
Amazon FPS
Advanced Quick Start

Developer Guide

API Version 2008-09-17

Amazon FPS Advanced Quick Start Developer Guide

Amazon FPS Advanced Quick Start: Developer Guide
Copyright © 2009 Amazon Web Services LLC or its affiliates. All rights reserved.

Amazon FPS Advanced Quick Start Developer Guide

Table of Contents
Welcome .. 1
What's New ... 5
Introduction to Amazon FPS Advanced Quick Start ... 6

Key Concepts .. 7
Amazon FPS Advanced Quick Start .. 7

Amazon Flexible Payments Service ... 7
Multi-Use Payment Tokens .. 9
Recurring Payment Tokens ... 11
Recipient Tokens ... 13
Other Integration Points ... 13

Cancel Payment ... 14
Refund Payment ... 14

Sender, Recipient, and Caller Actions ... 14
Request Security .. 15
Co-Branded User Interface (CBUI) .. 15

Where the CBUI Fits in the Workflow .. 16
Recipient Registration on Your Web Site ... 18
Payment Token Types .. 18
Amazon FPS API and Co-Branded Service Requests ... 20

Sandbox ... 21
Instant Payment Notification .. 21
Errors .. 22
Business Considerations .. 24
WSDLs and Schemas .. 27

Programming Guide .. 29
Important Values to Store in Your Database .. 30
Getting Authorization ... 30

Sending a Co-Branded Service Request ... 31
Recipient Registration ... 31
Making Payments .. 33

Transacting the Payment ... 34
Failed Payment Transactions .. 35
Changing the Payment Instrument .. 35
Notifications .. 36

Handling Transactions that Don't Return .. 36
Order Cancellations ... 37

Canceling a Recurring Transaction ... 37
Refunding a Recurring Transaction ... 38
Other Reversals and Issues .. 38

Testing Your Applications for Free ... 38
Testing Signatures ... 40

Working with Signatures ... 41
Verifying the ReturnURL and IPN Notifications ... 43

Soft Descriptor Customization ... 45
Setting Up Instant Payment Notification ... 47

Amazon FPS API Reference .. 53
Common Request Parameters .. 53
Common Response Elements ... 54
Actions ... 62

Cancel .. 63
CancelToken .. 65
GetTokenByCaller .. 68
GetTransactionStatus ... 71
Pay ... 74
Refund .. 81

Amazon FPS Advanced Quick Start Developer Guide

Reserve ... 85
Settle .. 90
VerifySignature ... 93

Data Types .. 96
Enumerated Data Types .. 96

AccountBalance .. 96
ChargeFeeTo .. 97
CurrencyCode ... 97
FPSOperation ... 97
InstrumentId .. 98
InstrumentStatus ... 98
PaymentMethod .. 98
RelationType ... 99
SortOrder .. 99
TokenStatus .. 99
TokenType .. 99
TransactionalRole ... 100
TransactionStatus ... 100

Complex Data Types ... 101
Amount .. 101
AvailableBalances ... 102
DebtBalance .. 102
DescriptorPolicy .. 102
MarketplaceRefundPolicy ... 102
OutstandingDebtBalance .. 103
OutstandingPrepaidLiability ... 103
PrepaidBalance ... 103
RelatedTransaction ... 103
StatusHistory ... 104
Token .. 104
TokenUsageLimit .. 104
Transaction ... 105
TransactionDetail .. 106
TransactionPart ... 108

Co-Branded Service API Reference .. 109
Common Parameters .. 109
Recipient Token API ... 112
Recurring-Use Token API ... 114
Multi-Use Token API ... 117
Edit Token API .. 122

Code Samples ... 125
Understanding the Amazon FPS Samples .. 126

Understanding the VerifySignature Sample ... 126
Locations of the VerifySignatureSample Files in Other Libraries ... 128

Understanding the IPNAndReturnURLValidation Sample ... 133
Locations of the IPNAndReturnURLValidation Files is Other SDKs .. 134

Getting the Samples .. 135
Appendix: Verifying Responses Signed Using Signature Version 1 ... 137

Access Key Rotation Considerations with Signature Version 1 .. 137
Appendix: Moving your Application to Signature Version 2 .. 139

Differences Between Signing Versions ... 140
Signature Version 2 FAQ .. 141
Glossary .. 145
Document Conventions ... 147

Amazon FPS Advanced Quick Start Developer Guide
Amazon FPS Quick Starts

API Version 2008-09-17
1

Welcome

Topics

• Amazon FPS Quick Starts (p. 1)

• Audience (p. 2)

• Reader Feedback (p. 2)

• How This Guide Is Organized (p. 2)

• Amazon FPS Resources (p. 3)

This is the Amazon FPS Advanced Quick Start Developer Guide. This section describes who should
read this guide, how the guide is organized, and other resources related to this web service.

Amazon Flexible Payment Services is occasionally referred to within this guide as "Amazon FPS", and
the Amazon FPS Advanced Quick Start is often referred to as "Advanced Quick Start"; all copyrights
and legal protections still apply.

Amazon FPS Quick Starts
Amazon FPS has five parts, each providing a different slice of Amazon FPS functionality:

• Amazon FPS Basic Quick Start—Facilitates a one-time payment between a buyer and a developer
(you) who is also the merchant for e-commerce, digital content, donations, or services.

• Amazon FPS Marketplace Quick Start—Facilitates a one-time payment between a buyer and a
merchant, where you are a third-party developer (also known as a caller) who hosts the merchant's
product pages and order pipeline. With this unique three-party transaction model, you can charge a
fee to process transactions in which you are neither the buyer nor the merchant.

• Amazon FPS Advanced Quick Start—Facilitates multiple or recurring payments between a buyer
and a seller for e-commerce, digital content, donations, services.

• Amazon FPS Aggregated Payments Quick Start—Facilitates aggregated micro-transactions into a
single, larger transaction using prepaid and postpaid capabilities.

• Amazon FPS Account Management Quick Start—Access buyer and developer account activity
programmatically. Alternatively, you can view account activity and balances on the Amazon
Payments web site.

http://payments.amazon.com
http://payments.amazon.com

Amazon FPS Advanced Quick Start Developer Guide
Audience

API Version 2008-09-17
2

You can use these parts separately or in combination. They share a common WSDL and schema. This
guide covers the Advanced Quick Start.

Audience
This guide is intended for developers who intend to enable multiple payments using Amazon FPS on
their web sites or applications.

Required Knowledge and Skills
Use of this guide assumes you are familiar with the following:

• XML (for an overview, go to the W3 Schools XML Tutorial)

• Basic understanding of web services (for an overview, go to the W3 Schools Web Services Tutorial)

• A programming language for consuming a web service and any related tools

Business Requirements
To use Amazon FPS, you must have an Amazon FPS developer account. For information about getting
the account, go to Amazon Flexible Payments Service Getting Started Guide.

Reader Feedback
The online version of this guide provides a link at the top of each page that enables you to enter
feedback about this guide. We strive to make our guides as complete, error free, and easy to read as
possible. You can help by giving us feedback. Thank you in advance!

How This Guide Is Organized
This guide is organized into several major sections described in the following table.

Information Relevant Sections

What's Changed in the documentation
with this release

What's New (p. 5)

Introduction and key concepts Introduction to Amazon FPS Advanced Quick Start (p.
6)

Enables merchants to register on your
web site so they can receive payment
for their items sold through your web
site

Recipient Registration (p. 31)

Enable buyers to authorize payments Getting Authorization (p. 30)

http://www.w3schools.com/xml/default.asp
http://www.w3schools.com/webservices/default.asp
http://docs.amazonwebservices.com/AmazonFPS/2008-09-17/FPSGettingStartedGuide/

Amazon FPS Advanced Quick Start Developer Guide
Amazon FPS Resources

API Version 2008-09-17
3

Information Relevant Sections

Handle refunds and cancellations Order Cancellations (p. 37)

API reference • Amazon FPS API Reference (p. 53)

• Co-Branded Service API Reference (p. 109)

Sample code for creating signatures
and making a pay request

Code Samples (p. 125)

In addition, there is a glossary and an overview of our typographical conventions. Each section is
written to stand on its own, so you should be able to look up the information you need and go back to
work. However, you can also read through the major sections sequentially to get in-depth knowledge
about Amazon FPS Advanced Quick Start.

Amazon FPS Resources
The following table lists related resources that you'll find useful as you work with this service.

Resource Description

Amazon Flexible Payments Service
Getting Started Guide

Shows how to implement a simple one-time payment using
Amazon FPS Basic Quick Start.

Amazon FPS Basic Quick Start
Developer Guide

Covers the one-time payment functionality of Amazon FPS.

Amazon FPS Marketplace Quick Start
Developer Guide

Covers the marketplace functionality of Amazon FPS.

Amazon FPS Aggregated Payments
Quick Start Developer Guide

Covers aggregated micro-transactions and the prepaid and
postpaid functionality of Amazon FPS.

Amazon FPS Account Management
Quick Start Developer Guide

Covers the account management functionality of Amazon
FPS.

FAQs Frequently asked questions about using Amazon FPS.

Release Notes The Release Notes give a high-level overview of the
current release. They specifically note any new features,
corrections, and known issues.

FPS Developer Resource Center A starting point specifically for FPS, to find documentation,
code samples, release notes, and other information to help
you build innovative applications.

AWS Developer Resource Center A central starting point to find documentation, code
samples, release notes, and other information to help you
build innovative applications with AWS.

Discussion Forums A community-based forum for developers to discuss
technical questions related to Amazon FPS.

AWS Support Center The home page for AWS Technical Support, including
access to our Developer Forums, Technical FAQs, Service
Status page, and Premium Support (if you are subscribed
to this program).

http://docs.amazonwebservices.com/AmazonFPS/2008-09-17/FPSGettingStartedGuide/
http://docs.amazonwebservices.com/AmazonFPS/2008-09-17/FPSGettingStartedGuide/
http://docs.amazonwebservices.com/AmazonFPS/2008-09-17/FPSBasicGuide/
http://docs.amazonwebservices.com/AmazonFPS/2008-09-17/FPSBasicGuide/
http://docs.amazonwebservices.com/AmazonFPS/2008-09-17/FPSMarketplaceGuide/
http://docs.amazonwebservices.com/AmazonFPS/2008-09-17/FPSMarketplaceGuide/
http://docs.amazonwebservices.com/AmazonFPS/2008-09-17/FPSAggregatedGuide/
http://docs.amazonwebservices.com/AmazonFPS/2008-09-17/FPSAggregatedGuide/
http://docs.amazonwebservices.com/AmazonFPS/2008-09-17/FPSAccountManagementGuide/
http://docs.amazonwebservices.com/AmazonFPS/2008-09-17/FPSAccountManagementGuide/
https://payments.amazon.com/sdui/sdui/about?nodeId=73479
http://developer.amazonwebservices.com/connect/kbcategory.jspa?categoryID=124
http://developer.amazonwebservices.com/connect/kbcategory.jspa?categoryID=123
http://aws.amazon.com/resources/
http://developer.amazonwebservices.com/connect/forum.jspa?forumID=35
http://developer.amazonwebservices.com/connect/support.jspa

Amazon FPS Advanced Quick Start Developer Guide
Amazon FPS Resources

API Version 2008-09-17
4

Resource Description

Product information about Amazon
FPS

The primary web page for information about Amazon FPS.

Contact Us A central contact point for inquiries concerning AWS billing,
account, events, abuse, etc.

Conditions of Use Detailed information about the copyright and trademark
usage at Amazon.com and other topics.

http://aws.amazon.com/fps/
http://aws.amazon.com/fps/
http://aws.amazon.com/contact-us/
http://www.amazon.com/gp/help/customer/display.html/104-5054883-7838319?ie=UTF8&Version=1&nodeId=508088&entries=0

Amazon FPS Advanced Quick Start Developer Guide

API Version 2008-09-17
5

What's New

This What's New is associated with the 2008-09-17 version of the Amazon FPS Advanced Quick Start.
This guide was last updated on 2009-11-06.

The following table describes the important changes since the last release of this guide.

Change Description Release Date

New Feature support for signature version 2, which will completely
replace signature version 1 on 01 November, 2010. The
enhanced security features include:

• a more secure way of calculating signatures for
inbound requests and outbound notifications. For more
information, see Working with Signatures (p. 41).

• support for SHA256 signing algorithm

• the new VerifySignature FPS Action for server-side
testing of return URL responses and IPN notifications.
For more information, see VerifySignature (p. 93).

• support for PKI based authentication for client-side
testing of return URL responses and IPN notification. For
more information, see Client-side Signature Validation (p.
44).

2009-11-03

Enhancement The Access Keys page has been renamed the
Security Credentials page, located at https://aws-
portal.amazon.com/security-credentials.

2009-09-09

Enhancement The GetTransaction action has been enhanced to return
information sent asynchronously by the backend processor
(through both the returnUrl and IPN notification) for Pay,
Reserve, Settle, and Retry API calls. For more information,
see .

2009-09-25

https://aws-portal.amazon.com/security-credentials
https://aws-portal.amazon.com/security-credentials

Amazon FPS Advanced Quick Start Developer Guide
Overview

API Version 2008-09-17
6

Introduction to Amazon FPS
Advanced Quick Start

This introduction to Amazon FPS Advanced Quick Start provides a detailed summary of this web
service. After reading this section, you should have a good idea of what it offers and how it can fit in
with your business.

Overview
This overview describes the business model and major features of Amazon FPS Advanced Quick
Start.

Business Model
Amazon FPS Advanced Quick Start enables buyers to authorize a payment token that can be used
more than one time. For more information about payment tokens, see Payment Token Types (p.
18).

These payment tokens, which are set up with a certain amount of money authorized, might be
recurring payment tokens, which are charged a fixed price at regular intervals. Or they could be multi-
use tokens, which are charged according to the token's constraints. For example, the token could be
charged a certain number of times per day, or for a certain number of users, or until the authorization
runs out of money.

These token types are highly configurable. For a recurring payment token, you can configure how often
and how much is paid, and when the token expires. For a multiple payment token, you can configure its
expiration, the merchants it can be used to pay, the maximum and minimum amount it can be charged
at any one time, how many times it can be charged, the lifetime maximum amount it can be charged,
and so on.

Features
Amazon FPS Advanced Quick Start provides the following major features:

Amazon FPS Advanced Quick Start Developer Guide
Key Concepts

API Version 2008-09-17
7

• Payment authorization—Buyers must authorize payments for you to be able to charge them. You
can get this authorization by redirecting them to the Amazon Payments website. Buyers log in to
Amazon Payments and agree to make the payment using a specified payment method.

• Payments—Transfer money from the buyer's account to the seller's.

• Recurring-use payment tokens—A buyer authorizes a recurring payment token once, and
thereafter it is charged a specific amount at regular intervals until the token expires.

• Multi-use payment tokens—A buyer authorizes a multi-use payment token once but it can be used
repeatedly according to its constraints, such as the maximum number of times it can be used within
a given period of time.

• Notifications—Get notified automatically when transactions succeed or fail.

• Refunds—Refund the money from a successfully completed transaction.

• Cancellation of payment tokens—Cancel any of your payment tokens at any time.

Key Concepts
Topics

• Amazon FPS Advanced Quick Start (p. 7)

• Multi-Use Payment Tokens (p. 9)

• Recurring Payment Tokens (p. 11)

• Recipient Tokens (p. 13)

• Other Integration Points (p. 13)

• Sender, Recipient, and Caller Actions (p. 14)

• Request Security (p. 15)

• Co-Branded User Interface (CBUI) (p. 15)

• Sandbox (p. 21)

• Instant Payment Notification (p. 21)

• Errors (p. 22)

• Business Considerations (p. 24)

• WSDLs and Schemas (p. 27)

This section describes the concepts and terminology you need to understand to use Amazon FPS
Advanced Quick Start effectively.

Amazon FPS Advanced Quick Start
Amazon FPS Advanced Quick Start enables you to create multi-use payment tokens with only a
single authorization, and to create innovative payment solutions that allow payments between two
applications.

Amazon Flexible Payments Service

The Quick Start implementation covered in this guide is one of five different Quick Start
implementations that make up the Amazon Flexible Payments Service. Amazon FPS is the first
payments service designed from the ground up specifically for developers. This set of web service
APIs differs from other Amazon Payments products, such as Amazon Simple Pay and Checkout by
Amazon, in that it allows the development of highly customized payment solutions for a variety of

Amazon FPS Advanced Quick Start Developer Guide
Amazon FPS Advanced Quick Start

API Version 2008-09-17
8

businesses. Amazon FPS is built on top of Amazon's reliable and scalable payments infrastructure
and provides developers with a convenient way to charge the tens of millions of Amazon customers.
Amazon customers can pay using the same login credentials, shipping address and payment
information they already have on file with Amazon.

For buyers, the advantage of using Amazon FPS payment instruments in online purchases includes
the following:

• Convenience—Consumers can use their Amazon.com account to complete payments on a web site
without having to re-enter their shipping address or payment information.

• Trusted payment experience—The secure and trusted payment experience consumers enjoy on
Amazon.com is available for your web site.

• Purchase protection for buyers—Consumers can feel more confident purchasing, knowing that
they have the same protection under the Amazon A-to-z Guarantee that they have when they shop
on Amazon.com.

For sellers, the advantage of using Amazon FPS includes the following:

• Flexibility—Amazon FPS offers immense flexibility by allowing you to define terms and conditions
specific to each transaction. It also gives you control over when the payment transaction is executed.

• Access to Amazon customers—Amazon FPS enables tens of millions of existing Amazon
customers to transact online, simply using the same accounts and payment methods that they use
for purchases on Amazon.com.

• Increased customer base—Amazon's trusted payment experience, A-to-z Guarantee, and the ease
with which tens of millions of Amazon customers can pay on a web site will help increase the total
number of Amazon customers.

• Lower cost with Amazon’s proven fraud detection—Amazon FPS leverages Amazon's proven
fraud detection capabilities, chargeback controls, and risk management processes to reduce bad
debt.

• Reliable and secure payments platform—Amazon has spent over a decade developing, testing,
and operating a reliable, scalable and secure payments infrastructure to support millions of daily
transactions.
Amazon FPS exposes this robust infrastructure to you and your customers.

Amazon FPS has five Quick Start implementations, each providing a different slice of Amazon FPS
functionality:

Name Description

Basic Facilitates one time payment between a buyer and a developer who is also
the merchant for e-commerce, digital content, donations, services.

Marketplace Facilitates one time payment between buyer and merchant where you are
a third party developer, a caller, who hosts the merchant's products and
order pipeline. With a unique three-party transaction model, payments can
be processed in which you are neither the buyer nor the seller. You can
charge a fee for such transactions.

Advanced Facilitates multiple or recurring payments.

Aggregated
Payments

Facilitates aggregated micro-transactions into a single, larger transaction
using prepaid and postpaid capabilities.

Account Management Accesses buyer and developer account activity programmatically.
Alternatively, view account activity and balances can be viewed on the
Amazon Payments web site.

http://payments.amazon.com

Amazon FPS Advanced Quick Start Developer Guide
Multi-Use Payment Tokens

API Version 2008-09-17
9

You can use these parts separately or in combination. They share a common WSDL and schema.

Multi-Use Payment Tokens
The multi-use payment token is a usage-based payment instrument that you can constrain in a few
ways or in many ways. For example, you can constrain the allowed charge amount per time period,
(such as a day, a week, a month, or the token's lifetime). You can also constrain the token to pay at
least a minimum amount per transaction, or to be used only a specific number of times in any time
period. Or, you can use multi-use payment tokens to pay more than one recipient.

You can use the multi-use payment token for open-ended payments where the total is not known
beforehand. You might own a music download company that charges a set fee per month for
membership and a fee for each download. Before the subscriber downloads each song, you add the
download fee to the monthly membership fee and arrive at the current monthly bill. If the total is within
the prescribed boundaries of the multi-use payment token, you can allow the music download and
charge the subscriber. If the total exceeds the maximum authorized dollar amount associated with
the payment token, you display a message and refuse to download unless the subscriber authorizes
additional spending.

You, as the caller, can use this token to charge the sender multiple times to pay one or multiple
recipients. You cannot use a multi-use token to charge the sender for an unlimited amount or for
unlimited amount of time.

Note

If you charge your customers at a regular interval for a fixed amount, you should use a
recurring token instead. For more information, see Recurring Payment Tokens (p. 11).

Usage Restrictions

A multi-use token provides the flexibility of usage based on restrictions or limitations. You can specify
two types of restrictions for a multi-use token:

• Amount Limit—Limiting the maximum amount
This specifies the maximum amount that can be charged using the token within a specified period of
time or for the lifetime of the token. For example, the token can be used for a maximum amount of
$30 in a month starting from August 10, 2008 or for a maximum amount of $30.

• Usage Limit—Limiting the number of uses
This specifies the maximum number of times you can charge the token within a specified period of
time or for the lifetime of the token. For example, the token can be used a maximum of 10 times or
for 10 times per day starting from August 10, 2008.

A maximum of three usage restrictions can be specified for a multi-use token. For example, a
combination of usage restrictions mentioned in the preceding list restricts a token to be used 10 times a
day for a maximum of $30 in a month.

Important

Amazon FPS requires you to always set the maximum amount limit.

In addition to the usage restrictions, you can also set one of the following restrictions on the transaction
amount. These apply individually to each transaction and not across multiple transactions:

• Maximum transaction amount for each transaction

• Minimum transaction amount for each transaction

Amazon FPS Advanced Quick Start Developer Guide
Multi-Use Payment Tokens

API Version 2008-09-17
10

• Exact transaction amount for each transaction

A multi-use token can be used to pay multiple recipients in a marketplace application. To enable this,
the calling application should specify the list of recipients that will receive payments. Once the list of
recipients are specified in the token, it cannot be modified.

Buyer's Experience of a Multi-Use Payment Token

The following figure shows the typical buyer experience of authorizing the multiple payment token and
then, later, purchasing items within the limits of that payment token at different times.

Authorizing and Using a Multi-Use Payment Token

1 Your web site takes the buyer through the checkout process.

2 If the buyer chooses Amazon Payments, your Pay Now button code constructs
and sends a Co-Branded service request that includes the multi-use payment token
parameters. The Pay Now button code also redirects the buyer to the CBUI web pages
that Amazon hosts.

3 The buyer selects a payment instrument and authorizes the purchase.

Amazon FPS Advanced Quick Start Developer Guide
Recurring Payment Tokens

API Version 2008-09-17
11

4 The CBUI redirects the buyer to the URL specified in the returnURL from the Co-
Branded service request. In addition to that URL, the URI contains additional parameters
such as the ID for the multi-use token just created (which you need later), the status of
the payment authorization, and the identification of the buyer.

5 When the status changes to Success you can use the payment token.

6 At some point, you use the payment token for a purchase without getting additional
authorization from the buyer. To facilitate the purchase, you send a Pay request with the
multi-use token ID you received earlier.

6 Later, you send additional Pay requests to make additional purchases, as necessary.

Recurring Payment Tokens
Recurring-use payment tokens are a subset of multi-use payment tokens, but with the following
restriction types:

• Pre-determined fixed amount (specified at the time of token creation)

• Regular interval

An example would be a subscription for a magazine that charges users $9.99 every month for one year
starting on March 10, 2008.

The recurring-use payment token can be charged on a recurring basis, but the buyer only authorizes
the payment once. You can customize the token by configuring a variety of parameters. You can set
the amount of the recurring payment, the frequency of payment, the starting date of the payments, and
the expiration of payments in each payment token.

The advantage of FPS is that you have full control over the charges. For example, you might already
be charging a credit card for subscriptions, and you might want to manage an additional payment
method, without changing your business processes and control when the payment actually happens.

Important

You must make a Pay request each time you want to charge a recurring payment token. The
constraints associated with the recurring payment token restrict its use only; they do not set up
automatic payments.

You might set up recurring payment tokens to pay for such things as membership fees, online
newsletters, donations, and loan payments.

Buyer's Experience of a Recurring Payment Token

The following table shows the sequence of events a buyer goes through while purchasing a music
download subscription.

Purchasing a Music Download Subscription

1 The buyer goes to the music subscription web site and clicks a Subscribe Now button
(or equivalent wording) to purchase the music subscription.

2 The buyer is redirected to the Amazon-hosted Co-Branded User Interface (CBUI) pages
where he or she logs in, selects the payment instrument, reviews the costs and payment
structure, and authorizes the purchase of the subscription.

Amazon FPS Advanced Quick Start Developer Guide
Recurring Payment Tokens

API Version 2008-09-17
12

3 The buyer is redirected to the URL you specify in the Co-Branded service request, which
is typically a thank you page and an invitation to keep shopping.

4 After the developer has issued the Pay request, the buyer notices that their payment
instrument is charged on the start date of the subscription and at the prescribed intervals
thereafter.

Recurring Payments

The first point where you must integrate Amazon FPS is the point where buyer decides to purchase, as
shown in the following diagram. For more information, see Getting Authorization (p. 30).

Authorizing and Using a Recurring Payment Token

1 Your web site takes the buyer through the checkout process.

2 If the buyer chooses Amazon Payments, your Pay Now button code constructs
and sends a Co-Branded service request that includes the recurring payment token
parameters. The Pay Now button code redirects the buyer to the CBUI web pages that
Amazon hosts.

Amazon FPS Advanced Quick Start Developer Guide
Recipient Tokens

API Version 2008-09-17
13

3 The buyer selects a payment instrument and authorizes the purchase.

4 The CBUI redirects the buyer to the URL specified in the returnURL from the Co-
Branded service request. In addition to that URL, the URI contains additional parameters
such as the token ID for the token just created (which you need in the next step), the
status of the payment authorization, and the identification of the buyer.

5 When the status changes to Success, your code constructs and sends Amazon FPS a
Pay request to initiate the purchase. The request includes the token ID received in the
previous step. You should save the transaction ID that is returned in case of a refund or
chargeback.

6 Later, you send additional Pay requests at regular intervals based on the parameters in
the Co-Branded service request.

Recipient Tokens
Amazon FPS Advanced Quick Start includes the option of using marketplace functionality with
recurring-use and multi-use payment tokens. In the marketplace environment, you function as a third-
party caller who makes Amazon FPS web service calls to transfer money between a sender and a
recipient. To implement marketplace functionality, you must register the recipient (also called the seller
or the merchant) on your web site. Your registration process creates a recipient token that you later
use in a Pay request to transfer money from the buyer to the seller.

The following diagram describes the marketplace workflow for the merchant.

A recipient token contains the following information:

• Accepted payment method

• Agreement to pay fees (if you don't pay the associated fees)

• Validity of the token

• Authorization for you as the caller to transfer money

Other Integration Points
Topics

Amazon FPS Advanced Quick Start Developer Guide
Sender, Recipient, and Caller Actions

API Version 2008-09-17
14

• Cancel Payment (p. 14)

• Refund Payment (p. 14)

The preceding sections explain how recurring and multi-use payment tokens fit into the workflow of
your web site. The following sections show the other places where Amazon FPS Advanced Quick Start
fits into the workflow of your web site.

Cancel Payment
Buyers can cancel a recurring or multi-use payment token, as shown in the following diagram.

Canceling Interaction

1 The buyer clicks the equivalent of a Cancel button hosted on your web site.

2 Your Cancel button code constructs and sends a CancelToken request, which includes
the tokenID returned in the Co-Branded service response.

3 Amazon FPS processes the request and returns an XML notification of the request's
success or failure.

Refund Payment
Buyers cannot request a refund through the buyer's account page on Amazon Payments. This must be
handled on your Web site and you must send a request to Amazon Payments.

There are two ways you can refund a payment to your customers. First, you can visit your account on
the Amazon Payment web site to refund a payment. Or, you can issue refunds programmatically when
your customers want a refund.

