2 J S 41
T LIRS, R, AL, BATESSE.

Real-world objects share two characteristics: They all have state and behavior.
Dogs have state (name, color, breed, hungry) and behavior (barking,
fetching, wagging tail). Bicycles also have state (current gear, current pedal
cadence, current speed) and behavior (changing gear, changing pedal
cadence, applying brakes). Identifying the state and behavior for real-world
objects is a great way to begin thinking in terms of object-oriented
programming.

S S A AN [IHFAE: IR (state) #1474 (behavior), FARAS (£, B
o, S, YLD AATA O, G $32): AATHEARES CHRTRIAER, Bk, d)
AATHh (A fe, SO ZE, R4 LS RO SRS TAT Ry & — PR
R T8I) 0o B G B AR AP 1R T i o

Take a minute right now to observe the real-world objects that are in your
immediate area. For each object that you see, ask yourself two questions:
"What possible states can this object be in?" and "What possible behavior can
this object perform?". Make sure to write down your observations. As you do,
you'll notice that real-world objects vary in complexity; your desktop lamp
may have only two possible states (on and off) and two possible behaviors
(turn on, turn off), but your desktop radio might have additional states (on,
off, current volume, current station) and behavior (turn on, turn off, increase
volume, decrease volume, seek, scan, and tune). You may also notice that
some objects, in turn, will also contain other objects. These real-world
observations all translate into the world of object-oriented programming.

SRR Lo B EEAR T ITAE A LI A 5, BRI BIREAST S, X B S Al
W XA BT BEATIRERRAS 7 X AR R AT RE ST TIRLE SR ? e iF S5 A R AR
SRBMLER . RBARPTIIIRE, VRSB F R GO AR = 2R, IR & AT B0
HAWARE OFF) MPIADEIE GTIFRISCHD, (H2 RIS HLEVF 2 A 3RS

http://java.sun.com/docs/books/tutorial/java/concepts/index.html

OF, %, HArE i, Uarser) MEsrsife GTIF, kM, e, ke E, 9%,
B, WD REVFRERER T, RN R M S WS IS RS C I SE R
Sk AR B DN N R AR R TS

{Meth ods D‘ﬁD Eti?sﬁ
behavior)
O

A software object.

Software objects are conceptually similar to real-world objects: they too
consist of state and related behavior. An object stores its state in Ze/ds
(variables in some programming languages) and exposes its behavior through
methods (functions in some programming languages). Methods operate on an
object's internal state and serve as the primary mechanism for object-to-
object communication. Hiding internal state and requiring all interaction to be
performed through an object's methods is known as data encapsulation — a
fundamental principle of object-oriented programming.

B BLTRD SRR RIS HHE S K0 R AHARL R Al AT Tt 2 e RS FIAH S I SR AL . —A
X G CRROT BT R o6 0 7 B (Fields) SRR EATTIRPIR A (L8 7 2 AL f-variables)
W77 (methods) kKR ILEATIZNE (LT 5 2 M % -function), T7ikEEEXN S A
T ARPIR A TN S5 T IS e 6 GRS G 2 [H) (R3EAT o T R 732, Bl 7 S RS AT
TAHRERAE, XAl vl b i e -~ —ANHT)0 R A S B

Consider a bicycle, for example:

cadence

Sth gear

A bicycle modeled as a software object.

By attributing state (current speed, current pedal cadence, and current gear)
and providing methods for changing that state, the object remains in control
of how the outside world is allowed to use it. For example, if the bicycle only
has 6 gears, a method to change gears could reject any value that is less
than 1 or greater than 6.

W RGP HPIRES CHAPEE, AT 28 -- B2 A0, P RTARS), $eft—2e757k
KEAIRES, WGP M A AR A e .

2540 AN BATAE 6N AR, TR A SR R K T R RERS 2 A L R KT 45 T AT
&T6.

Bundling code into individual software objects provides a number of benefits,
including:

1 Modularity: The source code for an object can be written and
maintained independently of the source code for other objects. Once
created, an object can be easily passed around inside the system.

2 Information-hiding: By interacting only with an object's methods, the
details of its internal implementation remain hidden from the outside
world.

3 Code re-use: If an object already exists (perhaps written by another
software developer), you can use that object in your program. This allows
specialists to implement/test/debug complex, task-specific objects, which
you can then trust to run in your own code.

4 Pluggability and debugging ease: If a particular object turns out to be
problematic, you can simply remove it from your application and plug in a
different object as its replacement. This is analogous to fixing mechanical
problems in the real world. If a bolt breaks, you replace 7/, not the entire
machine.