Sender, Recipient, and Caller Actions
Participants involved in an Amazon FPS transaction perform one or more of the following actions:

• Send money
The buyer, known as the sender in an Amazon FPS transaction, makes the payment for purchasing
goods or services. The sender can send money using an Amazon Payments Personal account,
Amazon Payments Business account, or Amazon FPS developer account.

• Receive money
The merchant (or seller), also known as the recipient in an Amazon FPS transaction, receives
payment for the goods or services sold to the sender. A recipient can receive money using an

Amazon FPS Advanced Quick Start Developer Guide
Request Security

API Version 2008-09-17
15

Amazon Payments Personal account, Amazon Payments Business account, or Amazon FPS
developer account.

• Make Amazon web service calls to enable money transfer
The developer, also known as the caller in an Amazon FPS transaction, can transfer money between
a sender and a recipient in a transaction. A caller can also perform the role of a sender or a recipient.
A caller must have an Amazon FPS developer account to make web service API calls. For more
information about registering for an Amazon FPS account, go to the Amazon Flexible Payments
Service Getting Started Guide.

Important

Amazon FPS does not allow a participant to play all three roles in a single transaction.

Request Security
Amazon FPS applications enable payments between buyers and sellers. Web service requests are
sent over the Internet using SSL (HTTPS).

HTTPS does not establish the identity of the requester. To establish the identity of the requester,
Amazon FPS uses a signature.

A signature is an encrypted value that you generate and include as a parameter value in every request
using the signature parameter as in the following example.

Signature=K2ryWe7s/0AHI0/PbuAveuUPksTefhmNCzDTold2VYA=

With signature version 2, you have the option of using either SHA256 or SHA1 for signature
authentication in inbound requests. For outbound notifications, the RSA-SHA1 algorithm is supported.

Important

The previous method for signing will expire on 01 November, 2010. At that time, any signing
you do with your access keys must be done using the new method.

Signing is required for all FPS API requests (except for VerifySignature (p. 93)), and optional but
recommended for Co-Branded service requests. If you do not sign a Co-Branded service request,
you must manually determine whether the request was tampered with. For detailed information about
generating a signature, see Working with Signatures (p. 41).

Co-Branded User Interface (CBUI)
Topics

• Where the CBUI Fits in the Workflow (p. 16)

• Recipient Registration on Your Web Site (p. 18)

• Payment Token Types (p. 18)

• Amazon FPS API and Co-Branded Service Requests (p. 20)

When someone is ready to authorize a purchase, he or she clicks the equivalent of a Pay Now button
powered by Amazon FPS to authorize a payment. The implementation of this button is to redirect the
buyer from your web site to the Co-Branded User Interface (CBUI). You cannot issue an Amazon FPS
Pay request until a buyer has successfully completed the CBUI web pages thereby authorizing the
purchase.

http://docs.amazonwebservices.com/AmazonFPS/latest/FPSGettingStartedGuide/
http://docs.amazonwebservices.com/AmazonFPS/latest/FPSGettingStartedGuide/

Amazon FPS Advanced Quick Start Developer Guide
Co-Branded User Interface (CBUI)

API Version 2008-09-17
16

The CBUI is a series of web pages, as shown in the following figure.

For the buyer, the CBUI is a series of web pages they use to authorize the payment. The CBUI web
pages ask the buyer to sign in, specify a personal payment instrument, like a credit card, and authorize
the purchase. If you have purchased something on Amazon.com, you're familiar with the final approval
in the checkout process where you commit to spending your money.

For the merchant, the CBUI is a series of web pages in which the merchant registers with a caller for
a marketplace storefront on the caller's web site. Merchant registration is only required in marketplace
selling environments. You use the recipient token ID returned from that request to pay merchants in the
purchase transaction.

The CBUI enables you to include your company's branding on the CBUI payment authorization
web pages. This makes for a better buying experience. Clicking a Pay Now button powered by
Amazon FPS redirects the buyer away from your web site to Amazon's. By including your branding
on Amazon's CBUI web pages, the buyer doesn't feel as if they've completely left the your web site to
authorize a payment. The CBUI provides continuity between the checkout and payment authorization
experience.

For merchant registration, co-branding provides a similar, improved customer experience.

Where the CBUI Fits in the Workflow
The following figure shows that you redirect buyers to the CBUI web pages when they are ready to
purchase the items they selected on your web site. Your web site code constructs a Co-Branded

Amazon FPS Advanced Quick Start Developer Guide
Co-Branded User Interface (CBUI)

API Version 2008-09-17
17

service request that identifies the buyer, and sends it when you redirect the buyer to the CBUI web
pages.

The following table describes the CBUI web pages, the authorization process, and the subsequent
Amazon FPS request you make after receiving notification of the authorization.

Authorization and Transaction Process

1 Senders sign into their Amazon Payments account by entering their e-mail and password.

2 They choose a payment instrument, such as a credit card, bank account, or Amazon
Payments balance transfer, to make the purchase.

3 They review the transaction details and click Confirm to authorize the payment using the
specified payment instrument.

4 The Co-Branded service creates a payment token and redirects the sender to the URL
you specify in your Co-Branded service request using the returnURL parameter.
Typically, it is a Thank you page on your web site in which you invite senders to keep
shopping perhaps by showing them similar items to what they purchased.
The URI contains not only the endpoint that you specified in returnURL, but also a
reference to the payment token, such as a tokenId, and the status of the authorization.

5 Upon receiving the URI from the Co-Branded service, if the status of the authorization is
successful, you must send Amazon FPS a Pay (or Reserve) request to actually transfer
money from the buyer to the merchant.
This request requires, as a parameter, the tokenID returned by the Co-Branded service in
the URI.

Amazon FPS Advanced Quick Start Developer Guide
Co-Branded User Interface (CBUI)

API Version 2008-09-17
18

Recipient Registration on Your Web Site

The first step in the workflow is recipient registration on your web site. Recipients must register with
you so that:

• They can accept your business terms, in particular, the marketplace fee you will charge them

• They can upload their item information to your web site

• You can get the RecipienttokenID which you need to facilitate the payment to the recipient

The following figure shows the process for recipient registration.

Process for Recipient Registration

1 Implement a recipient account system on your web site. For example, enable each
recipient to sign in to their account with a sign-in name and password.

2 On the CBUI pages, the recipient selects a payment instrument to use to receive
payments.

3 The Co-Branded service redirects the recipient back to your web site with information that
you should store in your database, such as the RecipientTokenID.

4 After confirming his or her choices, the recipient is redirected back to your web site with
information, such as the RecipientTokenId that you should store in your database.

Payment Token Types

When someone successfully completes the CBUI web pages, the Co-Branded service creates a
payment token, which is stored on Amazon servers. A payment token contains purchase information,
including the amount of the purchase, the buyer, and the authorization to use the token as a means of
making a purchase. Every Amazon FPS payment transaction requires a payment token.

Amazon FPS Advanced Quick Start Developer Guide
Co-Branded User Interface (CBUI)

API Version 2008-09-17
19

There are a number of different kinds of payment tokens and each one behaves differently. Amazon
FPS provides the following token types. Each Amazon FPS Quick Start implementation provides a
different subset of them all.

• Single-use—Authorized to make a single purchase of a specified amount where the money is sent
from the buyer to you
Available for: Basic Quick Start

• Recurring-use—Authorized to make payments at regular intervals for such things as subscription
purchases
This token can have usage limitations, for example, an expiration date. The payment can be made
to you or a third party merchant. In this case, you broker the deal and collect a marketplace fee for
doing so. This scenario, in which there are three parties involved, buyer, merchant, and you, is called
a marketplace scenario.

This token can be used in a marketplace scenario.

Available for: Advanced Quick Start

• Multi-use—Authorized to be used one or more times within its specified limitations, for example,
the total amount it can be used for, how long it can be used, or how little or how much any single
payment can be
This token can be used in a marketplace scenario.

Available: Advanced Quick Start

• Prepaid—Authorized to be used one or more times within its specified limitations, for example,
the total amount it can be used for, how long it can be used, or how little or how much any single
payment can be
The prepaid token is funded before it is used.

Available for: Aggregated Payments Quick Start

• Postpaid—Authorized to be used one or more times within its specified limitations, for example,
the total amount it can be used for, how long it can be used, or how little or how much any single
payment can be
This token is like a credit card by which you agree to pay for purchases you make at some time after
the actual sale.

Available for: Aggregated Payments Quick Start

• Editing—Authorizes the change of an existing token
The multiuse, recurring, and settlement tokens can have the ID edited. This feature is used to
change information in an existing token, for example, the credit card number on a recurring token.
If a credit card expires or is replaced, you can use the edit token to modify the recurring token
information without having to force the buyer to cancel and re-purchase.

Available for: Advanced Quick Start, Aggregated Payments Quick Start

Before you can initiate any Amazon FPS payment transaction, such as a Pay request, you must create
at least one of these tokens.

Sender and Recipient Token Associations

Senders (buyers) and, in Amazon FPS Quick Start implementations that support the marketplace
scenario, recipients (merchants) can go through the CBUI to create tokens. Each one does so for a
different purpose. The sender uses a Pay Now button to go through the CBUI to authorize a purchase.
The recipient uses a Register Now button to authorize the payment of marketplace fees to you for
hosting his or her e-commerce store. In both cases, it is your web site that implements the button that
redirect the person to the CBUI.

All of the token types can be associated with a sender, that is, a buyer who is authorizing a purchase.
So, there can be a sender single use payment token, sender recurring use payment token, sender
postpaid payment token, and so forth. This guide sometimes shortens these names to "sender token."
The value returned in TokenId from the CBUI is used as the value for SenderTokenId in subsequent
Amazon FPS requests.

Amazon FPS Advanced Quick Start Developer Guide
Co-Branded User Interface (CBUI)

API Version 2008-09-17
20

The token types that can be used in the marketplace scenario can also be associated with a recipient.
In this scenario, you host the e-commerce store of a merchant, called a recipient (the person who
receives the money). You charge the recipient a fee (called a marketplace fee) for hosting their e-
commerce store and brokering the money transactions. On your web site, you implement a button
that makes the recipient go through the CBUI and authorize the payment of marketplace fees for your
service. The value returned in TokenId from the CBUI is used as the value for RecipientTokenId
in subsequent Amazon FPS requests. The following token types can be associated with a recipient:
single-use, multiple-use, and recurring-use.

Token Creation

The Co-Branded service creates a token when a buyer successfully completes the CBUI web pages
and thereby authorizes a purchase, or when a merchant authorizes the payment of marketplace
fees to you, as shown in the following figure. The CBUI returns to your web site references to the
created tokens in the tokenID parameter. This value is either used as a SenderTokenID or
RecipientTokenID, depending on the implementation, in subsequent Amazon FPS requests.

The token type you create depends on the parameters included in the Co-Branded service request
This guide presents the API for each token type available in this Amazon FPS Quick Start. For more
information about sending a Co-Branded service request, which can result in token creation, see
Getting Authorization (p. 30).

Amazon FPS API and Co-Branded Service Requests

Amazon FPS has two production endpoints where you send requests. One is for requests involving the
Amazon FPS API. These requests implement all of the financial functionality included in Amazon FPS,
such as Pay and Refund. The other endpoint is for Co-Branded service requests that redirect a buyer
to a series of Amazon-hosted web pages where the buyer authorizes a payment.

Amazon FPS API and Co-Branded service requests differ in the following ways:

Amazon FPS Advanced Quick Start Developer Guide
Sandbox

API Version 2008-09-17
21

• API requests carry out actions using the Amazon FPS web service. Co-branded service requests
make the buyer interact with Amazon-hosted interface in which the buyer authorizes payments, such
as when he or she authorizes the use of his or her credit card to complete a purchase.

• The response to an Amazon FPS request is an XML document. The response to a co-branded
service request is a URI sent to a URL specified in the request.

• The requests have different endpoints, as follows.

• Amazon FPS API— https://fps.amazonaws.com

• Amazon Co-Branded service API— https://authorize.payments.amazon.com/cobranded-ui/
actions/start
For more information about Co-Branded service requests, see Getting Authorization (p. 30).

You must make Co-Branded service requests before API requests because the Co-Branded service
creates the payment token that you must use in API requests. The Co-Branded service returns pointers
to those tokens in the form of token IDs.

Sandbox
Amazon FPS provides an environment called the sandbox for testing your applications. In the sandbox
you can try out your requests without incurring charges or making purchases. We recommend that you
test all of your requests in the sandbox before exposing them on your web site.

The sandbox has two endpoints: one for the Amazon FPS API, and one for the Co-Branded service
API.

• Amazon FPS API—https://fps.sandbox.amazonaws.com

• Co-Branded service—https://authorize.payments-sandbox.amazon.com/cobranded-ui/actions/start

For information about getting a sandbox account, go to the Amazon Flexible Payments Service Getting
Started Guide.

Instant Payment Notification
Instant Payment Notification (IPN) is a notification mechanism that uses HTTP POST to send you
immediate updates on transactions. IPN saves you the trouble of polling Amazon FPS for transaction
results that complete asynchronously.

Amazon FPS sends you an IPN whenever a transaction completes, as in the following cases:

• A payment or reserve succeeds

• A payment or reserve fails

• A payment or reserve goes into a pending state

• A reserved payment is settled successfully

• A reserved payment is not settled successfully

• A refund succeeds

• A refund fails

• A refund goes into a pending state

• A payment is canceled

• A reserve is canceled

• A token is canceled successfully

• A refund succeeds

• A refund fails

http://docs.amazonwebservices.com/AmazonFPS/latest/FPSGettingStartedGuide/
http://docs.amazonwebservices.com/AmazonFPS/latest/FPSGettingStartedGuide/

Amazon FPS Advanced Quick Start Developer Guide
Errors

API Version 2008-09-17
22

• A token is canceled successfully

Note

IPN must be configured in order to operate. If IPN is not configured, email is the only
notification.

For information on configuring IPN, see Setting Up Instant Payment Notification (p. 47).

Errors
Amazon FPS error results provide information about syntactical errors in your requests, as well as
errors that occur during the execution of your request (for example, a search that returns no results).
Errors are returned only in response to REST requests. For SOAP requests, an error results in a SOAP
fault.

In the Amazon FPS API Reference, each action description contains the list of errors that can be
returned. For a list of all errors, see Error Codes (p. 55).

REST Errors
If the original request to Amazon FPS used REST, in the case of an error, Amazon FPS returns an
XML error response similar to the following. Errors consist of two elements: code and message.

Response : <?xml version="1.0" encoding="UTF-8"?>
<Response>
 <Errors>
 <Error>
 <Code>InvalidTokenId_Sender</Code>
 <Message>Sender token is not valid.</Message>
 </Error>
 </Errors>
 <RequestID>67679d8a-fd87-4e44-b063-32a69bfc3c8b</RequestID>
</Response>
Response Code: 400>

The error code is a unique string that identifies the error; the error message is a human-readable
description of the error. These elements are nested within an Error element. If a request generates
more than one error, only the first error is reported.

Response codes are more generic errors of which the error code is a subset. For more information,
see Response Codes (p. 23).

SOAP Fault
If the original request to Amazon FPS used SOAP, in the case of an error, Amazon FPS returns a
SOAP fault similar to the following.

<?xml version="1.0" encoding="UTF-8"?>
<SOAP-ENV:Envelope
 xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
 xmlns:aws="http://webservices.amazon.com/AWSFault/2005-15-09">
 <SOAP-ENV:Body>
 <SOAP-ENV:Fault>
 <faultcode>aws:Client.IncompatibleTokens</faultcode>
 <faultstring>The transaction could not be completed because the tokens
 have incompatible payment instructions:

Amazon FPS Advanced Quick Start Developer Guide
Errors

API Version 2008-09-17
23

Assertion Failed for Recipient</faultstring>
 <detail>
 <aws:RequestId xmlns:aws="http://webservices.amazon.com/
AWSFault/2005-15-09">
 ad56d51c-b1df-4b15-95ca-9f71c2c65eea
 </aws:RequestId>
 </detail>
 </SOAP-ENV:Fault>
 </SOAP-ENV:Body>
</SOAP-ENV:Envelope>

The elements faultcode and faultstring are the SOAP equivalents of the REST elements Code
and Message, respectively.

Response Codes

Amazon FPS returns response codes in three categories so that you can easily determine how best to
handle a problem:

• 2XX—Errors caused by mistakes in the request. For example, your request might be missing a
required parameter. The error message in the response gives a clear indication of what is wrong.

• 4XX—Errors that are transient
These errors do not indicate a problem with Amazon FPS. So, upon receiving this error, resubmit the
request.

• 5XX—Errors that are non-transient
These errors reflect problems with the underlying Amazon FPS web service. You will have to wait
until the web service is functioning before resubmitting the request.

CE and SE Status Codes

Amazon FPS returns a status code for each of the Co-Branded service requests you make. You can
receive success and failure status codes for your requests. The status codes for each of the Co-
Branded service APIs are listed in the respective topics in this guide. If you receive a caller exception
(CE) or system error (SE) status code, you must handle them as described here.

CE (Caller Exception)

A caller exception (CE) error code indicates that your Co-Branded service code has an error. We
assume that you will encounter any caller exceptions when you test your Co-Branded service
integration (before you go live). Therefore, when a caller exception occurs, Amazon FPS immediately
displays on the screen an error message describing the problem, along with a Continue button. If
you click Continue, the CBUI returns you (as the test buyer) to your web site (the return URL) and
passes the caller exception error in the URI. You must fix the code that manages the requests to avoid
receiving the error again.

Error Message Description

CE - Caller Input Exception: The
following input(s) are not well
formed: [comma-separated list of
input parameters]

The request parameters in the error message
are not specified as mentioned in the request
parameter description of the pipeline.

CE - Caller Input Exception: The
following input(s) are either invalid
or absent: [comma-separated list of
input parameters]

The input parameters in the error messages are
either incorrect or have not been specified in the
request.

Amazon FPS Advanced Quick Start Developer Guide
Business Considerations

API Version 2008-09-17
24

Error Message Description

CE - Caller Input Exception: The
following input(s) are not valid for
this pipeline: [comma-separated list
of input parameters]

The input parameters mentioned in the error
messages should not be included for this
pipeline. Please view the list of correct input
parameters from the respective topic.

SE (System Error)

A system error (SE) indicates that your Co-Branded service request has temporally failed in Amazon
FPS. You can retry the request again.

Business Considerations
Topics

• Amazon Payments and Your Web Site (p. 24)

• Supported Payment Instruments and Currencies (p. 24)

• Amazon Payments Account (p. 24)

• Account Management (p. 25)

• Amazon Recipient Fees (p. 25)

• Fraud (p. 25)

• Disputes (p. 25)

Running a business is more than just creating a web site. Creating a business involves creating
policies and interacting with buyers. The business policies you make help determine the functionality
you implement on your web site. This section discusses such business considerations.

Amazon Payments and Your Web Site
You can add an Amazon Payments icon to your web site to let your buyers know you accept Amazon
Payments. For more information, go to the Marketing Toolkit.

Supported Payment Instruments and Currencies
Amazon FPS supports the following payment instruments:

• Amazon Payments account balance (ABT)

• Bank account debits (ACH)

• Credit cards (Visa, MasterCard, American Express, Discover, Diners Club, and JCB)

Amazon FPS allows all Amazon.com customers (U.S. and international) to use major credit cards
to make payments on Amazon Payments web sites. However, only US-based customers can use
Amazon Payments account and bank account transfers. All transactions are conducted in U.S. dollars.

Amazon Payments Account
If buyers already have an Amazon.com account, an Amazon Payments account is automatically
created, and is activated when they make their first payment on any web site that accepts Amazon
Payments.

If a buyer doesn't have an Amazon.com account, it's easy to create one: he or she only needs to
supply an e-mail address and a password.

https://payments.amazon.com/sdui/sdui/business?sn=devtools/tools

Amazon FPS Advanced Quick Start Developer Guide
Business Considerations

API Version 2008-09-17
25

Buyers can also hold a monetary balance in their Amazon Payments accounts and use this money as
a payment method just like a credit card or bank account. Buyers can manage their Amazon Payments
accounts through the Amazon Payments web site.

Account Management
Buyers, merchants, and developers can track transactions at http://payments.amazon.com. If you
prefer to programmatically track transactions, you can use the Amazon FPS Account Management
Quick Start implementation to get account information, for example, for a specified period. See the
Amazon FPS Account Management Quick Start Developer Guide.

Note

Buyers cannot see their account activity using their customer account on www.amazon.com.

Amazon Recipient Fees
Amazon Payments charges different fees for each of the different payment methods: credit cards,
bank account debits, and Amazon Payments balance transfers. Amazon’s cost to process a payment
through a bank account debit is less than the cost via credit card. Amazon's cost to process an
Amazon Payments balance transfer is less still. By exposing different fees for each of these three
methods, Amazon Payments can pass on savings from bank account debits and balance transfers,
allowing you to save money. In each case, Amazon Payments takes on the complexity of managing
security and fraud protection. Fees are assessed on a per-transaction basis and vary depending on the
payment method used and the transaction. For more information, go to the FAQ on the Amazon FPS
home page.

Fraud
You can feel safe and secure while your customers shop on your web site. Amazon Payments is built
upon Amazon's leading fraud protection technology. Under our Payment Protection Policy, we do not
hold you liable for fraud-related chargebacks if you and the transactions meet all the requirements of
the policy. You could still be held liable for service chargebacks. For details, go to our User Agreement.

Disputes
We want buyers to purchase with confidence when using Amazon Payments. However, disputes
between buyers and merchants do occasionally occur. When this happens, buyers should first contact
the merchant directly to try to find a solution. If the parties cannot resolve their dispute, the Amazon
Payments Buyer Dispute Program provides a mechanism to address the buyer's complaint using the
Amazon A-to-Z Guarantee.

When a buyer files a dispute, Amazon will notify the seller by e-mail. Based on the notification, the
seller can choose to refund the transaction amount to the buyer or the seller can contest the dispute
by providing details that prove of delivery of service or goods within 5 business days. Amazon FPS will
resolve the dispute based on the information the buyer and the seller provide.

The seller should use the following tips to avoid disputes:

• Answer all buyer contacts (e.g., e-mails) promptly

• Be sure to deliver within the shipping estimate you provide

• Describe products accurately and provide clear images

• Keep buyers informed

• Work with buyers to resolve their negative order experiences

• Pick, pack, and ship securely. Don't skimp on packing

• Post a clear returns policy. Respond to return requests promptly with detailed instructions

http://payments.amazon.com
https://payments.amazon.com/sdui/sdui/business?sn=devfps/fpso
https://payments.amazon.com/sdui/sdui/business?sn=devfps/fpso
https://payments.amazon.com/sdui/sdui/about?nodeId=6019

Amazon FPS Advanced Quick Start Developer Guide
Business Considerations

API Version 2008-09-17
26

• Promptly cancel any out of stock orders

• Refund as soon as possible when product defects or recalls become apparent

Amazon FPS does not provide actions to handle disputes. This section, however, addresses how to
handle them.

Amazon A-z Guarantee

The Amazon A-z Guarantee applies to qualified purchases of physical goods. Therefore, the following
items are not covered by the Amazon A-z Guarantee: payments for services, digital merchandise, and
cash equivalent instruments (including retail gift cards). The condition of the item purchased and its
timely delivery are guaranteed under the Amazon A-z Guarantee. For transactions that are not covered
by Amazon A-z Guarantee, the Amazon Payments Buyer Dispute Program still allows buyers to obtain
assistance in seeking the merchant's further consideration of their complaint. Amazon Payments will
attempt to resolve disputes by fostering good faith communication between buyers and merchants.

The item must be purchased from a merchant using Amazon Payments. The buyer must wait 15 days
from the order date to submit a claim. From that point, the buyer has 90 days to submit a claim.

The Amazon A-z guarantee applies under the following conditions:

• If the item becomes defective more than 30 days past the shipment date and it is under warranty,
the buyer must contact the manufacturer for repair or replacement. The buyer must provide all
information required when submitting the claim.

• If the buyer paid by credit card, and the issuing bank has initiated a chargeback, the buyer is not
eligible for coverage under the Amazon A-z Guarantee.

Buyers who pay for qualified physical goods using Amazon Payments are eligible to receive up to
$2,500 of the purchase price, including shipping charges.

Amazon has built up a base of millions of satisfied customers over the years through an intense focus
on being responsive to their concerns and acting quickly to resolve any outstanding problems. The
vast majority of customers never need to use the Amazon A-z Guarantee reimbursement program,
but for those who do, the guarantee claim gives customers a greater sense of trust and confidence in
shopping from the broad range of merchants.

Amazon Buyer Dispute Program

The Amazon Buyer Dispute Program applies when the buyer has used Amazon Payments to purchase
a non-physical item or service from a merchant; and either the buyer paid the merchant for the item or
service but it did not arrive; or the buyer received the item, but the item is materially different than the
way the merchant described it. For more information, go to Buyer Dispute Program.

The A-z Guarantee only applies to the purchase of physical goods and does not apply to unlawful or
prohibited items (including items violating the Amazon Payments Acceptable Use Policy or our User
Agreement). For more information, go to the Acceptable Use Policies and Amazon Payments User
Agreement.

Buyers can submit a complaint by logging into their Amazon Payments account. For disputes involving
physical goods that are covered under the Amazon A-z Guarantee, we will process a submission
as an A-z Guarantee claim. Buyers also can submit an A-z Guarantee claim by viewing the specific
transaction details via Your Account on the Amazon Payments web site. From the transaction or order
details page, they can also click "Problem with this transaction?" or "Problem with this order" to
file a claim.

Buyers can contact Amazon when the transaction has been resolved, but merchants are not able to
withdraw claims filed by a buyer. Instead, if merchants believe that a pending claim should be revoked
or canceled, they must contact buyers and encourage them to write to us. If the buyer and the seller

https://payments.amazon.com/sdui/sdui/about?nodeId=6025
https://payments.amazon.com/sdui/sdui/about?acceptableuse
https://payments.amazon.com/sdui/sdui/about?nodeId=6019
https://payments.amazon.com/sdui/sdui/about?nodeId=6019

Amazon FPS Advanced Quick Start Developer Guide
WSDLs and Schemas

API Version 2008-09-17
27

reach a resolution after a claim check was sent, we asks buyers to contact us to make arrangements
for repayment.

Chargebacks

A chargeback is a reversal of payment issued by the bank when a buyer disputes a charge. A
chargeback can occur when a buyer has not received the items, has been charged multiple times for
a single purchase, or is dissatisfied with the purchase and has not been able to resolve the matter with
you. Chargebacks can happen only with credit card transactions.

Typically, a buyer contacts his or her bank to request a chargeback. The bank notifies the credit
card association, which in turns notifies us. We work with the credit card company to resolve the
chargeback. We may request information from you to dispute the chargeback with the credit card
association.

Amazon FPS works with you and the buyer to resolve the chargeback. You have 5 business days
to respond to the chargeback notification Amazon FPS sends you and to supply any requested
information. If you do not respond within this time period, the dispute is automatically granted to the
buyer.

Use the following tips to avoid chargebacks:

• Charge buyers once for a single order to avoid duplicate billing
If you receive two or more identical orders, verify the information with the buyer

• Avoid dissatisfaction with item quality by providing a detailed description of items on your web site,
including specifications, measurements, and capabilities
Other aids such as audio, video, photographs, or drawings are also helpful

• Make the shopping experience positive for your buyers:

• Provide help when your buyers have questions or need assistance

• Clearly explain to your buyers when their order will ship and keep them informed about the
progress of their orders

• Make sure that items are delivered promptly without damage

• Ship items with carriers who provide online item tracking and require signatures on delivery

• Respond promptly to e-mail from your buyers

• Publish your policies for cancellations and returns to avoid chargebacks

• Refund an order when it is necessary to do so

WSDLs and Schemas
Web services involve the exchange of requests and responses between computers communicating
over the Internet. So that computers running different operating systems can communicate, the
vocabulary for the communication must be established. A WSDL is a dictionary of terms that two
computers can use to structure requests and responses. Schemas typically contain type definitions of
the terms in the WSDL.

This section provides a brief introduction to WSDLs and schemas and also provides the location for the
Amazon FPS WSDL and schema.

WSDL
A WSDL (Web Service Description Language) is an XML document that defines the operations,
parameters, requests, and responses used in web service interactions. You can think of a WSDL
as the contract that defines the language and grammar used by web service clients and servers.
When you look at the Amazon FPS WSDL, for example, you find in it all of the Amazon FPS operation
names, parameters, request and response structures.

Amazon FPS Advanced Quick Start Developer Guide
WSDLs and Schemas

API Version 2008-09-17
28

There is not a single WSDL. Amazon FPS, for example, has many different versions of its WSDL—the
latest one and all of its previous versions. Not only can one company use different versions of a WSDL,
every company can use its own WSDL based on its own APIs or business metrics. For that reason,
web service requests must identify the WSDL they use so the web servers know how to interpret the
requests.

The latest Amazon FPS WSDL is at: https://fps.amazonaws.com/doc/2008-09-17/AmazonFPS.wsdl.

Schema
A schema is similar to a WSDL in that both are XML documents. Whereas the WSDL defines the
web service language used by computers to converse, the schema defines the data types used in the
WSDL.

You do not have to create schemas to use Amazon FPS. Those have already been created. It is
helpful, however, to understand schemas so that you can determine the data types returned in
responses.

The W3C defines the base data types, which include, for example, int, string, and float. While these
data types are useful, they are not very descriptive. For example, defining every occurrence of text
in an XML document as being of type string hides the differences between text that might be, for
example, a paragraph versus a note. In such an application where paragraphs and notes are used,
a schema would contain an extension of the string base class so that paragraph (<para>) and note
(<note>) could be used as tags in XML documents.

The latest Amazon FPS schema is at: https://fps.amazonaws.com/doc/2008-09-17/AmazonFPS.xsd.
A graphic representation is available at http://docs.amazonwebservices.com/AmazonFPS/latest/
SchemaDocs/fps-schema.html.

https://fps.amazonaws.com/doc/2008-09-17/AmazonFPS.wsdl
https://fps.amazonaws.com/doc/2008-09-17/AmazonFPS.xsd
http://docs.amazonwebservices.com/AmazonFPS/latest/SchemaDocs/fps-schema.html
http://docs.amazonwebservices.com/AmazonFPS/latest/SchemaDocs/fps-schema.html

Amazon FPS Advanced Quick Start Developer Guide

API Version 2008-09-17
29

Programming Guide

Topics

• Important Values to Store in Your Database (p. 30)

• Getting Authorization (p. 30)

• Recipient Registration (p. 31)

• Making Payments (p. 33)

• Handling Transactions that Don't Return (p. 36)

• Order Cancellations (p. 37)

• Testing Your Applications for Free (p. 38)

• Working with Signatures (p. 41)

• Soft Descriptor Customization (p. 45)

• Setting Up Instant Payment Notification (p. 47)

The Programming Guide provides task-oriented descriptions of how to use and implement Amazon
Flexible Payments Service (FPS) actions. For a complete description of Amazon FPS actions, see the
Amazon FPS API Reference (p. 53).

The following table describes the topics discussed in the programming guide.

Note

To perform these tasks, you must have an Amazon FPS developer account. For information
about getting the account, go to Amazon Flexible Payments Service Getting Started Guide.

If you want to... Read this section...

Enable buyers to authorize payments Getting Authorization (p. 30)

Enable merchants to register on your web site so they can
receive payment for their items sold through your web site

Recipient Registration (p. 31)

Process the buyers' payments Making Payments (p. 33)

Cancel an order or refund a payment Order Cancellations (p. 37)

http://docs.amazonwebservices.com/AmazonFPS/latest/FPSGettingStartedGuide/

Amazon FPS Advanced Quick Start Developer Guide
Important Values to Store in Your Database

API Version 2008-09-17
30

If you want to... Read this section...

Test your application using the Amazon FPS sandbox Testing Your Applications for Free (p.
38)

Use the Amazon FPS Sample Code Code Samples (p. 125)

Create request signatures Working with Signatures (p. 41)

Get notifications about transactions Setting Up Instant Payment
Notification (p. 47)

Important Values to Store in Your Database
When you use Amazon FPS, there are times when you should store important information in your
database. The following sections describe some important values you should store.

Caller Reference
The CallerReference is a string you provide that uniquely identifies a request. An appropriate
value to use is the order ID. You can also use the value to retrieve information about a transaction
or to retrieve the related token (for more information, see Co-Branded Service Requests that Don't
Return (p. 36)). Amazon FPS uses the caller reference value to provide request idempotency for a
seven-day period (for more information, see Resending Requests (p. 36)).

Note

If you perform multiple partial refunds for a particular payment, you must provide a different
caller reference value for each partial refund request.

Transaction ID
The transaction ID is a string Amazon FPS creates to uniquely identify each transaction in the FPS
system. The Co-Branded service doesn't return a transaction ID; only Amazon FPS does (e.g., in a
Pay response). You should maintain the transaction ID in your database and associate it with your
caller reference value for the order. Because of network issues, it's possible that the response to your
Pay call might not reach you, so you won't have a transaction ID to store in your database. In that
case you can resend the original request (within 7 days) and receive the response again (for more
information, see Resending Requests (p. 36)).

Request ID
Amazon FPS returns a request ID for each Amazon FPS API call accepted for processing. If you have
a problem with a request, AWS asks for the request ID to troubleshoot the issue.

Getting Authorization
Before you can issue an Amazon FPS request that charges a buyer for an item, you must get the
buyer's authorization. The authorization process uses the Amazon Co-Branded service, which has a
different API from the Amazon FPS web service. Some of the values returned by the Co-Branded web
service, however, are required in Amazon FPS requests. When the buyer authorizes a purchase, the
Amazon Co-Branded service creates a payment token, which enables the exchange of money from
buyer to seller.

Amazon FPS Advanced Quick Start Developer Guide
Sending a Co-Branded Service Request

API Version 2008-09-17
31

This section describes how to use the Co-Branded API and payment tokens. The remainder of this
guide describes how to use the Amazon FPS API.

Sending a Co-Branded Service Request
This section shows how to send a request that redirects the buyer to the CBUI. You must send a Co-
Branded service request before you can use an Amazon FPS Pay or Reserve request.

These requests are typically implemented as an HTML form on your web site. Your site dynamically
updates the values of the Co-Branded service request parameters according to the items purchased.

To send a Co-Branded service request

1. Add up all the charges for all of the items the buyer wants to purchase, together with all taxes,
shipping fees, and any additional fees (such as gift wrapping fees).

2. Use the Recipient Token API, the Recurring-Use Token API, or the Multi-Use Token API, depending
on the kind of payment token you want to create (for more information about the APIs, see Co-
Branded Service API Reference (p. 109)). For a list of the parameters common to all Co-Branded
service requests, see Common Parameters (p. 109).

This example request is for a recurring payment for the download of a number of songs per month.

https://authorize.payments.amazon.com/cobranded-ui/actions/start?
 callerKey=[The caller's AWS Access Key ID]
 &callerReference=DigitalDownload1183401134541
 &paymentReason=Monthly+download+subscription
 &pipelineName=Recurring
 &recurringPeriod=1+Month
 &returnURL=http%3A%2F%2Fwww.digitaldownload.com%2FpaymentDetails.jsp
%3FPaymentAmount%3
 D05.00%26Download%3DMonthlySubscription%26uniqueId%3D1183401134535
 &signatureVersion=2
 &signatureMethod=HmacSHA256
 &signature=[URL-encoded value you generate]
 &transactionAmount=5.00

The optional parameters vary in your request according to what the buyer purchases.

For information about getting your AWS Access Key ID value, go to the Amazon Flexible Payments
Service Getting Started Guide.

3. Programmatically populate this request with the parameter values based on the items the buyer is
purchasing.

4. Calculate the signature and include it in the request.
For more information about creating the correct value for signature, see Working with
Signatures (p. 41).

5. Implement the Pay Now button on your web site to send this request.

Note

We recommend that you first try your Co-Branded service request in the Amazon FPS
Sandbox. For more information, see Testing Your Applications for Free (p. 38).

Recipient Registration
As a caller offering marketplace services, you must provide a way to register recipients so that they
can use your services, which include uploading product information for you to display on your web

http://docs.amazonwebservices.com/AmazonFPS/latest/FPSGettingStartedGuide/
http://docs.amazonwebservices.com/AmazonFPS/latest/FPSGettingStartedGuide/

Amazon FPS Advanced Quick Start Developer Guide
Recipient Registration on Your Web Site

API Version 2008-09-17
32

site and facilitating the sale of this merchandise. You must collect enough information to identify each
recipient so they can get paid for products purchased by buyers. You must handle the upload of
product information to your web site. Amazon FPS Advanced Quick Start can handle the registration of
your recipients and the exchange of money from sender to recipient.

The actions Pay and Reserve, which initiate payment transactions, require parameter values that
identify the sender and the recipient. In the API, these identifiers are called tokenIDs. There is a
SenderTokenId, which identifies the sender (who sends the money), and a RecipientTokenId,
which identifies the recipient (who receives the money). Because you, the caller, send Pay requests on
behalf of the others, you must obtain those identifiers.

These identifiers are generated by the Amazon Co-Branded service at the request of the Co-Branded
User Interface code (CBUI), which is a series of web pages that, among other things, identifies the
recipient or sender. This means that your web site must have an interface that sends a Co-Branded
service request for the sender and a different one for the recipient. The procedures for sending both
requests are the same; the only difference is that they use different Co-Branded service APIs. The API
used for recipient requests returns a RecipientTokenId, and the API used for the sender requests
returns a SenderTokenId.

This section describes how to use the Co-Branded service to register the recipient.

Recipient Registration on Your Web Site
The following figure represents the first step in the workflow: recipient registration on your web site.
Merchants must register with you for the following reasons:

• The recipient must accept your business terms, in particular, the marketplace fee you will charge
them.

• The recipient must be able to upload and otherwise manage the item information to your web site.

• You must have a RecipientTokenId for each recipient so that you can pay them using that
parameter in a Pay or Reserve request.

Amazon FPS Advanced Quick Start Developer Guide
Implementing the Co-Branded

API to Register a Recipient

API Version 2008-09-17
33

Recipient Registration

1 Implement a recipient account system on your web site.
For example, enable each recipient to sign in to their account with a sign-in name and
password.

2 As the final stage of your registration process, implement a Register button to send a
recipient Co-Branded service request. For more information, see Recipient Token API (p.
112).

3 The recipient enters the required information on the Amazon CBUI pages.

4 After confirming his or her choices, the recipient is redirected back to your web site with
information, such as the RecipientTokenId that you should store in your database.

Implementing the Co-Branded API to Register a
Recipient
The Co-Branded API you use for registering a recipient is the Recipient Token API. For more
information, see Recipient Token API (p. 112).

To register a recipient

1. On your web site, enable a recipient to register with you.

In this step you collect information about the person or company using your services.

2. Direct each recipient to https://payments.amazon.com/sdui/sdui/premiumaccount to create a
business payment account so they can get paid.

3. On your web site, display your business policies, including your marketplace fee structure, and
obtain the recipient's acknowledgment.

Your marketplace fee might include a flat fee, a percentage of the purchase price, or both. You
implement your fee structure using the parameters in the Co-Branded service request.

4. Implement a button that issues a Co-Branded service request that registers the recipient.

For more information, see Sending a Co-Branded Service Request (p. 31).

5. Parse the response.

In particular, store the tokenID, which is the recipient's. You use this value in Pay and Reserve
requests. You also need to store the RefundTokenID to use in case you need to refund a future
transaction.

Making Payments
Topics

• Transacting the Payment (p. 34)

• Failed Payment Transactions (p. 35)

• Changing the Payment Instrument (p. 35)

• Notifications (p. 36)

After the sender authorizes the purchase on the CBUI web pages, the URI returned contains
a successful status value. Upon receiving this response, you must send a Pay request to

https://payments.amazon.com/sdui/sdui/premiumaccount

Amazon FPS Advanced Quick Start Developer Guide
Transacting the Payment

API Version 2008-09-17
34

actually initiate the transfer of money from the sender to the recipient. In the Advanced Quick Start
implementation, the recipient could be you or a merchant whose e-commerce site you host.

This section describes how to make those payments.

Transacting the Payment
The sender uses the CBUI (p. 15) to authorize the payment. Upon the successful authorization, the
CBUI redirects the sender to the URL specified by the returnURL parameter in the CBUI request.
When you parse this returned URI, you check the status parameter and returnURL, among other
values. If the status is one of the success values, you need to send a Pay request to start the purchase
transaction. A successful Pay request immediately charges the sender's payment instrument, such as
a credit card. Pay can accept all payment instrument types, including credit card, bank account debit,
and Amazon Payments withdrawal.

To transact a payment using Pay

1 Obtain the list of items being purchased by the sender from your web site and derive the
values required for the parameters in the CBUI (p. 15) request.
One of the parameters is TransactionAmount. The value for this is the total charge
to the sender, including tax, shipping and any other fees. Another parameter is
CallerReference. You generate this identifier and associate it with the payment
instrument created. You can index the transactions on your database based on its value.
This way, you can match the identifier on your database, CallerReference, to the
identifier on the Amazon FPS database, TransactionId. For more information about
the parameters, see CBUI (p. 15).

2 Implement on your web site the equivalent of a Pay Now button so that it sends the CBUI
request.
For more information about constructing the CBUI request, see CBUI (p. 15). When the
sender authorizes the payment in the CBUI, the sender is redirected to the URL specified
by the returnURL parameter in the CBUI request. This URL is typically a Thank you
page and one that invites the sender to keep shopping.

3 Parse the returned URI.
In addition to the URL specified by returnURL, the URI contains parameters added by
the CBUI. Those parameters include all of the parameters in the CBUI request, which are
helpful for debugging purposes, a TokenId, which you must subsequently submit with
the Pay request, and a status, which tells you whether or not the sender successfully
authorized the payment.

4 If the status value is a success value, programmatically submit a Pay request.
The required parameters include SenderTokenId, which maps to the TokenId you
received in the CBUI response, TransactionAmount, which you entered in the CBUI
request, and CallerReference, which is a value you generate that uniquely identifies
the Pay transaction.

Note

The CBUI API uses the parameter, CallerReference, and the Amazon FPS
API uses CallerReference. It is easier if you make both parameters equal the
same value. We recommend that you make the CallerReference the same as
the order ID on your website.

Amazon FPS Advanced Quick Start Developer Guide
Failed Payment Transactions

API Version 2008-09-17
35

5 Parse the response.
Two important values the Pay request returns are TransactionStatus, which
tells whether the charge was successful against the sender's payment instrument,
and TransactionId, which is the identifier Amazon Payments uses to identify this
transaction. You should maintain the TransactionId in your database and associate
with your CallerReference value for the transaction.

6 Upon a successful transaction, add a task to your workflow to fulfill the order.

Failed Payment Transactions
There can be times when Amazon Payments charges a sender's payment instrument and that
transaction fails. There are two kinds of failure:

• Failure—A transaction is canceled for non-payment reasons.

For example, a transaction might be considered fraudulent and is therefore refused.

• Hard decline—A financial institution refuses the transaction.

This could happen when a credit card has exceeded its maximum limit or when a credit card has
expired. There is no retry after a hard decline.

You do not need to take any action in either of these cases. In the case of a failed transaction, Amazon
Payments e-mails the sender and you about the transaction decline.

Repeated Pay Requests

Due to network problems, some Pay requests might not complete successfully. If this happens, it might
be possible to recapture the information and resend the request. For more information, see Resending
Requests (p. 36).

Changing the Payment Instrument
It's possible that before a recurring or multi-use payment token expires, the sender must change the
payment instrument associated with the token. This might happen, for example, when a credit card
expires or is otherwise terminated. To handle this issue, you must enable the sender to change the
payment instrument for an ongoing payment token. You do that by sending a Co-Branded service
request for the Edit Token API, as described in the following process.

Process for Changing a Payment Token's Payment Instrument

1 Enable the sender to discover on your web site the ongoing payment token that needs
modification.

2 Enable the sender to enter the new payment instrument data, such as a credit card number.

3 Use the input to construct a Co-Branded service request for the Edit Token API. For more
information, see Sending a Co-Branded Service Request (p. 31) and Edit Token API (p.
122).

4 Implement the equivalent of a Change Payment Method button to issue the Co-Branded
service request.

Amazon FPS Advanced Quick Start Developer Guide
Notifications

API Version 2008-09-17
36

5 Parse the returned URI.
In addition to the URL specified by returnURL, the URI contains parameters added by
the Co-Branded service. Those parameters include all of the service response parameters,
including status, which tells you whether or not the sender successfully changed the
payment instrument. Part of the job of parsing the URI is evaluating the signature
parameter to make sure the response has not been altered. For more information, see
Verifying the ReturnURL and IPN Notifications (p. 43).

6 Display an appropriate web page to the sender based on the value of the status
parameter.

Notifications
If the sender uses an Amazon Payments account balance to make the purchase, the success or failure
of the transactions occurs quickly. If, however, the sender uses a bank account withdrawal or a credit
card to make the purchase, the results often take a while to complete. To be notified of the status of the
transaction, you must create a web service that receives Instant Payment Notification (IPN) updates,
and enable IPN updates. For more information, see Setting Up Instant Payment Notification (p. 47).

Handling Transactions that Don't Return
When a customer buys a product on your web site, their expectation is that the product will be paid for
and delivered, but sometimes problems cause service requests to become lost. In those cases, it is
sometimes possible to find the lost transaction.

Co-Branded Service Requests that Don't Return
After the sender finishes the CBUI pages and authorizes the payment, the service should redirect the
sender to the URL you specified in the returnURL parameter in the CBUI request. There might be
times, however, when the sender authorizes the payment and the redirect fails. Because you don't
have the SenderTokenId, you can't charge the sender for the authorized purchase. Use the following
procedure when the redirect from service fails.

To recover the SenderTokenId

1. Query your database to get the CallerReference you supplied in the Co-Branded service request
for the transaction in question.

2. Send a GetTokenByCaller request with the CallerReference.

3. If there isn't an Errors element in the response, the sender authorized the payment but there was
some problem with the redirect to returnURL. The response includes SenderTokenId.

If there is an Errors element in the response, the authorization did not succeed.

Resending Requests
There are times when network problems prevent the completion of requests. This could happen both
for Co-Branded service requests and for FPS API requests. Your application should periodically check
for this condition, and if it occurs, retry the request.

Amazon FPS Advanced Quick Start Developer Guide
Order Cancellations

API Version 2008-09-17
37

Co-Branded Service Requests

To check for Co-Branded service requests that didn't complete, whenever you send a request, put the
caller reference value from the request in your database. When you get the response, store the token
ID that your receive against the caller reference in your database.

About once each hour, resend any requests that don't have a sender token ID stored against the caller
reference. The timing is important, because for most tokens, Amazon FPS maintains the token IDs for
only three hours.

Amazon FPS API Requests

Each time you send a request to the Amazon FPS API, FPS maintains the caller reference from the
request for 7 days and uses it to check for duplicate requests. If you don't receive a response to an
Amazon FPS API request, you can resend the exact same request within that seven-day period, and
Amazon FPS will return the original response and not create a new transaction. If the first request
succeeded, the second request does not charge the sender's payment instrument a second time.

In that seven-day period, if you send a request with that same caller reference value but other
parameter values, Amazon FPS returns a DuplicateRequest error.

After the seven-day period, if you send the original request again (with the same caller reference and
parameter values), Amazon FPS creates a new transaction.

Order Cancellations
Topics

• Canceling a Recurring Transaction (p. 37)

• Refunding a Recurring Transaction (p. 38)

• Other Reversals and Issues (p. 38)

There are times when the sender decides to cancel a recurring payment. For example, the sender
might decide in the middle of a subscription to stop receiving a newspaper or magazine. This chapter
describes how to cancel recurring transactions.

Canceling a Recurring Transaction
The Amazon Payments web site, payments.amazon.com, enables senders to cancel recurring
transactions from their user account. To provide transaction cancellation functionality on your web site,
use the following procedure.

To cancel a recurring transaction

1. Enable the sender to find the recurring transaction to cancel.

2. Obtain from that transaction the TokenId, which was returned in the Co-Branded service response.

3. Submit a CancelToken request with the token ID.

For more information about this action, see CancelToken (p. 65).

The following CancelToken request cancels the recurring transaction specified by the TokenId.

https://fps.sandbox.amazonaws.com?
Action=CancelToken

http://payments.amazon.com

Amazon FPS Advanced Quick Start Developer Guide
Refunding a Recurring Transaction

API Version 2008-09-17
38

&AWSAccessKeyId=AKIAIUQNNI2DNQHBO7RA
&ReasonText=MyWish
&Signature=IZD9O%2FWGqhkzO%2FdLTQ7Tn8KUAmtZXqIEg6gypwkGeWQ%3D
&SignatureMethod=HmacSHA256
&SignatureVersion=2
&Timestamp=2009-10-07T08%3A46%3A37.156Z
&TokenId=D739IT9TMC4FK9KB56PDKJWAQGXDZ3B8X3SJNGVH3UEF5GQ7XAQZMEIL4OGEZKGX
&Version=2008-09-17

Refunding a Recurring Transaction
Amazon FPS gives you the option of refunding an unused portion of a recurring payment that the
sender paid for but will not use. This might happen if, for example, the sender pays membership fees
twice annually but must cancel only three months into the membership. The Refund action has an
optional parameter, RefundAmount, which enables you to refund all or only a portion of the transaction
amount a sender paid.

The Amazon Payments web site, payments.amazon.com, enables senders to refund transactions from
their user account. To provide transaction refunding functionality on your web site, use the following
procedure.

To refund a transaction

1. Enable the sender to find the transaction to refund.

2. Obtain from that transaction either the TransactionId or the CallerReference.

3. Submit a Refund request using one of those values.
For more information about this action, see Refund (p. 81).

The following Refund request refunds the transaction specified by the CallerReference and
TransactionId.

https://fps.sandbox.amazonaws.com?
Action=Refund
&AWSAccessKeyId=AKIAIIFXJCFIHITREP4Q
&CallerDescription=MyWish
&CallerReference=CallerReference03
&RefundAmount.CurrencyCode=USD
&RefundAmount.Value=1
&Signature=V6pU3PvDPkPhR9Eu7yZXnFZHuEFafLE5sBPgqqCELEU%3D
&SignatureMethod=HmacSHA256
&SignatureVersion=2
&Timestamp=2009-10-06T05%3A51%3A49.578Z
&TransactionId=14GK4TNCAQ84NK9VITEHKAS94RAD9ZE2AQD
&Version=2008-09-17

Other Reversals and Issues
In the e-commerce world, there are other types of transaction reversals, including chargebacks
and claims. Amazon Payments does not provide actions to handle those specific activities. So,
those implementations are left to you on your web site. For more information, see Business
Considerations (p. 24).

Testing Your Applications for Free
Topics

http://payments.amazon.com

Amazon FPS Advanced Quick Start Developer Guide
Sandbox Endpoints

API Version 2008-09-17
39

• Sandbox Endpoints (p. 39)

• Sandbox Use (p. 39)

• Error Simulation (p. 39)

• Testing Signatures (p. 40)

Amazon FPS provides a sandbox environment that you use to test your applications. In the sandbox
you can try out your applications without incurring charges or making purchases. We recommend that
you test all of your requests in the sandbox before exposing them on your web site.

The Amazon FPS Sandbox enables you to:

• Make Amazon FPS web service and Co-Branded service requests

• Make Pay requests to transfer money

• Use credit cards and bank accounts in your test transactions without any prior verification and
without incurring charges

• Simulate errors

You can simulate certain errors that could appear in a real transaction. This simulation can help you
test the error handling capabilities in your application.

For information about signing up for an Amazon FPS Sandbox account, go to the Amazon Flexible
Payments Service Getting Started Guide. For more information about the Amazon FPS Sandbox, go to
https://payments-sandbox.amazon.com.

Sandbox Endpoints
Sandbox endpoints are different from Amazon FPS production endpoints. The Amazon FPS Sandbox
endpoints are as follows:

• Amazon FPS API—https://fps.sandbox.amazonaws.com

• Amazon Co-Branded service—https://authorize.payments-sandbox.amazon.com/cobranded-ui/
actions/start

• Manage Sandbox Account—https://authorize.payments-sandbox.amazon.com

• Central FPS Sandbox Resource page—https://developer.payments-sandbox.amazon.com/
landingpage

Sandbox Use
You can test the following user experiences in the sandbox:

• Registering for a business or personal account via a Co-Branded service request

• Depositing funds into a test account's Amazon Payments account using a Pay request

• Checking the account balance for a test account

• Checking the activity for a test account

Error Simulation
The sandbox accepts any random number as a credit card and token ID in Pay and Reserve requests.
However, you can simulate a variety of declines that occur by using specific token IDs and amounts in
the Amazon FPS Sandbox, as shown in the following tables.

http://docs.amazonwebservices.com/AmazonFPS/2008-09-17/FPSGettingStartedGuide/
http://docs.amazonwebservices.com/AmazonFPS/2008-09-17/FPSGettingStartedGuide/
https://payments-sandbox.amazon.com
https://fps.sandbox.amazonaws.com
https://authorize.payments-sandbox.amazon.com/cobranded-ui/actions/start
https://authorize.payments-sandbox.amazon.com/cobranded-ui/actions/start
https://authorize.payments-sandbox.amazon.com
https://developer.payments-sandbox.amazon.com/landingpage
https://developer.payments-sandbox.amazon.com/landingpage

Amazon FPS Advanced Quick Start Developer Guide
Testing Signatures

API Version 2008-09-17
40

The following table shows the errors you can simulate by entering specific SenderTokenId values.

Error SenderTokenId Value

Closed account Z1LGRXR4HMDZBSFKXELA32KZASGWD8IHMHZ
CK4DETR784LDLD1GMFW4P3WT8VTGX

Email address not
verified

E3FR7BARJV3PB631PMKV74PGKCJLBHI1Q1K
MQN7BJ2JJICPDKN3N1CJIKFZ8D7NN

Suspended account H216UECZ8ZM1G8G4QA3V7RKF8JDFZ9SI3SJA
FSGUKBBNDHX1NVM8GUQRZNRNAHER

The following table shows the errors you can simulate by entering specific RecipientTokenId
values. These token IDs are relevant only in marketplace environments.

Error RecipientTokenId Value

Closed account P1LL7A1LHK935DBGI5NAYCXOCLVEBHBNIU
7PBXBAMRKKNLDEPI8M3MUSLZT2VANZ

Email address not verified C4LGSEMXN11FTUXZ2X2C7QVFHN5DVBGQJ
NF17AIQXXXQSX4DRG4KJFCN2KRFUUZI

Suspended account R3VK49XVGCAZTJSXKN7ZSBHPMFGKM5VEEQTX
GMVE8CFUZ2G5RLLMAB4J6TQRL6BU

With the Amazon Payments developer sandbox, you can force an error by placing certain decimal
values in the amount. The following table details the values.

Force Condition Error
Forced

Simulation

The amount includes a decimal value
between .60 and .69

Temporary
Decline

Occurs when a downstream process is
not available.

The amount includes a decimal value
between .70 and .89.