A S 2 A B R A S L, A1 B Ar Ab

1. BEE Al XA R YA r] LIS (B T g0 S 4. — HAIE T, XA 5]
LR S HAE R G N F AT

2. 5 BBk A DCE X G L B VAR AR, AT A F A PR A B AR X Sk
P THE SR REA T T

3R RM: RN RELAAE (TREEHATF RN BB R, ARl AAE/R
FEFP L] & o XA RVFRFRIVIZAT WKL IR 280, RRIRIE SIS, 2GR A
R ATIX LAY FF LR AR A A A AT T

4. AT AR S PR RS G T, R DB RRIXA S, R AN
AR SR E o K RESREME LIS T AU R L W SRBMRETIR T, fm] LU
IXANRET, AR AR PSS

What Is a Class?

fraf—42%e

In the real world, you'll often find many individual objects all of the same kind.
There may be thousands of other bicycles in existence, all of the same make
and model. Each bicycle was built from the same set of blueprints and
therefore contains the same components. In object-oriented terms, we say
that your bicycle is an /nstance of the class of objects known as bicycles. A
c/ass is the blueprint from which individual objects are created.

PEPRSEHE L, RGeS IR — N RRR 2 Mk X Re A T EJT M BAT4A¢
15, AT RFER RS o RS FAT A2 RS RS AU R i, B LUe AT 1A 5 TRl
(A o FHTHI AR S AR TR T A BAT 4 I BATEXN S — N2, A M HATE
FRA—A (class) iX ANl 2 AN K4

The following Bicycle class is one possible implementation of a bicycle:

class Bicycle {
int cadence = 0;
int speed = 0;
int gear = 1;
void changeCadence(int newValue) {
cadence = newValue;
b
void changeGear(int newValue) {
gear = newValue;
b
void speedUp(int increment) {
speed = speed + increment;
b
void applyBrakes(int decrement) {
speed = speed - decrement;
b
void printStates() {
System.out.printin("cadence:"+cadence+" speed:"+speed+"
gear:"+gear);

by

The syntax of the Java programming language will look new to you, but the
design of this class is based on the previous discussion of bicycle objects. The
fields cadence, speed, and gear represent the object's state, and the methods
(changeCadence, changeGear, speedUp etc.) define its interaction with the

http://java.sun.com/docs/books/tutorial/java/concepts/examples/Bicycle.java

outside world.

You may have noticed that the Bicycle class does not contain a main method.
That's because it's not a complete application; it's just the blueprint for
bicycles that might be wsed in an application. The responsibility of creating
and using new Bicycle objects belongs to some other class in your application.

Here's a BicycleDemo class that creates two separate Bicycle objects and
invokes their methods:

class BicycleDemo {
public static void main(String[] args) {

// Create two different Bicycle objects
Bicycle bikel = new Bicycle();
Bicycle bike2 = new Bicycle();

// Invoke methods on those objects
bikel.changeCadence(50);
bikel.speedUp(10);
bikel.changeGear(2);
bikel.printStates();

bike2.changeCadence(50);
bike2.speedUp(10);
bike2.changeGear(2);
bike2.changeCadence(40);
bike2.speedUp(10);
bike2.changeGear(3);
bike2.printStates();

The output of this test prints the ending pedal cadence, speed, and gear for
the two bicycles:

cadence:50 speed:10 gear:2

cadence:40 speed:20 gear:3

http://java.sun.com/docs/books/tutorial/java/concepts/examples/BicycleDemo.java

What Is Inheritance?

Y=V

Different kinds of objects often have a certain amount in common with each
other. Mountain bikes, road bikes, and tandem bikes, for example, all share
the characteristics of bicycles (current speed, current pedal cadence, current
gear). Yet each also defines additional features that make them different:
tandem bicycles have two seats and two sets of handlebars; road bikes have
drop handlebars; some mountain bikes have an additional chain ring, giving
them a lower gear ratio.