Payment
Error

Insufficient funds

Note

If you want your test transaction to be a success, avoid using amount values which contain
decimal values between .60 and .89. For example, the following amounts all force errors: 0.61,
123.6522, 1.79. The following amounts do not force an error: 0.16, 123.56, 8.97.

Testing Signatures
You can easily test your signature creation code using any of the examples in Amazon FPS API
Reference (p. 53). Each example contains a signature calculated from the values in the rest of the
example.

1. Copy any one of the sample query request examples from among the Actions in Amazon FPS API
Reference (p. 53).

2. Remove the HTTP verb (GET or POST) and the URI from your copy. Also remove the explicit '\n'
characters.

Amazon FPS Advanced Quick Start Developer Guide
Working with Signatures

API Version 2008-09-17
41

3. Remove the line with the Signature parameter from your copy.

4. Create a signature using the instructions in Generating a Signature (p. 42)

5. Compare the output from your signature creation code with the value you removed from the HTML
example. They should be identical.

Migrating your Application from the Sandbox to
Production

When your application is running correctly in the sandbox, you need to do the following to switch it to
the production environment:

Launch Process

1 Change the Amazon FPS sandbox endpoint to the Amazon FPS live endpoints as listed in the
following table:

Application Endpoint

Co-Branded UI
Pipeline

https://payments.amazon.com/sdui/sdui/managecobranding

Amazon FPS web
service requests

https://fps.amazonaws.com/

Amazon Payments
Account Management
UI

https://payments.amazon.com/

2 If your application is set up to receive IPN notifications, set its IPN URL at https://
payments.amazon.com/sdui/sdui/managecobranding.

3 For a marketplace application, make sure you register for that option when you register the
application in the production environment. If you did not select the option when you registered the
application, you can file a contact-us request at https://payments.amazon.com/sdui/contactus.

4 Please ensure you have specified your co-branding URL on production using the form at https://
payments.amazon.com/sdui/sdui/managecobranding.

5 Please ensure that the rest of your account settings are current at https://payments.amazon.com/
sdui/sdui/accountsettings.

You can use the same credentials to sign your requests as long as your Amazon Payments Developer
account on both Sandbox and Production are linked to the same e-mail address and password.

Working with Signatures
Topics

• Generating a Signature (p. 42)

• Verifying the ReturnURL and IPN Notifications (p. 43)

https://payments.amazon.com/sdui/sdui/managecobranding
https://fps.amazonaws.com/
https://payments.amazon.com/
https://payments.amazon.com/sdui/sdui/managecobranding
https://payments.amazon.com/sdui/sdui/managecobranding
https://payments.amazon.com/sdui/sdui/contactus
https://payments.amazon.com/sdui/sdui/managecobranding
https://payments.amazon.com/sdui/sdui/managecobranding
https://payments.amazon.com/sdui/sdui/accountsettings
https://payments.amazon.com/sdui/sdui/accountsettings

Amazon FPS Advanced Quick Start Developer Guide
Generating a Signature

API Version 2008-09-17
42

• Access Key Rotation (p. 45)

This section provides detailed explanations for some of the tasks required to generate a signature.
A signature is required for every request. For sample code for generating signatures, see Code
Samples (p. 125).

Generating a Signature
Web service requests are sent using SSL (HTTPS) across the Internet and are subject to tampering.
Amazon FPS uses the signature to determine if any of the parameters or parameter values were
changed in a web service request. Amazon FPS requires a signature to be part of every request.

To create the signature

1. Create the canonicalized query string that you need later in this procedure:

a. Sort the UTF-8 query string components by parameter name with natural byte ordering.
The parameters can come from the GET URI or from the POST body (when Content-Type
is application/x-www-form-urlencoded).

b. URL encode the parameter name and values according to the following rules:

• Do not URL encode any of the unreserved characters that RFC 3986 defines.
These unreserved characters are A-Z, a-z, 0-9, hyphen (-), underscore (_), period (.),
and tilde (~).

• Percent encode all other characters with %XY, where X and Y are hex characters 0-9 and
uppercase A-F.

• Percent encode extended UTF-8 characters in the form %XY%ZA....

• Percent encode the space character as %20 (and not +, as common encoding schemes
do).

Note

Currently all AWS service parameter names use unreserved characters, so you don't
need to encode them. However, you might want to include code to handle parameter
names that use reserved characters, for possible future use.

c. Separate the encoded parameter names from their encoded values with the equals sign (=)
(ASCII character 61), even if the parameter value is empty.

d. Separate the name-value pairs with an ampersand (&) (ASCII code 38).

2. Create the string to sign according to the following pseudo-grammar (the "\n" represents an
ASCII newline).

StringToSign = HTTPVerb + "\n" +
ValueOfHostHeaderInLowercase + "\n" +
HTTPRequestURI + "\n" +
CanonicalizedQueryString <from the preceding step>

The HTTPRequestURI component is the HTTP absolute path component of the URI up to, but not
including, the query string. If the HTTPRequestURI is empty, use a forward slash (/).

3. Calculate an RFC 2104-compliant HMAC with the string you just created, your Secret Access Key
as the key, and SHA256 or SHA1 as the hash algorithm.
For more information, go to http://www.ietf.org/rfc/rfc2104.txt.

4. Convert the resulting value to base64.

5. Use the resulting value as the value of the Signature request parameter.

http://www.ietf.org/rfc/rfc2104.txt

Amazon FPS Advanced Quick Start Developer Guide
Verifying the ReturnURL and IPN Notifications

API Version 2008-09-17
43

Important

The final signature you send in the request must be URL encoded as specified in RFC 3986
(for more information, go to http://www.ietf.org/rfc/rfc3986.txt). If your toolkit URL encodes
your final request, then it handles the required URL encoding of the signature. If your toolkit
doesn't URL encode the final request, then make sure to URL encode the signature before you
include it in the request. Most importantly, make sure the signature is URL encoded only once.
A common mistake is to URL encode it manually during signature formation, and then again
when the toolkit URL encodes the entire request.

About Signature Version 2

For inbound requests, signature version 2 signing uses the entire request uri as the basis for the
signature, and encryption is based on the unique security credentials for your account.

For outbound notifications, signature version 2 provides two ways to verify that return URL responses
and IPN notifications originate from Amazon Payments:

• A new Amazon FPS action, VerifySignature, enables you to securely check a response
using a server-side call. This is the simplest and recommended way. For more information, see
VerifySignature.

Note

You don't have to sign the VerifySignature request, nor do we require you to have a
developer account to invoke VerifySignature.

• Both the return URL and IPN responses also include a certificateUrl parameter, which contains
a URL to a signing certificate. If you prefer to validate the signature on the client side, you can use
the certificate for validating the response. (The certificate is cached on your server and automatically
updated when needed.) For more information, see Client-side Signature Validation (p. 44).

For inbound requests, signature version 2 supports AWS access key rotation, further enhancing the
security of your button content. For more information, see Access Key Rotation (p. 45).

Important

The previous method for signing will expire on 01 November, 2010. At that time, any signing
you do with your access keys must be done using the new method.

Verifying the ReturnURL and IPN Notifications
Amazon Simple Pay sends you outbound notifications for both the ReturnURL and IPN notification.
For the ReturnURL, it is in the form of GET data, and for IPN notification, it is POST data. When
you handle these notifications, we recommend you validate the signature to ensure the notification
originated from Amazon Payments. The signature version 2 security has two methods for you to verify
the signature of the response:

• Server-side signature verification using the VerifySignature (p. 93) FPS Action.
This is the method we recommend for Amazon FPS . To use it, modify your returnUrl and ipnUrl
pages to parse the notification. From those components, you assemble the relevant parameters for
VerifySignature. The result of the call from is either Success, meaning the response is valid, or
Failure, indicating the response is suspect.

For more information on VerifySignature, see VerifySignature (p. 93). In addition, you can
use the validation samples to assist creating your own validation pages. For more information, see
Return URL Validation Sample.

http://www.ietf.org/rfc/rfc3986.txt

Amazon FPS Advanced Quick Start Developer Guide
Verifying the ReturnURL and IPN Notifications

API Version 2008-09-17
44

• Client-side signature verification using PKI.
This method is intended for applications which need to process a greater number of transactions.
The notifications sent to both the returnUrl and ipnUrl endpoints contain the certificateUrl
parameter. The certificateUrl value is a URL which specifies the location of the certificate used
for signing the response. (For optimum performance, you can download the certificate and cache it
locally. It only needs to be updated on its annual expiration date).

You then use the certificate to validate the request using PKI. For more information, see Client-side
Signature Validation (p. 44).

Client-side Signature Validation

Important

If you are using signature version 1 to validate the notifications from Amazon Payments, we
strongly recommend you convert to signature version 2. For more information, see Appendix:
Moving your Application to Signature Version 2 (p. 139)

The following process describes how to verify the legitimacy of an outbound notification from Amazon
Payments. You use the same process for Return URL and IPN posts..)

Validating the signature in the Return URL and IPN notifications

1 Decode the signature in the notification.

2 Decode and read the signatureVersion and signatureMethod parameters from
the notification. The value of signatureVersion value should be 2, and the value for
signatureMethod value should be RSA-SHA1 (format is Algorithm-Digest).

3 Decode and read the certificateUrl parameter from the notification.

4 Verify that the certificate corresponding to the URL is downloaded and cached.

5 If the certificate is not cached, download and cache it.

6 Follow steps 1 and 2 as specified in Working with Signatures (p. 41) to create the string-
to-sign. Include all the parameters in the notification except for the signature parameter.

7 Calculate the signature using the PKI based cryptography, using the string-to-sign you
created in step 6 and the cached certificate in step 5..

Note

Because the signature in outbound notification is calculated with the Amazon
Payments private key using PKI, you need the values for the following parameters:
string-to-sign, signature, certificate and signatureMethod). Each sample
library uses these values in different formats. For information on using the sample
library in the language of your choice see Getting the Samples (p. 135)

8 Compare the calculated signature with the signature in the original notification.

9 If the signatures match, process the notification.
Otherwise, discard the notification.

Note

If you didn't choose the Enable Signature V2 option from the Developer and Seller Preferences
page, your responses will be signed using signature version 1. To verify signature version

https://payments.amazon.com/sdui/sdui/managecobranding

Amazon FPS Advanced Quick Start Developer Guide
Access Key Rotation

API Version 2008-09-17
45

1 signatures, you need to use the verification process described in Appendix: Verifying
Responses Signed Using Signature Version 1 (p. 137). For information on selecting
signature version 2, see About Signature Version 2 (p. 43)

Access Key Rotation
If you decide that it is necessary to change your access keys, the security credentials page (available
from your account page at the Amazon Web Services web site at http://aws.amazon.com) enables you
to create a second set, and allows you to activate and deactivate the sets independently, as shown in
the figure.

With both sets active, you can propagate the new set to your applications over time, maintaining
the high security that signing provides. Since both sets are valid, you don't have to take your entire
application down to incorporate the new keys. When the distribution is complete you can deactivate the
old set.

Note

You can have two sets of keys only. Both, one, or neither of them can be active.

Soft Descriptor Customization
Credit card companies allow a descriptive string on credit card statements that identify a purchase. For
example, AMZN PMTS appears on credit card statements to identify purchases made using Amazon
FPS. Typically, most banks support a 19 character string. To give you more flexibility to identify
yourself on credit card statements, Soft Descriptor Customization lets you modify information sent to
the payment processor. You can use Soft Descriptor Customization in the following ways.

• Create a static string in your account settings

Note

In marketplace applications the soft descriptor of the recipient's account settings are used
when the soft descriptor type is Static.

• Create a dynamic string when you process the payment

• Specify whether the recipient or caller customer service number is sent to the payment processor

How the Soft Descriptor Works

Option 1 You specify the soft descriptor string in your account level settings. Amazon FPS passes
AMZ* plus the soft descriptor (in upper case) to the payment processor. For example,
AMZ*DIGITALDOWNLOAD appears on the statement.

Option 2 You supply a sender description when processing the payment and specify Dynamic
as the soft descriptor type. Amazon FPS passes a 19 character string, which consists
of AMZ* plus the first 15 characters of the sender description (in upper case) to the
payment processor. For example, if AMAZON FPS GIFT is the sender description then
AMZ*AMAZON FPS GIFT appears on the statement.

http://aws.amazon.com

Amazon FPS Advanced Quick Start Developer Guide
SoftDescriptorType

API Version 2008-09-17
46

Option 3
(default)

The default Amazon FPS descriptor AMZN PMTS appears on the statement if you do not
specify a soft descriptor string in your account level settings or a sender description in
your call to Amazon FPS.

SoftDescriptorType
Use the SoftDescriptorType in the DescriptorPolicy (p. 102) to specify static or dynamic soft
descriptors. When you make a call to Pay (p. 74), FPS checks the SoftDescriptorType
parameter in the DescriptorPolicy (p. 102). If you specify the parameter as Static, or do not specify a
type, the soft descriptor in your account level setting is sent to the payment processor.

Note

In marketplace applications, the soft descriptor of the recipient's account settings are used
when the soft descriptor type is Static.

If you need a dynamic soft descriptor string, you must specify a sender description in the Pay (p.
74) action. You must also specify Dynamic as the soft descriptor type. Following the soft descriptor
standard, the FPS soft descriptor consists of 19 characters beginning with the string AMZ*, followed by
the first 15 characters of the sender description. You can use numbers, letters, or spaces in your soft
descriptor as long as the descriptor doesn't begin or end with a space.

Special characters are not allowed in the soft descriptor string. Amazon FPS returns an error if you
don't include a sender description for the dynamic string.

To create a static soft descriptor

1. Log in to your Amazon Payments account at http://payments.amazon.com.

2. Point to Edit My Account Settings.

3. Click Change My Business Settings.

4. Enter the soft descriptor in the text box.

You can use numbers, letters, or spaces in your soft descriptor as long as the descriptor doesn't begin
or end with a space. Special characters are not allowed in the soft descriptor string.

CSOwner
In scenarios like marketplace applications, the caller and recipient are different parties. You can specify
the customer service number that a customer sees on his credit card statement with the CSOwner
parameter. When you make a call to the Pay (p. 74) action. FPS checks the CSOwner parameter.
If you specify the value of the parameter as Recipient, or do not specify any value, the recipient's
customer service number is determined from account information and sent to the payment processor.
If you specify Caller as the value of the CSOwner parameter, the caller's customer service number is
determined from account information and sent to the payment processor.

Note

The soft descriptor and owner are passed to a Reserve (p. 85) operation are passed to the
corresponding Settle (p. 90) operation.

The original soft descriptor and owner passed to the Pay (p. 74) or Reserve (p. 85)
operations are passed to a corresponding Refund (p. 81) operation.

http://payments.amazon.com

Amazon FPS Advanced Quick Start Developer Guide
Setting Up Instant Payment Notification

API Version 2008-09-17
47

Setting Up Instant Payment Notification
When the sender uses ABT (Amazon Payments Balance Transfer) to pay for a purchase, the purchase
is approved or denied synchronously, which means that processing stops until the Pay call returns,
and this happens relatively quickly. When the sender uses ACH (bank account withdrawal) or a credit
card, the purchase is asynchronous, which means that it can take much longer to succeed or fail.
Because you cannot know when asynchronous transactions will complete, Amazon FPS has created a
notification service called Instant Payment Notification (IPN) that uses HTTP POST to notify you when
the following asynchronous transactions occur:

• A payment or reserve succeeds

• A payment or reserve fails

• A payment or reserve goes into a pending state

• A reserved payment is settled successfully

• A reserved payment is not settled successfully

• A refund succeeds

• A refund fails

• A refund goes into a pending state

• A payment is canceled

• A reserve is canceled

• A token is canceled successfully

• A refund succeeds

• A refund fails

• A token is canceled successfully

Note

IPN must be configured in order to operate. If you do not configure IPN, only email notifications
will be sent.

IPN is a simple way to process updates from Amazon FPS and has the following benefits compared to
other notification mechanisms:

• Easy implementation (compared to polling for updates)

• Robust delivery mechanism

• Robust to changes in message parameters

• Simple message structure

Tip

If you have signed up for IPN and do not receive notifications, verify the URL you provided in
your account settings. IPN will try for a day to deliver a notification before it gives up.

Setting Up IPN Preferences
To receive IPN notifications, you need to set up a web service that receives IPN notifications from
Amazon FPS and register the URL of that web service in your Amazon FPS developer account on
http://payments.amazon.com.

http://payments.amazon.com

Amazon FPS Advanced Quick Start Developer Guide
Receiving IPN Notifications

API Version 2008-09-17
48

If you decide to use IPN, you must sign in to your Amazon Payments account, and use the following
procedure to enter the URL for your web server. Once you sign up for IPN, notifications are sent to
your server.

To configure your developer account so that you receive IPN messages

1. Log in to the Amazon Payments web site at http://payments.amazon.com.

2. Click Edit My Account Settings.
The Edit My Account Settings page displays.

3. Click Manage Developer and Seller Preferences.
The Manage Developer and Seller Preferences page displays.

4. Enter the URL for your IPN server in the URL for Instant Payment Notification text box.

Receiving IPN Notifications
Amazon FPS uses HTTP POST to send IPN notifications to the URL registered in your Amazon
Payments developer account. Use the following process to create a script that handles IPN
notifications.

Tip

If your IPN receiving service is down for some time, it is possible that our retry mechanism
will deliver the IPNs out of order. If you receive an IPN for TransactionStatus (IPN) (p. 100),
as SUCCESS or FAILURE or RESERVED, then after that time ignore any IPN that gives the
PENDING status for the transaction.

Setup Process for a Script to Receive IPN

1 Set up your web server to receive the HTTP POST IPN notifications on one of the following
ports: 8080, 80 [http], 8443, or 443 [https].

2 Write a program that parses the IPN elements (for a list of the elements, see Common IPN
Response Elements (p. 49)).

3 Write your program so that it verifies the signature value sent in the IPN to make sure
Amazon FPS sent the IPN. For more information, see Verifying the ReturnURL and IPN
Notifications (p. 43), below.

4 Write your program to use the returned elements to notify you of the IPN-related transactions.

Important

The signature parameter won't be sent if you are using the SOAP protocol to call FPS API
actions. We recommend that you set up an HTTPS endpoint using a standard Certificate
Authority to receive IPN if you are using SOAP. Amazon FPS currently supports all the SUN
JDK 1.5 CAs (cacerts file). In addition, we also support the standard CAs listed on http://-
www.mozilla.org/-projects/-security/-certs/-included/.

How To Verify the IPN Signature
You must ensure that the IPN indeed came from Amazon Payments. You can do this by verifying the
value of the signature parameter contained in the response. IPN responses contain the components
you need to validate with either client-side signature verification or client-side signature verification. For
more information, see Verifying the ReturnURL and IPN Notifications (p. 43).

http://payments.amazon.com
http://www.mozilla.org/projects/security/certs/included/
http://www.mozilla.org/projects/security/certs/included/

Amazon FPS Advanced Quick Start Developer Guide
Receiving IPN Notifications

API Version 2008-09-17
49

You can use the IPNAndRuturnURLValidation sample to assist creating your own IPN validation page.
For more information, see Understanding the IPNAndReturnURLValidation Sample (p. 133)

Common IPN Response Elements

These response elements are common to all button transactions.

Name Description

addressFullName Full name of the buyer/sender.
Type: String

addressLine1 Sender's address (first line). For IPN, this element is returned
only if the value has been updated with Amazon.
Type: String

addressLine2 Sender's address (second line). For IPN, this element is
returned only if the value has been updated with Amazon.
Type: String

addressState Sender's state. For IPN, this element is returned only if the
value has been updated with Amazon.
Type: String

addressZip Sender's post code. For IPN, this element is returned only if
the value has been updated with Amazon.
Type: String

addressCountry Sender's country. For IPN, this element is returned only if the
value has been updated with Amazon.
Type: String

addressPhone Sender's phone number. For IPN, this element is returned only
if the value has been updated with Amazon.
Type: String

buyerEmail Sender's e-mail address.

Note

The buyerEmail element is not returned when
the recipient is not the caller (i.e., marketplace
transactions).

Type: String

buyerName Sender's name.
Type: String

customData Data passed by the customer in the Pay call is returned in this
element.
Type: String

customerEmail Customer's e-mail address.
Type: String

customerName Buyer/Sender Full Name.
Type: String

Amazon FPS Advanced Quick Start Developer Guide
Receiving IPN Notifications

API Version 2008-09-17
50

Name Description

dateInstalled If the notificationType element (below) is
TokenCancellation, this element contains the date the
token was installed.
Type: String

integratorId If present, this is the id of the solution provider assisting with
the transaction.
Type: String

isShippingAddressProvided If the IPN results include address updates, this element
contains TRUE. Otherwise this element is not present in the
response.
Type: String

operation The payment operation for this transaction.
Type: String

notificationType Notification type may be either TokenCancellation or
TransactionStatus
Type: String

paymentMethod The payment method used by the sender.
For more information, see the IPN values in
PaymentMethod (p. 98).

Type: String

paymentReason Reason for payment.
Type: String

recipientEmail Recipient's e-mail address.
Type: String

recipientName Recipient's name.
Type: String

signature The encoded string the caller uses to verify the IPN. Amazon
Payments calculates the signature using the elements in the
returnURL. The merchant must have manually signed the
request. For more information, see Handling the Receipt of
IPN Notifications (p. 48). We recommend that you always
verify the signature using the method in How to Verify the IPN
Signature (p. 48).
Type: String

status Shorthand code that specifies the status of the transaction..
For more information, see TransactionStatus (IPN) (p. 100)

Type: String

tokenId If notificationType is TokenCancellation, this element
contains the ID of the cancelled token.
Type: String

tokenType If notificationType is TokenCancellation, this element
contains the type of the cancelled token.
Type: String

Amazon FPS Advanced Quick Start Developer Guide
Receiving IPN Notifications

API Version 2008-09-17
51

Name Description

transactionAmount Specifies the amount payable in this transaction; for example,
USD 10.00.
Type: String

transactionDate The date when this transaction occurred, specified in seconds
since the start of the epoch.
Type: Long

transactionId Unique ID generated by Amazon FPS for this transaction.
This element is returned if the transaction was accepted by
Amazon FPS.
Type: String

IPN Responses for Marketplace Transactions

The following IPN response elements are returned for marketplace transactions.

IPN Marketplace Transaction Elements

Name Description

buyerName Sender's name.
Type: String

operation The payment operation for this transaction.
Type: String

paymentMethod The payment method used by the sender.
For more information, see the IPN values in PaymentMethod (p. 98).

Type: String

paymentReason Reason for payment.
Type: String

recipientEmail Recipient's e-mail address.
Type: String

recipientName Recipient's name.
Type: String

referenceId If you specified a referenceId in the button creation form, Amazon
Payments returns the referenceId to you.
Type: String

signature The encoded string the caller uses to verify the IPN. Amazon Payments
calculates the signature using the elements in the returnURL. The
merchant must have manually signed the request. For more information,
see Handling the Receipt of IPN Notifications (p. 48). We recommend
that you always verify the signature using the method in How to Verify
the IPN Signature (p. 48).
Type: String

status Shorthand code that specifies the status of the transaction.
For more information, see TransactionStatus (IPN) (p. 100)

Type: String

Amazon FPS Advanced Quick Start Developer Guide
Receiving IPN Notifications

API Version 2008-09-17
52

Name Description

transactionAmount Specifies the amount payable in this transaction; for example, USD
10.00. This element is not being returned in the current version.
Type: Double

transactionDate The date when this transaction occurred, specified in seconds since the
beginning of the epoch.
Type: Long

transactionId Unique ID generated by Amazon FPS for this transaction. This element
is returned if the transaction was accepted by Amazon FPS.
Type: String

Amazon FPS Advanced Quick Start Developer Guide
Common Request Parameters

API Version 2008-09-17
53

Amazon FPS API Reference

Topics

• Common Request Parameters (p. 53)

• Common Response Elements (p. 54)

• Error Codes (p. 55)

• Actions (p. 62)

• Data Types (p. 96)

This section provides reference material for the Amazon FPS API.

The current version of the Amazon FPS API is 2008-09-17.

The WSDL is located at https://fps.amazonaws.com/doc/2008-09-17/AmazonFPS.wsdl.

The schema is located at https://fps.amazonaws.com/doc/2008-09-17/AmazonFPS.xsd.

Note

To use the Amazon FPS API, you must have an Amazon FPS developer account. For
information about getting the account, go to Amazon Flexible Payments Service Getting
Started Guide.

Common Request Parameters
Each action in the API has its own specific set of parameters, but there is also a set of parameters that
all actions use. This section describes those input parameters.

You only need to add these parameters in REST requests. SOAP requests include them by default.

The following table describes parameters that can be used in all Amazon FPS requests.

https://fps.amazonaws.com/doc/2008-09-17/AmazonFPS.wsdl
https://fps.amazonaws.com/doc/2008-09-17/AmazonFPS.xsd
http://docs.amazonwebservices.com/AmazonFPS/latest/FPSGettingStartedGuide/
http://docs.amazonwebservices.com/AmazonFPS/latest/FPSGettingStartedGuide/

Amazon FPS Advanced Quick Start Developer Guide
Common Response Elements

API Version 2008-09-17
54

Parameter Description Required

Action The API operation, for example, Settle or Refund.
Type: String:

Default: None

Constraint: Must be a valid operation such as Cancel,
Refund, and so on.

Yes

AWSAccessKeyId A string, distributed by Amazon FPS when you sign up to be
a developer, that uniquely identifies the caller.
Type: String

Default: None

Yes

Signature A value calculated using the request parameters and a
SHA256 (preferred) or SHA1 HMAC encryption algorithm.
Type: String

Default: None

Yes

SignatureVersion A value that specifies the Signature format.
Type: Integer

Default: None

Valid Values: 1 | 2

Important

If you are currently using signature version 1 and
are ready to migrate to signature version 2, please
see Appendix: Moving your Application to Signature
Version 2 (p. 139).

Yes

SignatureMethod A value that specifies the signing method.
Type: String

Default: None

Valid Values: HmacSHA256 (preferred) and HmacSHA1.

Yes

Timestamp A date-time value that marks the day and time the request
was sent. Requests expire after a certain length of time
to prevent malicious users from capturing requests and
resubmitting them at a later time.
Type: dateTime, for example, 2008-09-18T13:00:01Z

Default: None

Yes

Version The version number of the WSDL to use in processing the
request. Version numbers are dates, such as 2008-09-17.
For a list of version numbers, go to the Amazon Resource
Center at http://aws.amazon.com/resources.
Type: String

Default: None

Yes

Common Response Elements
Each action in the API has its own set of response elements it uses. There are, however, a set of
response elements that all actions use. The following table describes those common elements.

http://aws.amazon.com/resources

Amazon FPS Advanced Quick Start Developer Guide
Error Codes

API Version 2008-09-17
55

Element Description

ResponseMetadata Container element.

RequestId Amazon FPS returns a RequestId element for every API call accepted
for processing. The request ID is a reference to your API request that
Amazon FPS can use to troubleshoot any issues related to the request. We
recommend you store the request ID value for future reference. Because
responses and requests can return asynchronously, you can use the request
ID to sync responses with requests.
Type: String

Error Codes
Error Description

AccessFailure Account cannot be accessed.

You can display the following message to your
customers:

Your account cannot be accessed.
Retriable: Yes

AccountClosed Account is not active.

You can display the following message to your
customers: Your account is closed.
Retriable: Yes

AccountLimitsExceeded The spending or the receiving limit on the account is
exceeded.

You can display the following message to
your customers: You have exceeded your
spending or receiving limits. Please visit http://
payments.amazon.com to update your payment limits.
Retriable: Yes

AmountOutOfRange The transaction amount is more than the allowed
range.

Ensure that you pass an amount within the allowed
range. The transaction amount in a Pay operation using
credit card or bank account must be greater than $0.01.
Retriable: No

AuthFailure AWS was not able to validate the provided access
credentials.

Please make sure that your AWS developer account is
signed up for FPS.
Retriable: Yes

Amazon FPS Advanced Quick Start Developer Guide
Error Codes

API Version 2008-09-17
56

Error Description

ConcurrentModification A retriable error can happen when two processes try to
modify the same data at the same time.

The developer should retry the request if this error is
encountered.
Retriable: Yes

DuplicateRequest A different request associated with this caller reference
already exists.

You have used the same caller reference in an earlier
request. Ensure that you use unique caller references
for every new request.

Even if your earlier request resulted in an error, you
should still use a unique caller reference with every
request and avoid this error.
Retriable: No

InactiveInstrument Payment instrument is inactive.

The payment instrument is inactive, for example, a
credit card has expired.
Retriable: No

IncompatibleTokens The transaction could not be completed because the
tokens have incompatible payment instructions.
If any assertion in one of the payment instructions fails,
this error is displayed. As such, it may be caused by a
number of reasons, for example:

• One or more tokens has expired.

• The recipient specified in the token is different from
the actual recipient in the transaction.

• There is violation on the amount restriction.

• This token cannot be used with your application as
another application has installed it.

InstrumentAccessDenied The external calling application is not the recipient for
this postpaid or prepaid instrument. The caller should
be the liability holder.
You are trying to access an instrument that you do not
own.

InstrumentExpired The prepaid or the postpaid instrument has expired.
You must ask your customers to set up a new prepaid
or postpaid agreement

Amazon FPS Advanced Quick Start Developer Guide
Error Codes

API Version 2008-09-17
57

Error Description

InsufficientBalance The sender, caller, or recipient’s account balance has
insufficient funds to complete the transaction.

You must ask your customers to fund their accounts.
You can then retry this request.

Funding an account can take up to three to four
business days using a bank account transfer. This error
is also displayed if the party paying the FPS fees does
not have a sufficient account balance.
Retriable: Yes

InternalError A retriable error that happens due to some transient
problem in the system.

The caller should retry the API call if this error is
encountered.
Retriable: Yes

InvalidAccountState_Caller The developer account cannot participate in the
transaction.

Your account is not active. Contact your AWS
Representative for more information.
Retriable: Yes

InvalidAccountState_Recipient Recipient account cannot participate in the transaction.

You can display the following message to your
customer (sender): Your Amazon Payments account is
not active. Please visit http:// payments.amazon.com
for more details.
Retriable: Yes

InvalidAccountState_Sender Sender account cannot participate in the transaction.

You can display the following message to your
customer (sender): Your Amazon Payments account is
not active. Please visit http://payments.amazon.com for
more details.
Retriable: Yes

InvalidCallerReference The Caller Reference does not have a token
associated with it.
Use the caller reference value that was passed to the
InstallPaymentInstruction operation or the Amazon FPS
Co-Branded UI pipeline.

InvalidClientTokenId The AWS Access Key Id you provided does not exist in
our records.

Please check that the AWS Access Key Id used to
make the request is valid.
Retriable: No

Amazon FPS Advanced Quick Start Developer Guide
Error Codes

API Version 2008-09-17
58

Error Description

InvalidDateRange The end date specified is before the start date or the
start date is in the future.
Specify the correct end date.

InvalidParams One or more parameters in the request is invalid.

For more information, see the parameter descriptions
for the action in the API Reference. Parameters are
case sensitive.
Retriable: No

InvalidPaymentInstrument The payment method used in the transaction is invalid.
Specify a valid payment method

InvalidPaymentMethod • For InstallPaymentInstruction, payment method
specified in the GK construct is invalid.
Specify the correct payment method.

• For FundPrepaid and SettleDebt, the payment
method specified in the token is invalid
Use a token with payment method specified as any
of ABT, ACH, and CC. For Quick accounts, only CC
is acceptable.

InvalidRecipientForCCTransaction This account cannot receive credit card payments.
You can display the following message to your
customers: You cannot receive credit card payment.
Please visit http://payments.amazon.com to update
your account to receive credit card payments."

InvalidSenderRoleFor
 AccountType

This token cannot be used for this operation.

Ensure that the account used in this transaction is
the same account used in the original transaction. In
a refund transaction, the recipient making the refund
payment must the be same recipient as in the original
transaction.
Retriable: No

InvalidTokenId You did not install the token that you are trying to
cancel.

You do not have permission to cancel this token. You
can cancel only the tokens that you own.

Retriable: No

InvalidTokenId_Recipient The recipient token specified is either invalid or
canceled.

You must install a new token if you are the recipient.
If you are not the recipient, get a new payment
authorization from the recipient.

Retriable: No

Amazon FPS Advanced Quick Start Developer Guide
Error Codes

API Version 2008-09-17
59

Error Description

InvalidTokenId_Sender The send token specified is either invalid or canceled or
the token is not active.

You must ask your customer to set up a new payment
authorization.

Retriable: No

InvalidTokenType An invalid operation was performed on the token, for
example, getting the token usage information on a
single use token.

Retriable: No

InvalidTransactionId The specified transaction could not be found or the
caller did not execute the transaction or this is not a
Pay or Reserve call.

Specify the correct the transaction ID.

Retriable: No

InvalidTransactionState The transaction is not complete, or it has temporarily
failed.

Specify a duration of more than one hour.
Retriable: No

NotMarketplaceApp This is not an marketplace application or the caller
does not match either the sender or the recipient.

Please check that you are specifying the correct
tokens.
Retriable: Yes

OriginalTransactionFailed The original transaction has failed.

You cannot refund a transaction that has originally
failed.
Retriable: No

OriginalTransactionIncomplete The original transaction is still in progress.

Retry after the original transaction has completed.
Retriable: Yes

PaymentInstrumentNotCC The payment method specified in the transaction is not
a credit card. You can only use a credit card for this
transaction.
Use only a credit card for this transaction.

PaymentMethodNotDefined An attempt has been made to fund the prepaid
instrument at a level greater than its recharge limit.
Retriable: Yes, after adjusting the amount of funds to a
valid level.

PrepaidFundingLimitExceeded Payment method is not defined in the transaction.
Specify the payment method in the sender token.

Amazon FPS Advanced Quick Start Developer Guide
Error Codes

API Version 2008-09-17
60

Error Description

RefundAmountExceeded The refund amount is more than the refundable
amount.

You are not allowed to refund more than the original
transaction amount.
Retriable: No

SameSenderAndRecipient The sender and receiver are identical, which is not
allowed.
Retriable: No

SameTokenIdUsedMultipleTimes This token is already used in earlier transactions.
The tokens used in a transaction should be unique.

SenderNotOriginalRecipient The sender in the refund transaction is not the recipient
of the original transaction.

The token you passed as the refund sender token does
not belong to the recipient of the original transaction.
Pass the correct refund sender token.
Retriable: No

SettleAmountGreaterThanDebt The amount being settled or written off is greater than
the current debt.

You cannot settle an amount greater than what is
owed.
Retriable: No

SettleAmountGreaterThan
ReserveAmount

The amount being settled is greater than the reserved
amount.

You cannot settle an amount greater than what is
reserved.
Retriable: No

SignatureDoesNotMatch The request signature calculated by Amazon does not
match the signature you provided.

Check your AWS Secret Access Key and signing
method.
For more information, see "Working with Signatures" in
the Amazon Flexible Payments Service Getting Started
Guide.

Retriable: No

TokenAccessDenied Permission is denied to cancel the token.

You are not allowed to cancel this token.
Retriable: No

http://docs.amazonwebservices.com/AmazonFPS/latest/FPSGettingStartedGuide/
http://docs.amazonwebservices.com/AmazonFPS/latest/FPSGettingStartedGuide/

Amazon FPS Advanced Quick Start Developer Guide
Error Codes

API Version 2008-09-17
61

Error Description

TokenNotActive_Recipient The recipient token is canceled.

If you are the recipient, set up a new recipient token
using the InstallPaymentInstruction operation
or direct your customers to the Recipient Token
Installation Pipeline to set up recipient token.
Retriable: No

TokenNotActive_Sender The sender token is canceled.

You must ask your customer to set up a new payment
authorization because the current authorization is not
active.
Retriable: No

TokenUsageError The token usage limit is exceeded.
If the usage has exceeded for this period, then wait for
the next period before making another transaction. If
the usage has exceeded for the entire authorization
period, then ask your customer to set up a new
payment authorization.

TransactionDenied This transaction is not allowed.

You are not allowed to do this transaction. Check your
credentials.
Retriable: No

TransactionFullyRefunded
 Already

This transaction has already been completely refunded.

You are not allowed to refund more than the original
transaction amount.
Retriable: No

TransactionTypeNotRefundable You cannot refund this transaction.

Refund is allowed only on the Pay operation.
Retriable: No

UnverifiedAccount_Recipient The recipient's account must have a verified bank
account or a credit card before this transaction can be
initiated.

You can display the following message to your
customer (recipient): Your Amazon Payments account
is not active. Please visit http://payments.amazon.com
for more details.
Retriable: No

Amazon FPS Advanced Quick Start Developer Guide
Actions

API Version 2008-09-17
62

Error Description

UnverifiedAccount_Sender The sender's account must have a verified U.S.
credit card or a verified U.S bank account before this
transaction can be initiated.

You can display the following message to your
customers: Please add a U.S. credit card or U.S. bank
account and verify your bank account before making
this payment.
Retriable: No

UnverifiedBankAccount A verified bank account should be used for this
transaction.

Visit the http://payments.amazon.com web site to verify
your bank account.
Retriable: No

UnverifiedEmailAddress_Caller The caller account must have a verified e-mail address.

You cannot make a web service API call without
verifying your e-mail address. Go to http://
payments.amazon.com web site and make payments.
Retriable: No

UnverifiedEmailAddress_
 Recipient

The recipient account must have a verified e-mail
address for receiving payments.

You can display the following message to your
customers: You cannot receive payments.
Please verify your e-mail address. Go to http://
payments.amazon.com to verify your account and
receive payments.
Retriable: No

UnverifiedEmailAddress_Sender The sender account must have a verified e-mail
address for this payment

You can display the following message to your
customers: You cannot receive payments.
Please verify your e-mail address. Go to http://
payments.amazon.com to verify your account and
receive payments.
Retriable: No

Actions
Topics

• Cancel (p. 63)

• CancelToken (p. 65)

• GetTokenByCaller (p. 68)

• GetTransactionStatus (p. 71)

• Pay (p. 74)

• Refund (p. 81)

Amazon FPS Advanced Quick Start Developer Guide
Cancel

API Version 2008-09-17
63

• Reserve (p. 85)

• Settle (p. 90)

• VerifySignature (p. 93)

This section describes the actions available with Amazon FPS Advanced Quick Start.

Cancel

Description
The Cancel action cancels a reserved or pendingtransaction. Once the transaction is canceled,
you can't then settle it. You also can't use Cancel on a completed transaction. After a transaction is
completed, you can do a refund if you want to reverse the order.

If the sender's credit card was in a reserved state, it is not part of this action to make sure the reserved
status is removed. card.

Request Parameters

Parameter Description Required

Description Describes the reason for cancellation.
Type: String

Default: None

No

TransactionId Specifies the transaction that needs to be canceled. This
ID should have been returned by Amazon in a prior Pay
or Reserve call.
Type: String

Default: None

Constraint: Max size = 35 characters

Yes

For REST requests, you must also include parameters that are common to all requests. These
parameters are included by default in SOAP requests. For more information, see Common Request
Parameters (p. 53).

Response Elements

Element Description

TransactionId The ID of the completed transaction. It is the same as the
TransactionID provided in the request.
Type: String

TransactionStatus The status of the cancellation request.
Type: TransactionStatus (p. 100)

Responses also include elements common to all responses. For more information, see Common
Response Elements (p. 54).

Errors
This action can return the following errors:

Amazon FPS Advanced Quick Start Developer Guide
Cancel

API Version 2008-09-17
64

• AccessFailure (p.)

• AccountClosed (p. 55)

• AuthFailure (p. 55)

• ConcurrentModification (p. 56)

• InternalError (p. 57)

• InvalidClientTokenId (p. 57)

• InvalidParams (p. 58)

• InvalidTransactionState (p. 59)

• SignatureDoesNotMatch (p. 60)

Examples

Sample REST Request

https://fps.sandbox.amazonaws.com?
Action=Cancel
&AWSAccessKeyId=AKIAIIFXJCFIHITREP4Q
&Description=MyWish
&Signature=yOedrTuiMoMrKt8SwugDDnfd0nydyoX9uPq1H1SUCl4%3D
&SignatureMethod=HmacSHA256
&SignatureVersion=2
&Timestamp=2009-10-06T09%3A14%3A58.796Z
&TransactionId=14GKI1SKSR1V6DO1RCCB32RBR6KLODMGQUD
&Version=2008-09-17

Sample SOAP Request

https://fps.amazonaws.com/?
Action=Cancel
&AWSAccessKeyId=0656Example83G2
&SignatureVersion=2
&SignatureMethod=HmacSHA256
&Timestamp=2008-08-06T13%3A00%3A01Z
&TransactionId=254656Example83987
&Version=2008-09-17
&Signature=[URL-encoded signature value]

Sample Response to REST Request

<CancelResponse xmlns="http://fps.amazonaws.com/doc/2008-09-17/">
 <CancelResult>
 <TransactionId>14GKI1SKSR1V6DO1RCCB32RBR6KLODMGQUD</TransactionId>
 <TransactionStatus>Cancelled</TransactionStatus>
 </CancelResult>
 <ResponseMetadata>
 <RequestId>6fe4b755-a328-419d-8967-e1d3b43779fc:0</RequestId>
 </ResponseMetadata>
</CancelResponse>

Sample Response to SOAP Request

<CancelResponse
 xmlns="http://fps.amazonaws.com/doc/2008-09-17/">
 <CancelResult>

Amazon FPS Advanced Quick Start Developer Guide
CancelToken

API Version 2008-09-17
65

 <TransactionId>
 13N91G4R7478CJLIGROQH2VQJSM
 </TransactionId>
 <TransactionStatus>
 Success
 </TransactionStatus>
 </CancelResult>
</CancelResponse>

Sample IPN Success Notification to Rest Request

transactionId: 14GKI1SKSR1V6DO1RCCB32RBR6KLODMGQUD
statusMessage: The transaction was explicitly cancelled by the caller.
transactionDate: 1254820475
signatureVersion: 2
signatureMethod: RSA-SHA1
buyerEmail: new_premium@amazon.com
notificationType: TransactionStatus
callerReference: CallerReference08
transactionAmount: USD 1.00
transactionStatus: CANCELLED
operation: RESERVE
recipientEmail: test-caller@amazon.com
buyerName: Test Business
signature: jWDbBxtEhw2rQEyMeEXcpWCgoZvm8rjLEnmg38oYoPPR7NbMGgmMA9/5CDjt9Q/
FMktKMbARXnZF
YTzHj3YOKiAM3vxI0zT1oTiSdBx1KBRFzK7mauxxlQv5BYxjFX+R5cl+keCaT2nQyrp3agdrIIp5
MZ5Oy9dBuYMwMFWXoZZor90EidD23hBdZSOOzQRUdzKaKJsF14RQVrKcf5pDCs1HaB6LBKbATaNT
RSxxrviIXy9JcWRQhJwzcc1H6cFOJDpNFSJ03b0Z94eL/XNu9BU7bT4KRWb+OHF0Pn53yf4zyBT9
jTD+94WeujCxwE2rF0j5+brmXp/+Sn/RccDG7w==
recipientName: Test Business
paymentMethod: CC
certificateUrl: https://fps.sandbox.amazonaws.com/certs/090909/PKICert.pem
paymentReason: Reserve
statusCode: Cancelled

CancelToken

Description

The CancelToken action cancels a multi-use or recurring payment token . You can use this action at
any time during the life of the token. After this request completes successfully, Amazon FPS stops all
further payments that use the specified token. There is no way to reactivate a canceled token.

You can only cancel tokens that you created.

Request Parameters

Parameter Description Required

ReasonText Reason for canceling the payment token.
Type: String

Default: None

No

Amazon FPS Advanced Quick Start Developer Guide
CancelToken

API Version 2008-09-17
66

Parameter Description Required

TokenId Specifies the token to cancel. You should have stored this
value when it was returned as part of the response to the Co-
Branded service request.
Type: String

Default: None

Yes

For REST requests, you must also include parameters that are common to all requests. These
parameters are included by default in SOAP requests. For more information, see Common Request
Parameters (p. 53).

Response Elements

The response for this API includes only parameters common to all responses. For more information,
see Common Response Parameters (p. 54).

Errors

This action can return the following errors:

• AccessFailure (p.)

• AccountClosed (p. 55)

• AuthFailure (p. 55)

• ConcurrentModification (p. 56)

• DuplicateRequest (p. 56)

• InternalError (p. 57)

• InvalidClientTokenId (p. 57)

• InvalidParams (p. 58)

• InvalidTokenId (p. 58)

• SignatureDoesNotMatch (p. 60)

• TokenAccessDenied (p. 60)

Examples

Sample REST Request

https://fps.sandbox.amazonaws.com?
Action=CancelToken
&AWSAccessKeyId=AKIAIUQNNI2DNQHBO7RA
&ReasonText=MyWish
&Signature=IZD9O%2FWGqhkzO%2FdLTQ7Tn8KUAmtZXqIEg6gypwkGeWQ%3D
&SignatureMethod=HmacSHA256
&SignatureVersion=2
&Timestamp=2009-10-07T08%3A46%3A37.156Z
&TokenId=D739IT9TMC4FK9KB56PDKJWAQGXDZ3B8X3SJNGVH3UEF5GQ7XAQZMEIL4OGEZKGX
&Version=2008-09-17

Sample SOAP Request

<SOAP-ENV:Body
wsu:id="body" xmlns:wsu=

Amazon FPS Advanced Quick Start Developer Guide
CancelToken

API Version 2008-09-17
67

"http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-
utility-1.0.xsd">
 <ns2:CancelToken xmlns:ns2="http://fps.amazonaws.com/doc/2008-09-17/">
 <ns2:TokenId>
 B1HA64FUMCEB43QAJBTP3TVMJZGFLAX2DJJ3ZPAFHH1VNPGR74I83ZZI4HJ5NGEK
 </ns2:TokenId>
 <ns2:ReasonText>Buyer left the system.</ns2:ReasonText>
 </ns2:CancelToken>
 </SOAP-ENV:Body>
</SOAP-ENV:Envelope>

Sample Response to REST Request

<CancelTokenResponse xmlns="http://fps.amazonaws.com/doc/2008-09-17/">
 <ResponseMetadata>
 <RequestId>a10e0ad6-148f-4afe-8bcd-e80a2680793d:0</RequestId>
 </ResponseMetadata>
</CancelTokenResponse>

Sample Response to SOAP Request

<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/
envelope/">
 <SOAP-ENV:Header>
 <wsa:RelatesTo xmlns:wsa="http://www.w3.org/2005/08/addressing">
 MESSAGE123
 </wsa:RelatesTo>
 <wsa:To xmlns:wsa="http://www.w3.org/2005/08/addressing">
 http://www.w3.org/2005/08/addressing/anonymous
 </wsa:To>
 <wsa:Action xmlns:wsa="http://www.w3.org/2005/08/addressing">
 CancelToken:Response
 </wsa:Action>
 <wsa:MessageID xmlns:wsa="http://www.w3.org/2005/08/addressing">
 urn:uuid:5fb6a949-a481-4f6f-bdfb-bcdde0daea6b
 </wsa:MessageID>
 </SOAP-ENV:Header>
 <SOAP-ENV:Body>
 <CancelTokenResponse xmlns="http://fps.amazonaws.com/doc/2008-09-17/">
 <ResponseMetadata>
 <RequestId>5fb6a949-a481-4f6f-bdfb-bcdde0daea6b:0</RequestId>
 </ResponseMetadata>
 </CancelTokenResponse>
 </SOAP-ENV:Body>
</SOAP-ENV:Envelope>

Sample IPN Notification to Rest Request

signatureVersion: 2
signatureMethod: RSA-SHA1
customerEmail: test-caller@amazon.com
tokenId: D739ATGTM94QK9NBU6P4KDWACGXDZ8BVX3TJHGVP3XEFMGE7XVQTMEIL4OGFZMGP
callerReference: CallerReference19
notificationType: TokenCancellation
signature:
 flxZtuxk3jb0Ww4g4duMjx1s8EQnIC7kPHqKKu0t4trp1/8ZU6ohtm9V1xB1mdxDnJ37lpyfL7rp
wE5tiKjJ8agm1OzPjp9rwEVOEMcdscopTVhh9AG2HTNGyWyyaRlIPlXiV3mpPyMrttLiOkrYB8ak
YZ9fMbXUB9gKzMVzNhh58auyD/weMV/WIX3DDSJslsp0kg6frHv5F5CYrprwv4S+cXQxXdgJlRC3

Amazon FPS Advanced Quick Start Developer Guide
GetTokenByCaller

API Version 2008-09-17
68

UJO8bH68bwlFnyyzPz4+TnbB5xMDatpwkBOFCWO5+tmwlwJHyAUa7z6XJgwj27YIIjFSJolWLKwK
iZHqPNYNjKHE190sQMQBLHcnkZeexig6wYHK5w==
tokenType: SingleUse
dateInstalled: Oct 8, 2009
certificateUrl: https://fps.sandbox.amazonaws.com/certs/090909/PKICert.pem
customerName: Test Business

GetTokenByCaller

Description
The GetTokenByCaller action returns the details about the token specified by a tokenId or
CallerReference. The CallerReference is the value you passed in the Co-Branded service
request, whereas the tokenId is the value you received in the Co-Branded service response.

Request Parameters

Parameter Description Required

CallerReference A value you provide that uniquely identifies the request.
For more information, see Important Values to Store in
Your Database (p. 30).
Type: String

Default: None

Constraint: Max size = 128 characters

Condition: Required if TokenId is not specified.

Conditional

TokenId The sender token ID that the Co-Branded service
returned.
Type: String

Default: None

Constraint: Max size = 65 characters

Condition: Required if CallerReference is not
specified.

Conditional

For REST requests, you must also include parameters that are common to all requests. These
parameters are included by default in SOAP requests. For more information, see Common Request
Parameters (p. 53).

Response Elements

Element Description

Token Details of the specified token.
Type: Token (p. 104)

Responses also include elements common to all responses. For more information, see Common
Response Elements (p. 54).

Errors
This action can return the following errors:

Amazon FPS Advanced Quick Start Developer Guide
GetTokenByCaller

API Version 2008-09-17
69

• AccessFailure (p.)

• AccountClosed (p. 55)

• AuthFailure (p. 55)

• InternalError (p. 57)

• InvalidCallerReference (p. 57)

• InvalidClientTokenId (p. 57)

• InvalidParams (p. 58)

• InvalidTokenId (p. 58)

• SignatureDoesNotMatch (p. 60)

Examples

The following sections show a sample request and response.

Sample REST Request

https://fps.sandbox.amazonaws.com?
Action=GetTokenByCaller
&AWSAccessKeyId=AKIAIUQNNI2DNQHBO7RA
&CallerReference=callerReferenceSingleUse10
&Signature=7E43HRAge3s57KDtEW3%2Fv0CE3Rh4TkVuOpk%2FIU%2FJIEY%3D
&SignatureMethod=HmacSHA256
&SignatureVersion=2
&Timestamp=2009-10-07T11%3A29%3A03.281Z
&TokenId=543IJMECGZZ3J4K1F7BJ3TMNXFBQU9VXNT7RRCTNAJDJ8X36L1ZRKSUUPPIBTTIK
&Version=2008-09-17

Sample SOAP Request

<SOAP-ENV:Body wsu:Id="body"
xmlns:wsu=
"http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-
utility-1.0.xsd">
 <ns2:GetTokenByCaller xmlns:ns2="http://fps.amazonaws.com/
doc/2008-09-17/">
 <ns2:CallerReference>
 ReferenceString????AxaM12275863261891
 </ns2:CallerReference>
 </ns2:GetTokenByCaller>
 </SOAP-ENV:Body>
</SOAP-ENV:Envelope>

Sample Response to REST Request

<GetTokenByCallerResponse xmlns="http://fps.amazonaws.com/doc/2008-09-17/">
 <GetTokenByCallerResult>
 <Token>
 <TokenId>
 543IJMECGZZ3J4K1F7BJ3TMNXFBQU9VXNT7RRCTNAJDJ8X36L1ZRKSUUPPIBTTIK
 </TokenId>
 <FriendlyName>Friendly1339359778</FriendlyName>
 <TokenStatus>Active</TokenStatus>
 <DateInstalled>2009-10-07T04:29:05.054-07:00</DateInstalled>
 <CallerReference>callerReferenceSingleUse10</CallerReference>

Amazon FPS Advanced Quick Start Developer Guide
GetTokenByCaller

API Version 2008-09-17
70

 <TokenType>SingleUse</TokenType>
 <OldTokenId>
 543IJMECGZZ3J4K1F7BJ3TMNXFBQU9VXNT7RRCTNAJDJ8X36L1ZRKSUUPPIBTTIK
 </OldTokenId>
 <PaymentReason>PaymentReason</PaymentReason>
 </Token>
 </GetTokenByCallerResult>
 <ResponseMetadata>
 <RequestId>45b6c560-8aa9-463c-84be-80eeefb21034:0</RequestId>
 </ResponseMetadata>
</GetTokenByCallerResponse>

Sample Response to SOAP Request

<?xml version="1.0" encoding="UTF-8"?>
<SOAP-ENV:Envelope
 xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/">
 <SOAP-ENV:Header>
 <wsa:RelatesTo xmlns:wsa="http://www.w3.org/2005/08/addressing">
 MESSAGE123
 </wsa:RelatesTo>
 <wsa:To xmlns:wsa="http://www.w3.org/2005/08/addressing">
 http://www.w3.org/2005/08/addressing/anonymous
 </wsa:To>
 <wsa:Action xmlns:wsa="http://www.w3.org/2005/08/addressing">
 GetTokenByCaller:Response
 </wsa:Action>
 <wsa:MessageID xmlns:wsa="http://www.w3.org/2005/08/addressing">
 urn:uuid:4802991b-76dd-4f7b-8bd7-a1428cfbb9f2
 </wsa:MessageID>
 </SOAP-ENV:Header>
 <SOAP-ENV:Body>
 <GetTokenByCallerResponse xmlns="http://fps.amazonaws.com/
doc/2008-09-17/">
 <GetTokenByCallerResult>
 <Token>
 <TokenId>
 M157V8ZXS4AF9C132FNT5HXNNX8ZK7K1C5IHVRE4VZJTCEBLP8X1CTBCSFTFHKCK
 </TokenId>
 <FriendlyName>
 FriendlyName-pHhq12275863261891
 </FriendlyName>
 <TokenStatus>Active</TokenStatus>
 <DateInstalled>2008-04-24T20:12:06.200-08:00</DateInstalled>
 <CallerReference>ReferenceStringAxaM12275863261891</CallerReference>
 <TokenType>Unrestricted</TokenType>
 <OldTokenId>
 M157V8ZXS4AF9C132FNT5HXNNX8ZK7K1C5IHVRE4VZJTCEBLP8X1CTBCSFTFHKCK
 </OldTokenId>
 <PaymentReason>Testing</PaymentReason>
 </Token>
 </GetTokenByCallerResult>
 <ResponseMetadata>
 <RequestId>4802991b-76dd-4f7b-8bd7-a1428cfbb9f2:0</RequestId>
 </ResponseMetadata>
 </GetTokenByCallerResponse>
 </SOAP-ENV:Body>
</SOAP-ENV:Envelope>

Amazon FPS Advanced Quick Start Developer Guide
GetTransactionStatus

API Version 2008-09-17
71

GetTransactionStatus

Description
The GetTransactionStatus action returns the status of the transaction specified by the
TransactionId. You could use this action if you choose not to process Instant Payment Notifications
(IPNs) that you receive from Amazon Payments (for more information, see Setting Up Instant Payment
Notification (p. 47)).