ANFEZEB N R Z WA A @ W3 E A, amlisE, AAXANE, 3= a4
MR CYRTIEERE, B2, ife), RN ENMWEARNEKIIIRE, NG BN BEALA
PREIFE T, L b A=A B M A, Aul L AT DA IR 1 A e e ik

Object-oriented programming allows classes to /n/erit commonly used state
and behavior from other classes. In this example, Bicycle now becomes the
superc/ass of MountainBike, RoadBike, and TandemBike. In the Java
programming language, each class is allowed to have one direct superclass,
and each superclass has the potential for an unlimited number of subc/asses:

AT 17 0] 52 9t 2 S VPSS AN FL A 2 HEL T 48 K A F IR S B AR o e A7~ HLfT, "Bicycle"2%
% T “Mountain Bike,RoadBike, TandermBike”{J%22%. 7 Java 4fsit = B, &4
class faVFfi—MNEELMAI, BN LIA TR 12K,

Bicycle

MaountainBike RoadBike TandemBike

A hierarchy of bicycle classes.

The syntax for creating a subclass is simple. At the beginning of your class

declaration, use the extends keyword, followed by the name of the class to
inherit from:

class MountainBike extends Bicycle {
// new fields and methods defining a mountain bike would go here

b

This gives MountainBike all the same fields and methods as Bicycle, yet allows
its code to focus exclusively on the features that make it unique. This makes
code for your subclasses easy to read. However, you must take care to
properly document the state and behavior that each superclass defines, since
that code will not appear in the source file of each subclass.

Wi 4R, #LME MountainBike #1145 fil Bicycle —FEf T BT, HAE & AL 4 rh
FEATAS o IXAERARIG FIARMD S5, (HE, MRS BRI EANE T2 bt B A%,
PRDIEL BN TR T BB E InCAERE, 8T ILe AR B R

What Is an Interface?

S -=:3uk

As you've already learned, objects define their interaction with the outside
world through the methods that they expose. Methods form the object's
/nterface with the outside world; the buttons on the front of your television
set, for example, are the interface between you and the electrical wiring on
the other side of its plastic casing. You press the "power" button to turn the
television on and off.

AR 822 21 1, WG AR B R I 708 T S AN TERAMB I S AH AR . J7ik
KB TG E A S 2 SR, VR A LR 4L, B, AEURRIEZEAR 8], ARnT L
P TR OC AN T FLARAL o

In its most common form, an interface is a group of related methods with
empty bodies. A bicycle's behavior, if specified as an interface, might appear
as follows:

TERFB A AR IR I L 4 12— AR IS WA R 7% . e bicycle (2h1E, $EHUsd%
F1E kvl BB T AT

interface Bicycle {

void changeCadence(int newValue);
void changeGear(int newValue);
void speedUp(int increment);

void applyBrakes(int decrement);

To implement this interface, the name of your class would change (to
ACMEBicycle, for example), and you'd use the implements keyword in the
class declaration:

class ACMEBicycle implements Bicycle {
// remainder of this class implemented as before

Implementing an interface allows a class to become more formal about the
behavior it promises to provide. Interfaces form a contract between the class
and the outside world, and this contract is enforced at build time by the
compiler. If your class claims to implement an interface, all methods defined
by that interface must appear in its source code before the class will
successfully compile.

WS, ATRAERM I ERAF B IEL, BT DAORIEERER BB A1 — 3. e gdiar
AN RMGNERZ LI, XA 2 A 2 5 A 2 PRI IR 2 o il 1Y) o 2 SRR PR 28 e] 2
SEIR— AN 1, IR 0% ANz LV A 58 20t IRAE AR B 28 IXFEAR 28 A = e 1)

Note: To actually compile the ACMEBicycle class, you'll need to add the
public keyword to the beginning of the implemented interface methods. You'll
learn the reasons for this later in the lessons on Classes and Objects and
Interfaces and Inheritance.

Questions and Exercises: Object-Oriented Programming Concepts

Questions
1 Real-world objects contain _State_ and _behavior__.
2 A software object's state is stored in __fields_.
3 A software object's behavior is exposed through _Methods__.
4 Hiding internal data from the outside world, and accessing it only

through publicly exposed methods is known as data _encapsulations__.

5 A blueprint for a software object is called a __ Class_.

6 Common behavior can be defined in a _superclass__ and inherited into
a _subclass___ using the _extends___ keyword.

7 A collection of methods with no implementation is called an
_interfaces__.

8 A namespace that organizes classes and interfaces by functionality is
called a package.

http://java.sun.com/docs/books/tutorial/java/javaOO/index.html
http://java.sun.com/docs/books/tutorial/java/IandI/index.html

9 The term API stands for Application Programming Interface

Exercises

10 Create new classes for each real-world object that you observed at the
beginning of this trail. Refer to the Bicycle class if you forget the required
syntax.

11 For each new class that you've created above, create an interface that
defines its behavior, then require your class to implement it. Omit one or
two methods and try compiling. What does the error look like?