Request Parameters

Parameter Definition Required

TransactionId The transaction's ID.

Type: String

Constraint: Max size = 35 characters

Default: None

Yes

For REST requests, you must also include parameters that are common to all requests. These
parameters are included by default in SOAP requests. For more information, see Common Request
Parameters (p. 53).

Response Elements

Element Description

CallerReference A value you provide that uniquely identifies the request.

Type: String

StatusCode Shorthand code that specifies the status of the transaction.
Expands on the information in the TransactionStatus field. For
example, if TransactionStatus is PENDING, this field might be
PendingVerification, or PendingNetworkResponse.

Type: String

Valid Values: See Status Codes (p. 71)

StatusMessage A description of the transaction status.

Type: String

TransactionId Unique ID generated by Amazon FPS for this transaction. This element is
returned if the transaction was accepted by Amazon FPS.
Type: String

TransactionStatus The status of the transaction. Provides a short code on the status of the
transaction, for example "PENDING".

Type: TransactionStatus (p. 100)

Responses also include elements common to all responses. For more information, see Common
Response Elements (p. 54).

Status Codes
This action can return the following values for StatusCode.

Amazon FPS Advanced Quick Start Developer Guide
GetTransactionStatus

API Version 2008-09-17
72

Status Code Message

Canceled The transaction was explicitly canceled by the caller.

Expired This reserved amount on the payment instrument was not settled
within the timeout period
OR

The transaction could not be completed within the specified
timeout.

PendingNetworkResponse This transaction is awaiting a response from the backend payment
processor
OR

(Message returned by backend payment processor)

PendingVerification The transaction has been flagged for manual investigation

Success The requested amount was reserved successfully against the
given payment instrument

OR

The transaction was successful and the payment instrument was
charged.

TransactionDenied (Message returned by backend payment processor)
OR

The transaction was denied after investigation.

Errors

This action can return the following errors:

• AccessFailure (p.)

• AuthFailure (p. 55)

• InternalError (p. 57)

• InvalidClientTokenId (p. 57)

• InvalidParams (p. 58)

• InvalidTransactionId (p. 59)

• SignatureDoesNotMatch (p. 60)

Examples

The following sections show a sample request and response.

Sample REST Request

https://fps.sandbox.amazonaws.com?
Action=GetTransactionStatus
&AWSAccessKeyId=AKIAIIFXJCFIHITREP4Q
&Signature=2l60qD6%2BDIfVEN7ZiHM0AcUKACZt0GYKFtIryqkCb6g%3D
&SignatureMethod=HmacSHA256
&SignatureVersion=2
&Timestamp=2009-10-06T09%3A12%3A06.921Z
&TransactionId=14GKE3B85HCMF1BTSH5C4PD2IHZL95RJ2LM

Amazon FPS Advanced Quick Start Developer Guide
GetTransactionStatus

API Version 2008-09-17
73

&Version=2008-09-17

Sample SOAP Request

GET\n
fps.sandbox.amazonaws.com\n
Action=GetTransactionStatus
&AWSAccessKeyId=AKIAIIFXJCFIHITREP4Q
&Signature=2l60qD6%2BDIfVEN7ZiHM0AcUKACZt0GYKFtIryqkCb6g%3D
&SignatureMethod=HmacSHA256
&SignatureVersion=2
&Timestamp=2009-10-06T09%3A12%3A06.921Z
&TransactionId=14GKE3B85HCMF1BTSH5C4PD2IHZL95RJ2LM
&Version=2008-09-17

Sample Response to REST Request

<GetTransactionStatusResponse xmlns="http://fps.amazonaws.com/
doc/2008-09-17/">
 <GetTransactionStatusResult>
 <TransactionId>14GKE3B85HCMF1BTSH5C4PD2IHZL95RJ2LM</TransactionId>
 <TransactionStatus>Success</TransactionStatus>
 <CallerReference>CallerReference07</CallerReference>
 <StatusCode>Success</StatusCode>
 <StatusMessage>The transaction was successful and the payment instrument
 was charged.</StatusMessage>
 </GetTransactionStatusResult>
 <ResponseMetadata>
 <RequestId>13279842-6f84-41ef-ae36-c1ededaf278d:0</RequestId>
 </ResponseMetadata>
</GetTransactionStatusResponse>

Sample Response to SOAP Request

<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/
envelope/">
 <SOAP-ENV:Header>
 <wsa:RelatesTo xmlns:wsa="http://www.w3.org/2005/08/addressing">
 MESSAGE123
 </wsa:RelatesTo>
 <wsa:To xmlns:wsa="http://www.w3.org/2005/08/addressing">
 http://www.w3.org/2005/08/addressing/anonymous
 </wsa:To>
 <wsa:Action xmlns:wsa="http://www.w3.org/2005/08/addressing">
 GetTransactionStatus:Response
 </wsa:Action>
 <wsa:MessageID xmlns:wsa="http://www.w3.org/2005/08/addressing">
 urn:uuid:10d09e74-ba0a-4b3b-9eea-f873e589f496
 </wsa:MessageID>
 </SOAP-ENV:Header>
 <SOAP-ENV:Body>
 <GetTransactionStatusResponse
 xmlns="http://fps.amazonaws.com/doc/2008-09-17/">
 <GetTransactionStatusResult>
 <TransactionId>13N9ZL42F2SJLLIGH7RB6Q8IO8BTM62LGI3</TransactionId>
 <TransactionStatus>Success</TransactionStatus>
 <CallerReference>ReferenceString????6geW12275895867941</
CallerReference>
 <StatusCode>Success</StatusCode>

Amazon FPS Advanced Quick Start Developer Guide
Pay

API Version 2008-09-17
74

 <StatusMessage>message</StatusMessage>
 </GetTransactionStatusResult>
 <ResponseMetadata>
 <RequestId>10d09e74-ba0a-4b3b-9eea-f873e589f496:0</RequestId>
 </ResponseMetadata>
 </GetTransactionStatusResponse>
 </SOAP-ENV:Body>
</SOAP-ENV:Envelope>

Pay
Topics

• Description (p. 74)

• Request Parameters (p. 74)

• Response Elements (p. 77)

• Errors (p. 78)

• Examples (p. 78)

• Related Actions (p. 81)

Description

The Pay action initiates a transaction to move funds from a sender to a recipient. The
SenderTokenId, obtained from a Co-Branded service request, specifies the payment instrument the
sender chose to execute the transaction. If the payment method specified is Amazon account balance
transfer (ABT), the transaction completes synchronously. If the payment method is a bank account
(ACH) or a credit card (CC), the transaction completes asynchronously. For more information about
synchronous and asynchronous transactions, see Setting Up Instant Payment Notification (p. 47).

The marketplace implementation of Pay includes the recipient token ID, which identifies the recipient.
You get this in the response from a marketplace Co-Branded service request (which you make when
the recipient signs up on your web site for your marketplace services). The recipient token ID returned
identifies the recipient and is required when you later move money from the sender to the recipient.

The Pay parameters also specify the marketplace fee and who is charged (the caller or recipient). The
marketplace fee is typically the fee you charge the recipient for the service of hosting the recipient's
e-commerce store. The fee can be charged on a per-transaction basis and consist of a flat fee, a
percentage of the transaction, or a combination of the two.

Request Parameters

Parameter Description Required

CallerDescription Description of this transaction for the caller.
Type: String

Default: None

Constraint: Max size = 160 characters

No

CallerReference A value you provide that uniquely identifies the
request. For more information, see Important Values
to Store in Your Database (p. 30).
Type: String

Default: None

Constraint: Max size = 128 characters

Yes

Amazon FPS Advanced Quick Start Developer Guide
Pay

API Version 2008-09-17
75

Parameter Description Required

ChargeFeeTo Specifies the participant paying the Amazon FPS
fee in the transaction. The participant can only be
a recipient or a caller. The following rules apply for
specifying this parameter.

• If you are playing the role of a recipient and a
caller, then set the value of this parameter to
Recipient.

• If you are playing the role of caller and facilitating
the transaction between a sender and a recipient,
where the recipient pays the fee, then the fee is
collected from the funds that are received from the
sender.

• If you (caller) are paying the fees, then the fee is
collected from your account balance. Ensure that
you have a sufficient account balance to cover
for the fees. If your account has an insufficient
account balance, Amazon FPS rejects the
transaction.

Type: String

Default: Recipient

Valid values: Recipient | Caller

No

DescriptorPolicy Specifies the entity whose name and contact details
would be displayed in the sender's credit card or
bank account statement.
Type: DescriptorPolicy (p. 102)

Default: None

No

Amazon FPS Advanced Quick Start Developer Guide
Pay

API Version 2008-09-17
76

Parameter Description Required

MarketplaceFixedFee Specifies the fee charged by the marketplace
developer as a fixed amount of the transaction.
The MarketplaceFixedFee is a separate fee
from the Amazon Payments fee, which is paid by
the caller or recipient. You can express the fixed
fee as an amount, such as 10 to mean $10. If
you charge a variable fee per transaction, use the
MarketplaceVariableFee parameter.
Type: Amount (p. 101)

Default: If both the MarketplaceFixedFee and the
MarketplaceVariableFee are unspecified, then
the corresponding maximum values, if any, from the
recipient token are used.

Important

The value for MarketPlaceFixedFee
must be less than or equal to the amount
specified for the recipient token. If not, an
InvalidParams error is returned with the
following messages:
"The MarketPlaceFixedFee ($amount-
specified) specified is greater than the
maximum fixed fee ($amount-agreed)
agreed by the recipient.

No

MarketplaceVariableFee Specifies the fee charged by the marketplace
developer as a percentage of the transaction.
The MarketplaceVariableFee is a separate
fee from the Amazon Payments fee and is paid
by the recipient. You can express the variable
fee as a decimal, such as 5 to mean 5%. If you
charge a fixed amount per transaction, use the
MarketplaceFixedFee parameter.
Type: Decimal

Default: None

Important

The value for MarketPlaceVariableFee
must be less than or equal to the amount
specified for the recipient token. If not, an
InvalidParams error is returned with the
following messages:
"The MarketPlaceVariableFee ($amount-
specified) specified is greater than the
maximum variable fee ($amount-agreed)
agreed by the recipient.

No

Amazon FPS Advanced Quick Start Developer Guide
Pay

API Version 2008-09-17
77

Parameter Description Required

RecipientTokenId Specifies the recipient token used in the transaction.
You obtain this value in response from the Co-
Branded service Recipient Token API (for more
information, see Recipient Token API (p. 112).
Type: String

Default: None

Condition: Required for marketplace transactions

Conditional

SenderDescription Description of this transaction for the sender. If you
use dynamic soft descriptors, you must specify a
value for the sender description.
Type: String

Default: None

Constraint: Max size = 160 characters

Condition: If you use dynamic soft descriptors, you
must specify a value for the sender description.

Conditional

SenderTokenId Specifies the sender token used in the transaction.
You obtain this value from the response to the Co-
Branded service request.
Type: String

Default: None

Yes

TransactionAmount Transaction amount charged to the sender for the
purchase of an item or service.
To understand how to correctly specify the amount in
a REST request, see the example request at the end
of this topic.

Type: Amount (p. 101)

Default: None

Yes

TransactionTimeoutInMins Specifies the number of minutes before the request
times out. Use this parameter to specify a timeout
value that is acceptable for your business. If Amazon
FPS cannot complete the transaction in the time
allotted, the transaction is marked as failed and you
receive an IPN notification (if you are using IPN).
Type: Integer (number of minutes)

Default: 10080 (seven days)

No

You must also include parameters that are common to all requests. The common parameters are
defaulted in SOAP calls but must be explicitly added in REST calls. For more information, see
Common Request Parameters (p. 53).

Response Elements

Element Description

TransactionId Unique ID generated by Amazon FPS for this transaction. This element
is returned if the transaction was accepted by Amazon FPS. If the
transaction is a Refund request, this parameter will contain the id of the
Refund transaction only.
Type: String

Amazon FPS Advanced Quick Start Developer Guide
Pay

API Version 2008-09-17
78

Element Description

TransactionStatus Provides the status of the transaction. Use this to determine if the
transaction has completed, failed, or has not completed yet.
Type: TransactionStatus (p. 100)

Responses also include elements common to all responses. For more information, see Common
Response Elements (p. 54).

Pay careful attention to all of the response elements listed in the preceding table, especially the
response status element which indicates success or failure for the Pay operation. Errors are returned
only for REST. For SOAP, an error results in a SOAP fault. If the response status is failure, the
Errors element includes an error code that identifies the source of the failure. If the response status is
success, the elements listed in the preceding table are returned.

Errors
This action can return the following errors:

• AccessFailure (p.)

• AccountLimitsExceeded (p. 55)

• AmountOutOfRange (p. 55)

• AuthFailure (p. 55)

• BadRule

• DuplicateRequest (p. 56)

• IncompatibleTokens (p. 56)

• InsufficientBalance (p. 57)

• InternalError (p. 57)

• InvalidAccountState_Caller (p. 57)

• InvalidAccountState_Recipient (p. 57)

• InvalidAccountState_Sender (p. 57)

• InvalidClientTokenId (p. 57)

• InvalidParams (p. 58)

• InvalidTokenId_Recipient (p. 58)

• InvalidTokenId_Sender (p. 59)

• NotMarketplaceApp (p. 59)

• PaymentMethodNotDefined (p. 59)

• SameSenderAndRecipient (p. 60)

• SameTokenIdUsedMultipleTimes (p. 60)

• SignatureDoesNotMatch (p. 60)

• TokenNotActive_Recipient (p. 61)

• TokenNotActive_Sender (p. 61)

• TokenUsageError (p. 61)

• TransactionDenied (p. 61)

• UnverifiedAccount_Recipient (p. 61)

• UnverifiedAccount_Sender (p. 62)

• UnverifiedBankAccount (p. 62)

• UnverifiedEmailAddress_Caller (p. 62)

• UnverifiedEmailAddress_Recipient (p. 62)

• UnverifiedEmailAddress_Sender (p. 62)

The Pay action can return

Examples

Sample REST Request

https://fps.sandbox.amazonaws.com?
Action=Pay
&AWSAccessKeyId=AKIAIIFXJCFIHITREP4Q
&CallerDescription=MyWish
&CallerReference=CallerReference02
&SenderTokenId=553ILMLCG6Z8J431H7BX3UMN3FFQU8VSNTSRNCTAASDJNX66LNZLKSZU3PI7TXIH
&Signature=0AgvXMwJmLxwdMaiE7lMHZxc6384h%2FjBkiTserQFpBQ%3D
&SignatureMethod=HmacSHA256
&SignatureVersion=2
&Timestamp=2009-10-06T05%3A49%3A52.843Z

Amazon FPS Advanced Quick Start Developer Guide
Pay

API Version 2008-09-17
79

&TransactionAmount.CurrencyCode=USD
&TransactionAmount.Value=1
&Version=2008-09-17

Sample SOAP Request

<SOAP-ENV:Body wsu:Id="body"
 xmlns:wsu=
"http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-
utility-1.0.xsd">
 <ns2:Pay xmlns:ns2="http://fps.amazonaws.com/doc/2008-09-17/">
 <ns2:SenderTokenId>76PSX31MM77T81ExampleQVDNQPG5GFAK</ns2:SenderTokenId>
 <ns2:TransactionAmount>
 <ns2:CurrencyCode>USD</ns2:CurrencyCode>
 <ns2:Amount>1.1</ns2:Amount>
 </ns2:TransactionAmount>
 <ns2:CallerReference>
 ReferenceString????rpXe12275876325471
 </ns2:CallerReference>
 <ns2:CallerDescription>
 DescriptionString-????i86x12275876325471
 </ns2:CallerDescription>
 <ns2:SenderDescription>
 DescriptionString-????0m6112275876325471
 </ns2:SenderDescription>
 </ns2:Pay>
 </SOAP-ENV:Body>
</SOAP-ENV:Envelope>

Sample Response to REST Request

<PayResponse xmlns="http://fps.amazonaws.com/doc/2008-09-17/">
 <PayResult>
 <TransactionId>14GK6BGKA7U6OU6SUTNLBI5SBBV9PGDJ6UL</TransactionId>
 <TransactionStatus>Pending</TransactionStatus>
 </PayResult>
 <ResponseMetadata>
 <RequestId>c21e7735-9c08-4cd8-99bf-535a848c79b4:0</RequestId>
 </ResponseMetadata>
</PayResponse>

Sample Response to SOAP Request

<?xml version="1.0" encoding="UTF-8"?>
<SOAP-ENV:Envelope
 xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/">
 <SOAP-ENV:Header>
 <wsa:RelatesTo xmlns:wsa="http://www.w3.org/2005/08/addressing">
 MESSAGE123
 </wsa:RelatesTo>
 <wsa:To xmlns:wsa="http://www.w3.org/2005/08/addressing">
 http://www.w3.org/2005/08/addressing/anonymous
 </wsa:To>
 <wsa:Action xmlns:wsa="http://www.w3.org/2005/08/addressing">
 Pay:Response
 </wsa:Action>
 <wsa:MessageID xmlns:wsa="http://www.w3.org/2005/08/addressing">
 urn:uuid:b415f09d-5924-4315-b31a-21c977c85c39
 </wsa:MessageID>

Amazon FPS Advanced Quick Start Developer Guide
Pay

API Version 2008-09-17
80

 </SOAP-ENV:Header>
 <SOAP-ENV:Body>
 <PayResponse xmlns="http://fps.amazonaws.com/doc/2008-09-17/">
 <PayResult>
 <TransactionId>13N8UPFET32I4I7FCF9T4ZKFETETINTK56Q</TransactionId>
 <TransactionStatus>Pending</TransactionStatus>
 </PayResult>
 <ResponseMetadata>
 <RequestId>b415f09d-5924-4315-b31a-21c977c85c39:0</RequestId>
 </ResponseMetadata>
 </PayResponse>
 </SOAP-ENV:Body>
</SOAP-ENV:Envelope>

Sample IPN Pending Notification to Rest Request

transactionId: 14GK6BGKA7U6OU6SUTNLBI5SBBV9PGDJ6UL
statusMessage: The transaction is awaiting a response from the backend
 payment processor.
transactionDate: 1254808208
signatureVersion: 2
signatureMethod: RSA-SHA1
buyerEmail: new_premium@amazon.com
notificationType: TransactionStatus
callerReference: CallerReference02
transactionAmount: USD 1.00
transactionStatus: PENDING
operation: PAY
recipientEmail: test-caller@amazon.com
buyerName: Test Business
signature: uhP7uiCAvF/
wTpRg6U279KTGPU2QHt23WiwNIB43i4ni1AEZOmBCTa3tUh1ugwxvIMSRASBhiG0u
rUl22IAXbt1iXfYprM2VrS0W0/W23BpkxInuNeAQWKu4W5/uuOJ1gVqyXsmxdFqJM7KKOh3IuUdC
wSfvPooR2qDQ2r5H/HjcOHfWQZk+BknX1w+aYpBRTa/mTYVxI6yq39mRyYPyMmh8r+tIPDevfnV1
B7sRljhXkJZh6rHJEi7CHq4oqbf8HZ38xaaqyggWy310SmMOuY3YcxNng0TOdbkgNAozMIQgfOsL
4yxiyVIZZJEKFPgT/OdebCZkR/raY1JeuBdYOg==
recipientName: Test Business
paymentMethod: CC
certificateUrl: https://fps.sandbox.amazonaws.com/certs/090909/PKICert.pem
paymentReason: MyWish
statusCode: PendingNetworkResponse

Sample IPN Success Notification to Rest Request

transactionId: 14GK6BGKA7U6OU6SUTNLBI5SBBV9PGDJ6UL
statusMessage: The transaction was successful and the payment instrument was
 charged.
transactionDate: 1254808208
signatureVersion: 2
signatureMethod: RSA-SHA1
buyerEmail: new_premium@amazon.com
notificationType: TransactionStatus
callerReference: CallerReference02
transactionAmount: USD 1.00
transactionStatus: SUCCESS
operation: PAY

Amazon FPS Advanced Quick Start Developer Guide
Refund

API Version 2008-09-17
81

recipientEmail: test-caller@amazon.com
buyerName: Test Business
signature: yuYUR4IkONbOfrerafrzC6raA90suk
+jKXCgaV1LY0DxieYCAG2tAf9S7Rt231kzr0mhMMOIH0oe
ocHId3zdXp+2VaUbE4qGjPGfImpaBVxtxVwcdQP6cSFnvnKAbPbmQMdeIHMlgDeqVdtu5BO5skwj
e6bkDs+b8TQ3pHBYmXDc69aHceGqWAjMujs6m4HH3Othlb5Rj54s1IedwTi63HyQo+IAyRWvGPTn
nT6YlV0ajG38GCPoS9Wqa+UKcIr0sLoPY0y2StCDyjYHz7iVx+6lzG1eeCmZ++rAKU8swwhBiWGZ
56ajlKTzhoIJnK5yk7jFYreRt+Ff0W2fEnvEyQ==
recipientName: Test Business
paymentMethod: CC
certificateUrl: https://fps.sandbox.amazonaws.com/certs/090909/PKICert.pem
paymentReason: MyWish
statusCode: Success

Related Actions
• Refund (p. 81)

Refund

Description
You use Refund to refund a successfully completed payment transaction. You can refund less than the
amount paid. The default, however, is to refund the full amount to the sender.

Only the caller of the original transaction can perform a refund.

Request Parameters

Parameter Description Required

CallerDescription Description of this transaction for the caller.
Type: String

Default: None

Constraint: Max size = 160 characters

No

CallerReference A value you provide that uniquely identifies the
request. For more information, see Important Values
to Store in Your Database (p. 30).
Type: String

Default: None

Constraint: Max size = 128 characters

Yes

RefundAmount Specifies the amount to be refunded.
To understand how to correctly specify the amount in
a REST request, see the example request at the end
of this topic.

Type: Amount (p. 101)

Default: Original transaction amount or any amount
remaining

Constraint: The total refund amount cannot exceed
the original transaction amount.

No

Amazon FPS Advanced Quick Start Developer Guide
Refund

API Version 2008-09-17
82

Parameter Description Required

TransactionId Transaction ID of the transaction to be refunded.
The transaction ID must be one returned from a Pay
action.
Type: String

Default: None

Constraint: Max size = 35 characters

Yes

For REST requests, you must also include parameters that are common to all requests. These
parameters are included by default in SOAP requests. For more information, see Common Request
Parameters (p. 53).

Response Elements

Element Description

TransactionId This is the ID (max size = 35 characters) of the transaction named in the
request.

Type: String

TransactionStatus Provides the status of the transaction.

Type: TransactionStatus (p. 100)

Responses also include elements common to all responses. For more information, see Common
Response Elements (p. 54).

Errors
This action can return the following errors:

• AccessFailure (p.)

• AmountOutOfRange (p. 55)

• AuthFailure (p. 55)

• ConcurrentModification (p. 56)

• DuplicateRequest (p. 56)

• InternalError (p. 57)

• InvalidAccountState_Caller (p. 57)

• InvalidAccountState_Recipient (p. 57)

• InvalidAccountState_Sender (p. 57)

• InvalidClientTokenId (p. 57)

• InvalidParams (p. 58)

• InvalidTransactionId (p. 59)

• OriginalTransactionFailed (p. 59)

• OriginalTransactionIncomplete (p. 59)

• RefundAmountExceeded (p. 60)

• SignatureDoesNotMatch (p. 60)

• TransactionDenied (p. 61)

• TransactionFullyRefundedAlready (p. 61)

• TransactionTypeNotRefundable (p. 61)

• UnverifiedEmailAddress_Caller (p. 62)

• UnverifiedEmailAddress_Sender (p. 62)

Examples

Sample REST Request

https://fps.sandbox.amazonaws.com?
Action=Refund
&AWSAccessKeyId=AKIAIIFXJCFIHITREP4Q
&CallerDescription=MyWish

Amazon FPS Advanced Quick Start Developer Guide
Refund

API Version 2008-09-17
83

&CallerReference=CallerReference03
&RefundAmount.CurrencyCode=USD
&RefundAmount.Value=1
&Signature=V6pU3PvDPkPhR9Eu7yZXnFZHuEFafLE5sBPgqqCELEU%3D
&SignatureMethod=HmacSHA256
&SignatureVersion=2
&Timestamp=2009-10-06T05%3A51%3A49.578Z
&TransactionId=14GK4TNCAQ84NK9VITEHKAS94RAD9ZE2AQD
&Version=2008-09-17

Sample SOAP Request

<SOAP-ENV:Body wsu:Id="body"
 xmlns:wsu=
"http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-
utility-1.0.xsd">
 <ns2:Pay xmlns:ns2="http://fps.amazonaws.com/doc/2008-09-17/">
 <ns2:SenderTokenId>76PSX31MM77T81ExampleQVDNQPG5GFAK</ns2:SenderTokenId>
 <ns2:RecipientTokenId>6SC9UJ1VJEExampleBTBNUNEYUBJM1K</
ns2:RecipientTokenId>
 <ns2:TransactionAmount>
 <ns2:CurrencyCode>USD</ns2:CurrencyCode>
 <ns2:Amount>1.1</ns2:Amount>
 </ns2:TransactionAmount>
 <ns2:CallerReference>
 ReferenceString????rpXe12275876325471
 </ns2:CallerReference>
 <ns2:CallerDescription>
 DescriptionString-????i86x12275876325471
 </ns2:CallerDescription>
 <ns2:SenderDescription>
 DescriptionString-????0m6112275876325471
 </ns2:SenderDescription>
 </ns2:Pay>
 </SOAP-ENV:Body>
</SOAP-ENV:Envelope>

Sample Response to REST Request

<RefundResponse xmlns="http://fps.amazonaws.com/doc/2008-09-17/">
 <RefundResult>
 <TransactionId>14GK6F2QU755ODS27SGHEURLKPG72Z54KMF</TransactionId>
 <TransactionStatus>Pending</TransactionStatus>
 </RefundResult>
 <ResponseMetadata>
 <RequestId>1a146b9a-b37b-4f5f-bda6-012a5b9e45c3:0</RequestId>
 </ResponseMetadata>
</RefundResponse>

Sample Response to SOAP Request

<SOAP-ENV:Envelope
xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/">
 <SOAP-ENV:Header>
 <wsa:RelatesTo xmlns:wsa="http://www.w3.org/2005/08/addressing">
 MESSAGE123
 </wsa:RelatesTo>
 <wsa:To xmlns:wsa="http://www.w3.org/2005/08/addressing">
 http://www.w3.org/2005/08/addressing/anonymous
 </wsa:To>

Amazon FPS Advanced Quick Start Developer Guide
Refund

API Version 2008-09-17
84

 <wsa:Action xmlns:wsa="http://www.w3.org/2005/08/addressing">
 Refund:Response
 </wsa:Action>
 <wsa:MessageID xmlns:wsa="http://www.w3.org/2005/08/addressing">
 urn:uuid:6d63adbb-611e-40ee-9262-a29c30e8ecaa
 </wsa:MessageID>
 </SOAP-ENV:Header>
 <SOAP-ENV:Body>
 <RefundResponse xmlns="http://fps.amazonaws.com/doc/2008-09-17/">
 <RefundResult>
 <TransactionId>13N91G4R7478C8ZLHEF93JLIGROQH2VQJSM</TransactionId>
 <TransactionStatus>Success</TransactionStatus>
 </RefundResult>
 <ResponseMetadata>
 <RequestId>6d63adbb-611e-40ee-9262-a29c30e8ecaa:0</RequestId>
 </ResponseMetadata>
 </RefundResponse>
 </SOAP-ENV:Body>
</SOAP-ENV:Envelope>

Sample IPN Pending Notification to Rest Request

transactionId: 14GK6F2QU755ODS27SGHEURLKPG72Z54KMF
statusMessage: The transaction is awaiting a response from the backend
 payment processor.
transactionDate: 1254808324
signatureVersion: 2
signatureMethod: RSA-SHA1
parentTransactionId: 14GK4TNCAQ84NK9VITEHKAS94RAD9ZE2AQD
buyerEmail: new_premium@amazon.com
notificationType: TransactionStatus
callerReference: CallerReference03
transactionAmount: USD 1.00
transactionStatus: PENDING
operation: REFUND
recipientEmail: test-caller@amazon.com
buyerName: Test Business
signature:
 mzis1HbeiiLx5j8nrUR3UeIVz3bcxVDG82JOW0gIEXO1FXxBVZHwPPBFCEVcyBMu8wtNTMph/ylu
okjBi8w9Q6shMswBteq9bwNQA9qbDRT256ckoqdwfCf0910lYVj+wNSKkezF6Clptjgsn0wMjMQO
D9QBuOAAA9qV6VnUorRumPZ1psY/17FUvDwKVUMPEkZNO1mn7lcLFZJJp1aMkIj+RmraafTUUM62
U0VMYKSR5pDEp0ifThn0Za4DogV0ZoGJrB/+gPhA07FdtnkM4uG5jgwqOCVyOA4ayP7uJpb7oImj
8Jhi60+EWUUbbUShTEsjTxqQtM8UKvsM6XAjdA==
recipientName: Test Business
paymentMethod: CC
certificateUrl: https://fps.sandbox.amazonaws.com/certs/090909/PKICert.pem
paymentReason: MyWish
statusCode: PendingNetworkResponse

Sample IPN Success Notification to Rest Request

transactionId: 14GK6F2QU755ODS27SGHEURLKPG72Z54KMF
statusMessage: The transaction was successful and the payment instrument was
 charged.
transactionDate: 1254808324

Amazon FPS Advanced Quick Start Developer Guide
Reserve

API Version 2008-09-17
85

signatureVersion: 2
signatureMethod: RSA-SHA1
parentTransactionId: 14GK4TNCAQ84NK9VITEHKAS94RAD9ZE2AQD
buyerEmail: new_premium@amazon.com
notificationType: TransactionStatus
callerReference: CallerReference03
transactionAmount: USD 1.00
transactionStatus: SUCCESS
operation: REFUND
recipientEmail: test-caller@amazon.com
buyerName: Test Business
signature: sDq9YvW7L29W2NSIC/
wjC5yLyR4QJSQyt/7iHhNiEdwFoGVkrLjJHiBloPfJxzznHnmMtCRsUQ+A
d3tZ0NdemMxf0qYM9NX93PyG0KBKXShKeM0Da39cvnC05tZmtxpfCuZT5ECRydr+BqRo/DOlx1Yg
93gihZ83qHWR8bpqQcBwsu7vD4c4m4mTZ4I75gw+NXKRDD+vCPFDNEKRnh5kQz+Tjjg4bnNYEEcG
Rf6UZfS2lvMzdj0c37RUY6t4gQ3W3Z9G/REGjC98JBuTimk/kc1HoSc+xe6WtAH/siNurisyqgoB
HWnQM8iRqLEHj/m9y6vx5EBHBokD1BJMIiiZNg==
recipientName: Test Business
paymentMethod: CC
certificateUrl: https://fps.sandbox.amazonaws.com/certs/090909/PKICert.pem
paymentReason: MyWish
statusCode: Success

Related Actions
• Pay (p. 74)

Reserve

Description
The Reserve operation reserves the total price of a purchase against the sender's payment
instrument. To charge the payment instrument, you must subsequently issue a Settle request.
A reserve authorization is only valid for 7 days. After that, Amazon FPS automatically cancels the
transaction and notifies you.

Note

You can settle a reserved transaction only once.

To cancel a reserved payment, send a Cancel request.

Request Parameters

Parameter Description Required

CallerDescription Description of this transaction for the caller.
Type: String

Default: None

Constraint: Max size = 160 characters

Condition: If you use dynamic, soft descriptors,
you must supply a caller description. For more
information, see DescriptorPolicy.

No

Amazon FPS Advanced Quick Start Developer Guide
Reserve

API Version 2008-09-17
86

Parameter Description Required

CallerReference A value you provide that uniquely identifies the
request. For more information, see Important
Values to Store in Your Database (p. 30).
Type: String

Default: None

Constraint: Max size = 128 characters

Yes

DescriptorPolicy Specifies the entity whose name and contact
details would be displayed in the sender's credit
card or bank account statement.
Type: Descriptor Policy (p. 102)

Default: None

No

SenderDescription Description of this transaction for the sender.
If you use dynamic soft descriptors, you must
specify a value for the sender description.
Type: String

Default: None

Constraint: Max size = 160 characters

Condition: If you use dynamic soft descriptors,
you must specify a value for the sender
description. For more information, see
DescriptorPolicy.

Conditional

SenderTokenId Specifies the sender token to be used for this
transaction. You obtain this value in a Co-
Branded service response.
Type: String

Default: None

Yes

TransactionAmount Transaction amount charged to the sender.
To understand how to correctly specify the
amount in a REST request, see the example
request at the end of this topic.

Type: Amount (p. 101)

Default: None

Yes

You must also include parameters that are common to all requests. The common parameters are
defaulted in SOAP calls but must be explicitly added in REST calls. For more information, see
Common Request Parameters (p. 53).

Response Elements

Element Description

TransactionId Unique ID generated by Amazon FPS for this transaction. This element
is returned if the transaction was accepted by Amazon FPS. If the
transaction is a Refund request, this parameter will contain the id of the
Refund transaction only.
Type: String

TransactionStatus Provides the status of the transaction.
Type: TransactionStatus (p. 100)

Amazon FPS Advanced Quick Start Developer Guide
Reserve

API Version 2008-09-17
87

Responses also include elements common to all responses. For more information, see Common
Response Elements (p. 54).

Errors
This action can return the following errors:

• AccessFailure (p.)

• AccountLimitsExceeded (p. 55)

• AmountOutOfRange (p. 55)

• AuthFailure (p. 55)

• DuplicateRequest (p. 56)

• IncompatibleTokens (p. 56)

• InternalError (p. 57)

• InvalidAccountState_Caller (p. 57)

• InvalidAccountState_Recipient (p. 57)

• InvalidAccountState_Sender (p. 57)

• InvalidClientTokenId (p. 57)

• InvalidParams (p. 58)

• InvalidPaymentMethod (p. 58)

• InvalidRecipientForCCTransaction (p. 58)

• InvalidTokenId_Sender (p. 59)

• PaymentInstrumentNotCC (p. 59)

• SignatureDoesNotMatch (p. 60)

• TokenNotActive_Recipient (p. 61)

• TokenNotActive_Sender (p. 61)

• TransactionDenied (p. 61)

• UnverifiedAccount_Recipient (p. 61)

• UnverifiedAccount_Sender (p. 62)

• UnverifiedEmailAddress_Caller (p. 62)

• UnverifiedEmailAddress_Recipient (p. 62)

• UnverifiedEmailAddress_Sender (p. 62)

Examples

Sample REST Request

https://fps.sandbox.amazonaws.com?
Action=Reserve
&AWSAccessKeyId=AKIAIIFXJCFIHITREP4Q
&CallerDescription=Reserve
&CallerReference=CallerReference05
&SenderTokenId=553IPMACGAZ2J4N1L7BJ3UMNRFTQU4V9NT4RJCTVADDJKXQ6L1ZAKSIUNPIRTTI1
&Signature=JZ0eeVTM5LwbvziLdA%2FSMve7mgrEoTvTGZJ%2BpsgZkM0%3D
&SignatureMethod=HmacSHA256
&SignatureVersion=2
&Timestamp=2009-10-06T07%3A51%3A04.140Z
&TransactionAmount.CurrencyCode=USD
&TransactionAmount.Value=1
&Version=2008-09-17

Sample SOAP Request

<SOAP-ENV:Body wsu:Id="body" xmlns:wsu=
"http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-
utility-1.0.xsd">
 <ns2:Reserve xmlns:ns2="http://fps.amazonaws.com/doc/2008-09-17/">
 <ns2:SenderTokenId>76PSX31MM77T81ExampleQVDNQPG5GFAK</ns2:SenderTokenId>
 <ns2:TransactionAmount>
 <ns2:CurrencyCode>USD</ns2:CurrencyCode>
 <ns2:Amount>1.10</ns2:Amount>
 </ns2:TransactionAmount>
 <ns2:CallerReference>
 ReferenceString????Qlrd12275864150791

Amazon FPS Advanced Quick Start Developer Guide
Reserve

API Version 2008-09-17
88

 </ns2:CallerReference>
 <ns2:CallerDescription>
 DescriptionString-????UQAu12275864150791
 </ns2:CallerDescription>
 <ns2:SenderDescription>
 DescriptionString-????kbPT12275864150791
 </ns2:SenderDescription>
 </ns2:Reserve>
 </SOAP-ENV:Body>
</SOAP-ENV:Envelope>

Sample Response to REST Request

<ReserveResponse xmlns="http://fps.amazonaws.com/doc/2008-09-17/">
 <ReserveResult>
 <TransactionId>14GKD9GE66FAA63E6O6B2JDPZKN53LZ7F22</TransactionId>
 <TransactionStatus>Pending</TransactionStatus>
 </ReserveResult>
 <ResponseMetadata>
 <RequestId>d13273fc-fca8-4963-8fbc-66d03e66055f:0</RequestId>
 </ResponseMetadata>
</ReserveResponse>

Sample Response to SOAP Request

<?xml version="1.0" encoding="UTF-8"?>
<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/
envelope/">
 <SOAP-ENV:Header>
 <wsa:RelatesTo xmlns:wsa="http://www.w3.org/2005/08/addressing">
 MESSAGE123
 </wsa:RelatesTo>
 <wsa:To xmlns:wsa="http://www.w3.org/2005/08/addressing">
 http://www.w3.org/2005/08/addressing/anonymous
 </wsa:To>
 <wsa:Action xmlns:wsa="http://www.w3.org/2005/08/addressing">
 Reserve:Response
 </wsa:Action>
 <wsa:MessageID xmlns:wsa="http://www.w3.org/2005/08/addressing">
 urn:uuid:a9e1fc80-03f6-4e1b-a1c0-541df545afac
 </wsa:MessageID>
 </SOAP-ENV:Header>
 <SOAP-ENV:Body>
 <ReserveResponse xmlns="http://fps.amazonaws.com/doc/2008-09-17/">
 <ReserveResult>
 <TransactionId>13N8TKAK15P3GOIPLP796OKSB66C6K2LBEK</TransactionId>
 <TransactionStatus>Pending</TransactionStatus>
 </ReserveResult>
 <ResponseMetadata>
 <RequestId>a9e1fc80-03f6-4e1b-a1c0-541df545afac:0</RequestId>
 </ResponseMetadata>
 </ReserveResponse>
 </SOAP-ENV:Body>
</SOAP-ENV:Envelope>

Sample IPN Pending Notification to Rest Request

transactionId: 14GKD9GE66FAA63E6O6B2JDPZKN53LZ7F22

Amazon FPS Advanced Quick Start Developer Guide
Reserve

API Version 2008-09-17
89

statusMessage: The transaction is awaiting a response from the backend
 payment processor.
transactionDate: 1254815482
signatureVersion: 2
signatureMethod: RSA-SHA1
buyerEmail: new_premium@amazon.com
notificationType: TransactionStatus
callerReference: CallerReference05
operation: RESERVE
transactionStatus: PENDING
transactionAmount: USD 1.00
recipientEmail: test-caller@amazon.com
buyerName: Test Business
signature: NvFCZMralNEepynuIhhXJc+jpK1ZMdFLBMcXFv6Vq1jhpdLX/
B9T0lluOUv74I6xgO8L2UemgV4S
ZCejlQZ3glwKnEM75lKVlHx34IKp1RFm1DjQOO5KaYGQUNMu1ouYK1YmQUHCuktdLnTXjkxjn0lv
9U4EyzDe8l/tLp2nlAqRF4J7PIhdTkWvBYNYhZrEy5A895OMf9uFtwX8Eyg4lTDMVwEWJoG8CTxJ
qtcsKabmbF9Blwhfe3f+viTnv39YRDb+PZKnpl/XqkKYdNEXClRy3g6xpF/14FJ4hA+A1UP+A+No
17b6lZuKmd5dbdvqTQKOxEAfR6lL1gTzAYY/8w==
recipientName: Test Business
paymentMethod: CC
certificateUrl: https://fps.sandbox.amazonaws.com/certs/090909/PKICert.pem
paymentReason: Reserve
statusCode: PendingNetworkResponse

Sample IPN Success Notification to Rest Request

transactionId: 14GKD9GE66FAA63E6O6B2JDPZKN53LZ7F22
statusMessage: The requested amount was reserved successfully against the
 given payment instrument.
transactionDate: 1254815482
signatureVersion: 2
signatureMethod: RSA-SHA1
buyerEmail: new_premium@amazon.com
notificationType: TransactionStatus
callerReference: CallerReference05
transactionAmount: USD 1.00
transactionStatus: RESERVED
operation: RESERVE
recipientEmail: test-caller@amazon.com
buyerName: Test Business
signature: RIVZQHF+NmGUEbZNXijRcSwmeBTcYg/GCZD/
xeUpLLXMwDNrM1D0+ewFLiUqJvdbQueUilBkJPoB
5j+ZYvvrXfldEofaMZ85pz2pA/DyUicWR4e/DgcZrk/B7FO6LL9ki6aE0qPzpRR/nzRcLiu1lH2a
zUPnMVf3dT+SfDhaKyKIfX40QYL6U3m3NTaGYSUbBwzZczg9qTpu4zZ2kCK3uidg7P78sXQEnDhm
8kDAJC4obYFVlZi/Bd8UalxIYf2ko8SkhQ4vbsipjNg++HJ7KlJAa41GTVCrJfeX0Y4r7ToONEaQ
iu/zn8X+q/jPqgGZN+Z2KNls6XVw4Waw3eXbug==
recipientName: Test Business
paymentMethod: CC
certificateUrl: https://fps.sandbox.amazonaws.com/certs/090909/PKICert.pem
paymentReason: Reserve
statusCode: Success

Amazon FPS Advanced Quick Start Developer Guide
Settle

API Version 2008-09-17
90

Related Actions
• Pay (p. 74)

• Refund (p. 81)

• Settle (p. 90)

Settle

Description

The Settle action charges the sender's payment instrument for the purchase that was transacted
using Reserve. You settle a transaction when you fulfill the order, for example, when you ship the
purchased items.

Request Parameters

Parameter Description Required

ReserveTransactionId An identifier returned by
Reserve that identifies the
reserved transaction to be
settled.
Type: String

Default: None

Constraint: Max size = 35
characters

Yes

TransactionAmount Amount to be settled.
To understand how to correctly
specify the amount in a REST
request, see the example
request at the end of this topic.

Type: Amount (p. 101)

Default: The amount reserved
in the Reserve request

Constraint: The amount cannot
exceed the reserved amount.

No

For REST requests, you must also include parameters that are common to all requests. These
parameters are included by default in SOAP requests. For more information, see Common Request
Parameters (p. 53).

Response Elements

Element Description

TransactionId Identifies the transaction that was settled.
Type: String

TransactionStatus Provides the status of the transaction.
Type: TransactionStatus (p. 100)

Amazon FPS Advanced Quick Start Developer Guide
Settle

API Version 2008-09-17
91

Responses also include elements common to all responses. For more information, see Common
Response Elements (p. 54).

Errors

This action can return the following errors:

• AccessFailure (p.)

• AccountClosed (p. 55)

• AmountOutOfRange (p. 55)

• AuthFailure (p. 55)

• ConcurrentModification (p. 56)

• InternalError (p. 57)

• InvalidAccountState_Caller (p. 57)

• InvalidAccountState_Recipient (p. 57)

• InvalidAccountState_Sender (p. 57)

• InvalidClientTokenId (p. 57)

• InvalidParams (p. 58)

• InvalidTransactionId (p. 59)

• InvalidTransactionState (p. 59)

• SettleAmountGreaterThanReserveAmount (p.
60)

• SignatureDoesNotMatch (p. 60)

• TransactionDenied (p. 61)

• UnverifiedAccount_Recipient (p. 61)

• UnverifiedEmailAddress_Caller (p. 62)

• UnverifiedEmailAddress_Recipient (p. 62)

• UnverifiedEmailAddress_Sender (p. 62)

Examples

Sample REST Request

https://fps.sandbox.amazonaws.com?
Action=Settle
&AWSAccessKeyId=AKIAIIFXJCFIHITREP4Q
&ReserveTransactionId=14GKD9GE66FAA63E6O6B2JDPZKN53LZ7F22
&SignatureMethod=HmacSHA256
&SignatureVersion=2
&Signature=SJJLsIBghi7VIycBjX7c3hnfgZ%2FBvZbzqLtAZXDL8ys%3D
&Timestamp=2009-10-06T07%3A53%3A11.750Z
&TransactionAmount.CurrencyCode=USD
&TransactionAmount.Value=1
&Version=2008-09-17

Sample SOAP Request

https://fps.amazonaws.com/?
Action=Settle
&AWSAccessKeyId=0656Example83G2
&SignatureVersion=2
&SignatureMethod=HmacSHA256
&Timestamp=2008-08-06T13%3A00%3A01Z
&TransactionId=254656Example83987
&Version=2008-09-17
&Signature=<URL-encoded signature value>

Sample Response to REST Request

<SettleResponse xmlns="http://fps.amazonaws.com/doc/2008-09-17/">
 <SettleResult>
 <TransactionId>14GKD9GE66FAA63E6O6B2JDPZKN53LZ7F22</TransactionId>
 <TransactionStatus>Pending</TransactionStatus>

Amazon FPS Advanced Quick Start Developer Guide
Settle

API Version 2008-09-17
92

 </SettleResult>
 <ResponseMetadata>
 <RequestId>9ed2008b-b230-4ed0-9210-095f77fc2359:0</RequestId>
 </ResponseMetadata>
</SettleResponse>

Sample Response to SOAP Request

<SettleResponse
 xmlns="https://fps.amazonaws.com/doc/2008-09-17/">
 <SettleResult>
 <TransactionId>
 254656Example83987
 </TransactionId>
 <TransactionStatus>
 Pending
 </TransactionStatus>
 </SettleResult>
 <ResponseMetadata>
 <RequestId>
 a8d5e97c-6a7e-4fe1-b019-58a428a5a68b:0
 </RequestId>
 </ResponseMetadata>
</SettleResponse>

Sample IPN Pending Notification to Rest Request

transactionId: 14GKD9GE66FAA63E6O6B2JDPZKN53LZ7F22
statusMessage: The transaction is awaiting a response from the backend
 payment processor.
transactionDate: 1254815482
signatureVersion: 2
signatureMethod: RSA-SHA1
buyerEmail: new_premium@amazon.com
notificationType: TransactionStatus
callerReference: CallerReference05
transactionAmount: USD 1.00
transactionStatus: PENDING
operation: SETTLE
recipientEmail: test-caller@amazon.com
buyerName: Test Business
signature: zxymWMlhu4o
+2rpdrBXu08EACZ3Mi3Z16x5+8+1Hbqkh4DTr1A6ry4fijBYkl32z4fMF9xnoGriW
2jzij7Vmc/4Vc4dEWCpbOq+be4JLfOELw08jJQintuk3kIXOPca06NMWQhGiC3m7kRF95nM2TJs7
jqbkAMrKyiZArcURMo0YpRZPIF7DlDlNRAebH2+0v0BxaUtombrDFW4UlSscuebXDNdgjp7KjCnT
BJGDJks9/wLKKvFtISQWHuvN2MiPzt7UmFwMLPh8jtpgQ6JxS+ipTPxbr7Km3IXIJJgJHpxmdQmg
ghrl4IX0zCKaVUb7Rh3z85/9F0yPB8A92nquzQ==
recipientName: Test Business
paymentMethod: CC
certificateUrl: https://fps.sandbox.amazonaws.com/certs/090909/PKICert.pem
paymentReason: Reserve
statusCode: PendingNetworkResponse

Sample IPN Success Notification to Rest Request

Amazon FPS Advanced Quick Start Developer Guide
VerifySignature

API Version 2008-09-17
93

transactionId: 14GKD9GE66FAA63E6O6B2JDPZKN53LZ7F22
statusMessage: The transaction was successful and the payment instrument was
 charged.
transactionDate: 1254815482
signatureVersion: 2
signatureMethod: RSA-SHA1
buyerEmail: new_premium@amazon.com
notificationType: TransactionStatus
callerReference: CallerReference05
operation: SETTLE
transactionStatus: SUCCESS
transactionAmount: USD 1.00
recipientEmail: test-caller@amazon.com
buyerName: Test Business
signature: pwozZP
+lYONFq39g13ux44vFFMRAt4eJ9kOUWMV2uPCrvBqzi4LFYDQY5UE3VW8OUiW+qpbukqFz
YNvE+8mh7adhX/qee2U8ZUUNZi6LaM3sKtpPxus2ZJ3wDVPjuO02Obtu1G6Eo79iMi8viX7Dz1LL
8pFTdhspHZb0XDWkuOt2pK2aELa7TOZ/pXXUFLvGrn4MOd6INwbyM2fvnJpIDTcNdzedBO3Rw3vp
2f2GfpFAZJD6Imu57rsr9RsHVUqu2bIhJaAgTRFleVKzMHQJqft5jo6M9N4vKmPfccsuAvoF+rDn
+/6a9VEvTBrVcvAhJ5jrBp3FkXYkOPbHchqHfQ==
recipientName: Test Business
paymentMethod: CC
certificateUrl: https://fps.sandbox.amazonaws.com/certs/090909/PKICert.pem
paymentReason: Reserve
statusCode: Success

Related Actions
• Pay (p. 74)

• Refund (p. 81)

• Reserve (p. 85)

VerifySignature

Description

VerifySignature enables you to verify the signature included with outbound notifications. A
correctly formatted call using VerifySignature returns a positive result when the signature is valid for the
response that contained it.

This action is a component of signature version 2. Because of this, you may only use it with responses
which have a SignatureVersion value of 2. To use signature version 2, you must select that option
on your Developer and Seller Preferences page. .

Note

Because this action's purpose is simply to verify that a signature is valid and was generated by
Amazon Payments, you do not need a developer account to invoke it from your code. Further,
the request requires no signature.

https://payments.amazon.com/sdui/sdui/managecobranding

Amazon FPS Advanced Quick Start Developer Guide
VerifySignature

API Version 2008-09-17
94

Request Parameters

Parameter Description Required

UrlEndpoint A required field that contains the appropriate originating
endpoint (either the returnUrl or ipnUrl) that received the
response. For example, if your web application resides at
http://my-app-website.biz/, the returnUrl might be
http://my-app-website.biz/amazon/success.php,
and the IPNUrl might be http://my-app-website.biz/
amazon/ipnProcessor.php.
Type: String

Default: None

Constraint: Cannot be null or empty

Yes

HttpParameters Concatenated string of all URL-Encoded parameters which
were included in the response containing the signature
you want to verify. This includes the certificateUrl,
signatureVersion, signatureMethod and signature
parameters.
For example, a correctly formatted and URL-encoded string
resembles the following:

First%20Name=Joe&Last
%20Name=Smith&signatureVersion=2
&signatureMethod=HMACSHA256&certificateUrl=https
%253A
%252F%252Ffps.amazonaws.com%252Fcert
%252Fkey.pem&signatur
e=aoeuAOE123eAUdhf]

Tip

For validating the returnUrl, you can extract the query
string from the returnUrl (excluding the '?' character).
For validating the IPNUrl, concatenate the POST
parameters.

Type: String

Default: None

Constraint: Cannot be null or empty. In addition, because
VerifySignature is a component of signature version 2, the
value for signatureVersion must be 2.

Yes

You must also use the Action parameter as described in Common Request Parameters (p. 53).
Parameter names are case sensitive.

Response Elements

Element Description

VerificationStatus The result of the verification, either Success or Failure.
Type: VerificationStatus

Amazon FPS Advanced Quick Start Developer Guide
VerifySignature

API Version 2008-09-17
95

Responses also include elements common to all responses. For more information, see Common
Response Elements (p. 54).

Errors

This action can return the following errors:

• InternalServerError

• InvalidParams (p. 58)

Examples

Sample REST Request

This section shows a sample request (SAMPLES TBD).

https://fps.sandbox.amazonaws.com?
Action=VerifySignature
&HttpParameters=signatureVersion%3D2%26signatureMethod%3DRSA-SHA1%26sta
tus%3DSubscriptionCancelled%26signature%3DsNaPeP1aNg5pjehHYJ97BAPWoZVPx
FpXGOmDmprYkPq8KN1cuZotBW2j%252BgoUqA5tue%252F2FDlNk5%252BZKMBtshSLiqtG
1R6AH9qaNjZQwg4dm4t0OqP2eOjoH73wQwIaCCEr690o2lxjN%252Bvx7KO%252Bw4wmnyq
FxL9%252Fj5wBjC2zpoy3NrN8uM0R547rYjjOaTODYb0cesYfvXXPGvFBniDloPGpxx7G2ry
IVZpFaeJ92XF2k6ho8M8rkdTp3MHPLiyZHjFl6%252BcKen2XynOqHD5RkG%252FaIgG9wau
s3E3esn9Zweo8m4vdiL67MyS4zQzyRg973bi45%252BKnv6AuuhhcTta41zSR8g%253D%253
D%26subscriptionId%3D17d62772-c53e-4bdb-9667-65d7b7841cfc%26certificateU
rl%3Dhttps%253A%252F%252Ffps.sandbox.amazonaws.com%252Fcerts%252F090909%
252FPKICert.pem%26statusReason%3DCancelledByRecipient
&Timestamp=2009-10-06T09%3A09%3A54.140Z
&UrlEndPoint=http%3A%2F%2Fmywebsite.com%3A8080%2Fipn.jsp

Sample Query Request

GET\n
fps.sandbox.amazonaws.com\n
Action=VerifySignature
&HttpParameters=signatureVersion%3D2%26signatureMethod%3DRSA-SHA1%26sta
tus%3DSubscriptionCancelled%26signature%3DsNaPeP1aNg5pjehHYJ97BAPWoZVPx
FpXGOmDmprYkPq8KN1cuZotBW2j%252BgoUqA5tue%252F2FDlNk5%252BZKMBtshSLiqtG
1R6AH9qaNjZQwg4dm4t0OqP2eOjoH73wQwIaCCEr690o2lxjN%252Bvx7KO%252Bw4wmnyq
FxL9%252Fj5wBjC2zpoy3NrN8uM0R547rYjjOaTODYb0cesYfvXXPGvFBniDloPGpxx7G2ry
IVZpFaeJ92XF2k6ho8M8rkdTp3MHPLiyZHjFl6%252BcKen2XynOqHD5RkG%252FaIgG9wau
s3E3esn9Zweo8m4vdiL67MyS4zQzyRg973bi45%252BKnv6AuuhhcTta41zSR8g%253D%253
D%26subscriptionId%3D17d62772-c53e-4bdb-9667-65d7b7841cfc%26certificateU
rl%3Dhttps%253A%252F%252Ffps.sandbox.amazonaws.com%252Fcerts%252F090909%
252FPKICert.pem%26statusReason%3DCancelledByRecipient
&Timestamp=2009-10-06T09%3A09%3A54.140Z
&UrlEndPoint=http%3A%2F%2Fmywebsite.com%3A8080%2Fipn.jsp

Sample Response to REST Request

This section shows a sample REST response.

<VerifySignatureResponse xmlns="http://fps.amazonaws.com/doc/2008-09-17/">
 <VerifySignatureResult>
 <VerificationStatus>Success</VerificationStatus>

Amazon FPS Advanced Quick Start Developer Guide
Data Types

API Version 2008-09-17
96

 </VerifySignatureResult>
 <ResponseMetadata>
 <RequestId>197e2085-1ed7-47a2-93d8-d76b452acc74:0</RequestId>
 </ResponseMetadata>
</VerifySignatureResponse>

Data Types
This section describes the data types common to the Amazon FPS actions.

• Enumerated Data Types (p. 96)

• Complex Data Types (p. 101)

Enumerated Data Types
Topics

• AccountBalance (p. 96)

• ChargeFeeTo (p. 97)

• CurrencyCode (p. 97)

• FPSOperation (p. 97)

• InstrumentId (p. 98)

• InstrumentStatus (p. 98)

• PaymentMethod (p. 98)

• RelationType (p. 99)

• SortOrder (p. 99)

• TokenStatus (p. 99)

• TokenType (p. 99)

• TransactionalRole (p. 100)

• TransactionStatus (p. 100)

This section describes the enumerated data types Amazon FPS uses.

AccountBalance

Name Description Type

AvailableBalances The total amount of money that is transferred to
your account from a bank account transfer or a
refund.

AvailableBalances (p.
102)

PendingInBalance The total amount that is yet to be credited to your
account.

Amount (p. 101)

PendingOutBalance The total amount that is yet to be debited from your
account.

Amount (p. 101)

TotalBalance The total balance that is currently available in your
account.

Amount (p. 101)

Amazon FPS Advanced Quick Start Developer Guide
Enumerated Data Types

API Version 2008-09-17
97

ChargeFeeTo

Name Description Type

Caller Caller shall pay the fees. String

Recipient Recipient shall pay the fees. String

CurrencyCode

Name Description Type

USD The transaction uses U.S.
dollars.

String

FPSOperation
These values are returned for non-IPN operations.

Name Description Type

Pay All pay transactions. String

Refund All refund transactions. String

Settle All settle transactions. String

SettleDebt All debt settlement
transactions.

String

WriteOffDebt All debt write-off transactions. String

FundPrepaid All funding of prepaid
transactions.

String

Reserve All reserve transactions. String

These values are returned only for IPN operations.

Name Description Type

PAY All pay transactions. String

REFUND All refund transactions. String

SETTLE All settle transactions. String

SETTLE_DEBT All debt settlement
transactions.

String

WRITE_OFF_DEBT All debt write-off transactions. String

FUND_PREPAID All funding of prepaid
transactions.

String

RESERVE All reserve transactions. String

Amazon FPS Advanced Quick Start Developer Guide
Enumerated Data Types

API Version 2008-09-17
98

Name Description Type

MULTI_SETTLE All multi-settle transactions. String

REAUTH All transactions that required
reauthorization.

String

DEPOSIT_FUNDS All fund deposit transactions. String

WITHDRAW_FUNDS All fund withdrawal
transactions.

String

CANCEL_TRANSACTION All non-user cancelled
transactions.

String

CANCEL All user cancelled transactions. String

InstrumentId

Name Description Type

InstrumentId An alphanumeric value that
represents the payment
instrument.

String

Max size = 64 characters

InstrumentStatus

Name Description Type

Active All active instruments installed
for your application.

String

All All instruments installed for
your application.

String

Cancelled All canceled instruments. String

PaymentMethod

Name Description Type

ABT Amazon Payments account
balance transfer.

String

ACH Bank account transaction. String

CC Credit card transaction. String

Debt Transactions using a credit
instrument as payment method.

String

Prepaid Transactions using a prepaid
instrument as payment method.

String

Amazon FPS Advanced Quick Start Developer Guide
Enumerated Data Types

API Version 2008-09-17
99

RelationType

Name Description Type

MarketplaceFee Marketplace fee transactions. String

Parent Parent transactions. String

Refund Refund transactions. String

RefundReversal RefundReversal transactions. String

Reserve Reserve transactions. String

Settle Settle transactions. String

SortOrder

Name Description Type

Ascending Return results in ascending
order by date.

String

Descending Return results in descending
order by date (default).

String

TokenStatus

Name Description String

Active The token is in active state. String

Inactive The token was canceled by the
user and is inactive.

String

TokenType

Name Description Type

MultiUse Token that can be used
multiple times.

String

Recurring Token which is specifically
marked for recurring payments.

String

SingleUse Token that can be used only
once.

String

Amazon FPS Advanced Quick Start Developer Guide
Enumerated Data Types

API Version 2008-09-17
100

Name Description Type

Unrestricted Token with unrestricted usage.
Sender tokens with unlimited
usage cannot be installed
by external applications.
Only recipient tokens can
be installed with unrestricted
usage.

String

TransactionalRole

Name Description Type

Caller Role is the caller. String

Recipient Role is the recipient. String

Sender Role is the sender. String

TransactionStatus

These values are returned for non-IPN operations.

Name Description Type

Cancelled The transaction was canceled. String

Failure The transaction failed. The API
operation failed and Amazon
FPS did not receive or record a
transaction. You can retry the
transaction only if a retriable
error was returned.

String

Pending The transaction is pending. String

Reserved The reserve request on
the transaction succeeded.
Amazon FPS reserves the
purchase price against the
sender's payment instrument.

String

Success The transaction succeeded.
You can fulfill the order for the
customer.

String

TransactionStatus (IPN)

These values are returned for IPN operations only.

Name Description Type

CANCELLED The transaction was canceled. String

Amazon FPS Advanced Quick Start Developer Guide
Complex Data Types

API Version 2008-09-17
101

Name Description Type

FAILURE The transaction failed. The API
operation failed and Amazon
FPS did not receive or record a
transaction. You can retry the
transaction only if a retriable
error has been returned.

String

PENDING The transaction is pending. String

RESERVED The reserve request on
the transaction succeeded.
Amazon FPS reserves the
purchase price against the
sender's payment instrument.

String

SUCCESS The transaction succeeded.
You can fulfill the order for the
customer.

String

Complex Data Types
Topics

• Amount (p. 101)

• AvailableBalances (p. 102)

• DebtBalance (p. 102)

• DescriptorPolicy (p. 102)

• MarketplaceRefundPolicy (p. 102)

• OutstandingDebtBalance (p. 103)

• OutstandingPrepaidLiability (p. 103)

• PrepaidBalance (p. 103)

• RelatedTransaction (p. 103)

• StatusHistory (p. 104)

• Token (p. 104)

• TokenUsageLimit (p. 104)

• Transaction (p. 105)

• TransactionDetail (p. 106)

• TransactionPart (p. 108)

This section describes the complex data types Amazon FPS uses.

Amount

Name Description Type

CurrencyCode The currency code of the amount. Amazon FPS currently
supports only USD.

CurrencyCode (p.
97)

Value The numeric value of the amount in dollars, for example,
25.00 is $25, and 2500 is $2500.

String

Amazon FPS Advanced Quick Start Developer Guide
Complex Data Types

API Version 2008-09-17
102

AvailableBalances

Name Description Type

DisburseBalance The total balance that has been disbursed. Amount (p.
101)

RefundBalance The total amount that has been refunded. Amount (p.
101)

DebtBalance

Name Description Type

AvailableBalance Available debt balance accumulated between
recipient and sender.

Amount (p. 101)

PendingOutBalance Any balance that is pending because of an external
instrument was used to settle the debt.

Amount (p. 101)

DescriptorPolicy

For information about using the DescriptorPolicy type, see Soft Descriptor Customization (p. 45).

Name Description Type

CSOwner The recipient or caller customer service
number. If you specify Caller, the
customer service number for the caller is
passed to the payment processor, which is
the entity that actually processes payments
on the person's credit card or bank account.
Otherwise, the default value of CSOwner is
Recipient.

The entity whose
CS Phone number
should be used. Valid
values are either
Recipient or Caller.
For more information,
see Soft Descriptor
Customization (p. 45).

Default: Recipient

SoftDescriptorType The type of soft descriptor. Valid values are
either Static or Dynamic.
If you specify Static, or do not specify
a type, the soft descriptor in your account
level setting is sent to the payment
processor.

If you specify Dynamic, the first 15
characters of sender description is sent to
the payment processor.

The type of soft
descriptor. Valid values
are either Static or
Dynamic.

Default: Static

MarketplaceRefundPolicy

Name Description Type

MarketplaceTxnOnly Caller refunds his fee to the recipient. String

Amazon FPS Advanced Quick Start Developer Guide
Complex Data Types

API Version 2008-09-17
103

Name Description Type

MasterAndMarketplaceTxn Caller and Amazon FPS refund their fees to the
sender, and the recipient refunds his amount

String

MasterTxnOnly Caller does not refund his fee. Amazon FPS
refunds its fee and the recipient refunds his amount
plus the caller's fee to the sender.

Type: String

String

OutstandingDebtBalance

Name Description Type

OutstandingBalance Available debt balance accumulated between
recipient and sender.

Amount (p. 101)

PendingOutBalance Any balance that is pending because an external
instrument was used to settle the debt.

Amount (p. 101)

OutstandingPrepaidLiability

Name Description Type

OutstandingBalance Outstanding prepaid liability owed by this account to
all the senders who bought prepaid instruments.

Amount (p. 101)

PendingInBalance Any transient balance that is pending and yet to be
settled.

Amount (p. 101)

PrepaidBalance

Name Description Type

AvailableBalance Available prepaid balance funded by the sender to
pay a particular recipient.

Amount (p. 101)

PendingInBalance Any balance that is pending because an external
instrument is used to fund the instrument.

Amount (p. 101)

RelatedTransaction

Name Description Type

RelationType Relation type of the related transaction. RelationType (p.
99)

TransactionId The Transaction ID of the related transaction. String

Max size = 35
characters

Amazon FPS Advanced Quick Start Developer Guide
Complex Data Types

API Version 2008-09-17
104

StatusHistory

Name Description Type

Amount The changed amount. Amount (p. 101)

Date The date when the status changed. dateTime

StatusCode The current status of the transaction. String

TransactionStatus The current status of the transaction. TransactionStatus (p. 100)

Token

Name Description Type

CallerReference Account ID of the caller who initiated the original
request.

String

Max size = 128
bytes

DateInstalled The date and time when the payment token was
created on the caller's account.

dateTime

FriendlyName A name that references the token. String

Max size = 128
characters

OldTokenId The token ID linked to this token. The token that was
created in place of this token.

String

PaymentReason Payment reason passed during token installation. String

TokenId The token ID representing the payment instruction. String

Max size = 64
characters

TokenStatus Specifies whether or not the token is active. TokenStatus (p.
99)

TokenType The type of the token (e.g., single-use, multi-use, etc.). TokenType (p.
99)

TokenUsageLimit

Name Description Type

Amount Amount paid in the latest time window with this token. Amount (p. 101)

Count Number of times this token was used in the latest
time window.

Integer

LastResetAmount Amount paid in the previous time window with this
token.

Amount (p. 101)

Amazon FPS Advanced Quick Start Developer Guide
Complex Data Types

API Version 2008-09-17
105

Name Description Type

LastResetCount Number of times this token was used in the previous
time window.

Integer

LastResetTimeStamp The exact time when the latest time window started
for this limit.

dateTime

Transaction

Name Description Type

Balance Balance in prepaid account. Amount (p. 101)

CallerName The value in this field is dependent on the
account type. For a personal account, the contact
name is displayed. For a business or developer
account, the business name is displayed.

String

Max size = 128
characters

CallerTransactionDate Date the caller provided for the transaction. dateTime

DateCompleted Date the transaction was completed. dateTime

DateReceived Date the transaction was received by Amazon
FPS.

dateTime

FPSFees Amount of fees collected by Amazon FPS for
performing the transaction.

Amount (p. 101)

FPSOperation The operation type. FPSOperation (p.
97)

OriginalTransactionId In the case of a refund, the TransactionID that is
being reversed.

String

Max size = 35
characters

PaymentMethod Payment method used in the transaction. Payment
Method (p. 98)

RecipientName The value in this field is dependent on the
account type. For a personal account, the contact
name is displayed. For a business or developer
account, the business name is displayed.

String

Max size = 128
characters

RecipientTokenID The recipient token used in the transaction. String

SenderName The value in this field is dependent on the
account type. For a personal account, the contact
name is displayed. For a business or developer
account, the business name is displayed.

String

Max size = 128
characters

SenderTokenID The sender token used in the transaction. String

Amazon FPS Advanced Quick Start Developer Guide
Complex Data Types

API Version 2008-09-17
106

Name Description Type

StatusCode A code that represents the current status of
the transaction. Expands on the information in
the TransactionStatus field. For example,
if TransactionStatus is PENDING, this
field might be PendingVerification, or
PendingNetworkResponse.

String

StatusMessage A short description of the current status of the
transaction.

String

TransactionAmount Total amount of the transaction. Amount (p. 101)

TransactionId Unique Amazon FPS-generated ID for the
transaction.

String

Max size = 35
characters

TransactionPart List of individual parts of the transaction, with
each one dealing with your account’s role in the
transaction.

TransactionPart (p.
108)

TransactionStatus Provides a short code on the status of the
transaction, for example "PENDING".

Transaction
Status (p. 100)

TransactionDetail

Name Description Type

CallerName The value in this field is dependent on the
account type. For a personal account, the
contact name is displayed. For a business
or developer account, the business name is
displayed.

String

Max size = 128
characters

CallerDescription Caller description the caller provided for the
transaction.

String

CallerReference Caller reference the caller provided for the
transaction.

String

CreditInstrumentID In the case of a postpaid transaction, this is the
credit instrument ID.

String

DateReceived Date Amazon FPS received the transaction. dateTime

DateCompleted Date the transaction was completed. dateTime

FPSFees Amount of fees collected by Amazon FPS for
performing the transaction.

Amount (p. 101)

FPSFeesPaidBy The party paying the FPS fees for this
transaction.

TransactionalRole (p.
100)

FPSOperation The operation type. FPSOperation (p. 97)

Amazon FPS Advanced Quick Start Developer Guide
Complex Data Types

API Version 2008-09-17
107

Name Description Type

MarketPlaceFees In the case of a marketplace transaction, this
is the amount of any marketplace fee the caller
has charged.

Amount (p. 101)

PaymentMethod The payment method used. PaymentMethod (p.
98)

PrepaidInstrumentID In the case of a prepaid transaction, this is the
prepaid instrument ID.

String

RecipientEmail The e-mail ID of the recipient of this transaction. String

RecipientName The value in this field is dependent on the
account type. For a personal account, the
contact name is displayed. For a business
or developer account, the business name is
displayed.

String

Max size = 128
characters

RecipientTokenId Recipient token ID used in the transaction. String

RelatedTransaction All transactions related to this transaction. RelatedTransaction (p.
103)

SenderDescription Sender description the caller provided for the
transaction.

String

SenderEmail The email ID of the sender of this transaction.
This is returned only if the caller is also the
recipient of this transaction.

String

SenderName The value in this field is dependent on the
account type. For a personal account, the
contact name is displayed. For a business
or developer account, the business name is
displayed.

String

Max size = 128
characters

SenderTokenId Sender token ID used in the transaction. String

StatusCode A code that represents the current status of the
transaction.

String

StatusHistory A list of all the previous status entries for this
transaction.

StatusHistory (p. 104)

StatusMessage A short description of the current status of the
transaction.

String

TransactionAmount Total amount of the transaction. Amount (p. 101)

TransactionId Unique Amazon FPS-generated ID for the
transaction.

String

Max size = 35
characters

TransactionStatus The transaction status. TransactionStatus (p.
100)

Amazon FPS Advanced Quick Start Developer Guide
Complex Data Types

API Version 2008-09-17
108

TransactionPart

Name Description Type

Description Description provided by the entity. String

FeesPaid Fees the caller or recipient paid. Amount (p. 101)

InstrumentId Payment instrument involved in this transaction
part.

String

Name Name used for the role specified in Role. String

Reference Reference data provided by this party. String

Role Role played by this party. TransactionalRole (p. 100)

Amazon FPS Advanced Quick Start Developer Guide
Common Parameters

API Version 2008-09-17
109

Co-Branded Service API
Reference

Topics

• Common Parameters (p. 109)

• Recipient Token API (p. 112)

• Recurring-Use Token API (p. 114)

• Multi-Use Token API (p. 117)

• Edit Token API (p. 122)

You use different Co-Branded service APIs to create different payment tokens. For example, the
Recurring-Use Token API creates a recurring-use payment token, whereas the Multi-Use Token API
creates a multi-use payment token. The Advanced Quick Start also includes the Recipient Token
API, which registers merchants with you (rather than creating a payment token) so they can receive
payments. For more information about the different tokens, see Multi-Use Payment Tokens (p. 9),
Recurring Payment Tokens (p. 11), and Recipient Tokens (p. 13).

Common Parameters
The following parameters are common to all Co-Branded service API requests.

Request Parameters

Name Description Required

callerKey AWS Access Key ID of the developer. You can obtain this
value from the AWS Access Identifiers page on the AWS
web site (http://aws.amazon.com).
Type: String

Default: None

Yes

http://aws.amazon.com

Amazon FPS Advanced Quick Start Developer Guide
Request Parameters

API Version 2008-09-17
110

Name Description Required

cobrandingStyle Specifies the co-branding type on Amazon FPS payment
authorization pages. Amazon FPS is phasing out support
for the banner type, so we suggest you change your co-
branding to the logo type.

For more information, see Co-Branding Styles (p. 111).
Type: String

Default: logo

Valid Values: banner | logo

No

cobrandingUrl Allows you to specify a co-branding URL dynamically. It
specifies the URL of your company's logo.
Type: String

Default: None

Constraint: This URL should point to a co-branding image
that is not larger than 215 (w) x 40 (h) pixels in a secure
HTTP server.

No

pipelineName The kind of token you are creating.
Type: String

Default: None

Valid Values: SingleUse | MultiUse | Recurring | Recipient
| SetupPrepaid | SetupPostpaid | EditToken

Yes

returnURL Specifies the URL on your web site that the person
(typically the buyer) is redirected to after completing the
CBUI web pages. In addition to the URL, the redirect URI
includes the following:

• Parameters appended to the returnURL in the URI

• Status of the request

• The installed token

• The Signature

Type: URL

Default: None

Yes

signature A value calculated using the request parameters and
a SHA-1 HMAC encryption algorithm to make sure the
request parameters and values were not altered during
the request's or response's travel across the Internet. For
more information, see Working with Signatures (p. 41).
Type: String

Default: None

Yes

Amazon FPS Advanced Quick Start Developer Guide
Response Parameters

API Version 2008-09-17
111

Name Description Required

signatureVersion 1 or 2

Caution

If you are currently using signature version 1:
Version 1 is deprecated, and you should move
to signature version 2 as soon as possible. For
information about the deprecation schedule and
the differences between signature version 2 and
version 1, go to Making Secure Requests to
Amazon Web Services.

Yes

signatureMethod HmacSHA256 (preferred) or HmacSHA1 Yes

version The version of the API to use. Always set to 2009-01-09.
Type: String

Yes

websiteDescription Human readable text to describe your web site. It is used
on the payment authorization pages for messaging only.
For instance, a message such as "Click here to return to
<websiteDescription> website" can appear on the page.
Type: String

Default: None

No

Co-Branding Styles

Co-branding refers to using your brand along with Amazon's on the CBUI pages. The CBUI offers the
following co-branding styles.

• Banner—Your logo appears in the upper left corner of the CBUI page and the Amazon Payments
logo appears right below your logo on the right hand side. Amazon is phasing out support for the
banner type in favor of the logo type.

• Logo—Your logo appears on the upper left corner of the CBUI page, followed by a checkout cart
breadcrumb in the middle, followed by the Amazon Payments logo, as shown.

This is the default behavior.

The following figure shows an example of banner co-branding.

The following figure shows an example of logo co-branding.

Response Parameters
The following table lists the parameters common to all Co-Branded service API responses.

http://developer.amazonwebservices.com/connect/entry.jspa?externalID=1928
http://developer.amazonwebservices.com/connect/entry.jspa?externalID=1928

Amazon FPS Advanced Quick Start Developer Guide
Recipient Token API

API Version 2008-09-17
112

Name Description

Signature Amazon FPS calculates the Signature using all the parameters in the
returnURL. We recommend that you calculate the return URL's Signature
using the same method that you used to calculate the Signature for your
signed URL. This is to ensure that you are receiving the response from Amazon
FPS.

For more information, see Working with Signatures (p. 41).
Type: String

Recipient Token API
Use this Co-Branded service API to register a recipient on a caller's web site.

Request Parameters
Parameter Description Required

callerReference A value you provide that uniquely identifies the request. For
more information, see Important Values to Store in Your
Database (p. 30).
Type: String

Constraint: Max size = 128 bytes

Yes

maxFixedFee The maximum fixed fee that the caller charges in a
marketplace transaction. The actual fixed marketplace fee
is passed as a parameter to Pay or Reserve actions. This
field can be ignored if a fixed fee is not being charged.
Type: Long

Yes

maxVariableFee The maximum variable fee that the caller charges in a
marketplace transaction. The variable fee is a percentage
of the transaction amount. The actual variable marketplace
fee is passed as a parameter to Pay or Reserve actions.
This field can be ignored if a variable fee is not being
charged.
Type: Long

Yes

paymentMethod Specifies payment methods the recipient supports. Use CC
for credit cards, ACH for bank account withdrawal, and ABT
for Amazon Payments balance transfer.
Type: Comma-separated list

Default: ABT

Valid Values: CC | ACH | ABT

No

recipientPaysFee Set this value to True if the recipient agrees to pay the
fees, otherwise set this value to False.
Type: String

Valid Values: True | False

Yes

validityExpiry When the token expires.
Type: Date

Default: No expiry

Constraint: Date cannot be earlier than the current date

No

Amazon FPS Advanced Quick Start Developer Guide
Response Parameters

API Version 2008-09-17
113

Parameter Description Required

validityStart When the token becomes valid. Provides seconds from the
EPOCH time.
Type: Date

Default: Current date

Constraint: Date must be within one year from the current
date (date of creation) and cannot be earlier than the
current date

No

Note

Co-Branded service request parameters are not case sensitive.

The request also uses the parameters common to all Co-Branded service API requests. For more
information, see Common Parameters (p. 109).

Response Parameters

Parameter Description

errorMessage This is text in a human readable form that specifies the reason for a
request failure.
Type: String

status Specifies the status of the Co-Branded service request.
Type: String

Valid values: See the following table

tokenID This string identifies the merchant who gets paid in the transaction. You
should store this value.
Type: String

Responses also include parameters common to all responses. For more information, see Response
Parameters (p. 111).

Status Code
The following table shows the values of the status response parameter.

Status Code Description

SR Success. Specifies that the merchant's token was created.

A Specifies that the pipeline has been aborted by the user.

CE Specifies a caller exception.

Amazon FPS Advanced Quick Start Developer Guide
Recurring-Use Token API

API Version 2008-09-17
114

Status Code Description

NP There are four cases where the NP status is returned:

• The payment instruction installation was not allowed on the sender's account,
because the sender's email account is not verified

• The sender and the recipient are the same

• The recipient account is a personal account, and therefore cannot accept credit
card payments

• A user error occurred because the pipeline was cancelled and then restarted

NM You are not registered as a third-party caller to make this transaction. Contact
Amazon Payments for more information.

Recurring-Use Token API
The recurring-use token API creates a token that makes payments on a recurring basis at specific
intervals. The sender's account is charged accordingly without requiring recurring authorizations.
When the recurringPeriod is one month, the payment occurs on the same day each month. If the
original payment occurred on the last day of a month, the next payment occurs on the closest day to
that without skipping a month. For example, if the pay date is October 31, the next pay date will be
November 30. After the recurrence passes through February, the pay date is typically on the 28th of
each month.

Request Parameters

Parameter Description Required

addressName
addressLine1

addressLine2

city

state

zip

phoneNumber

The sender's shipping address. You might choose to
collect the address on your web site and pass it to the
CBUI. If you choose to collect the shipping address
yourself, you can use these parameters to specify it.
This address will be displayed to the sender on the
payment authorization confirmation page. See also the
description of collectShippingAddress.
Type: String

Default: None

No

callerReference A value you provide that uniquely identifies the request.
For more information, see Important Values to Store in
Your Database (p. 30).
Type: String

Default: None

Constraint: Max size = 128 bytes

Yes

collectShippingAddress If you set this value to True, all the shipping address
parameters (addressName, addressLine1, etc.)
are ignored, and the shipping/mailing address that the
sender confirms on the CBUI pages is returned as part
of the return URL.
Type: Boolean

Default: False

Valid Values: True | False

No

Amazon FPS Advanced Quick Start Developer Guide
Request Parameters

API Version 2008-09-17
115

Parameter Description Required

currencyCode Specifies the currency of all amounts that this pipeline
accepts.
Type: String

Default: USD

Valid Values: USD

No

isRecipientCobranding This parameter is for marketplace applications where
the caller is different from the recipient. If this value
is set to True, then the co-branding URL is picked
up from the recipient's settings. The parameter
recipientToken is mandatory if this value is set to
True. If this value is False, the co-branding URL is
picked up from the caller's setting.
Type: Boolean

Valid Values: True | False

Default: False

No

paymentMethod Specifies payment methods the recipient supports. Use
CC for credit cards, ACH for bank account withdrawal,
and ABT for Amazon Payments balance transfer.
Type: Comma-separated list

Default: ABT

Valid Values: CC | ACH | ABT

No

paymentReason Specifies the reason for this payment transaction. You
can provide a limited set of HTML tags to format your
text, including , <i>, <u>, , ,
, ,
, and <strike>. Other tags are ignored.
Type: String

No

recipientToken Specifies the intended recipient's TokenId.
Type: String

Default: The caller is considered to be the recipient

No

recurringPeriod The recurring period to associate with this token. This
parameter accepts an integer followed by one of the
following strings:

• Hour[s] (e.g. 12 Hours)

• Day[s] (e.g., 4 Days)

• Month[s] (e.g., 6 Months)

Type: String

Yes

transactionAmount Specifies the recurring amount payable in this
transaction.
Type: String

Yes

validityExpiry When the token expires. The expiry date has no
restrictions, other than the date cannot be earlier than
the current date.
Type: Date

Default: No expiration

No

Amazon FPS Advanced Quick Start Developer Guide
Response Parameters

API Version 2008-09-17
116

Parameter Description Required

validityStart When the token becomes valid. By default this date is
current date. Provides seconds unit using the EPOCH
time.
Type: Date

Default: The current date

Constraint: The validity start date should be within one
year from the current date. The date cannot be beyond
one year or earlier than the current date.

No

The request also uses the parameters common to all Co-Branded service API requests. For more
information, see Common Parameters (p. 109).

Response Parameters

Parameter Description

addressName
addressLine1

addressLine2

city

state

zip

phoneNumber

The sender's shipping address. These parameters are returned
only if collectShippingAddress was set to True in the
request.
Type: String

errorMessage This is text in a human readable form that specifies the reason
for a request failure.
Type: String

expiry The expiry (if any) of the payment method.
Type: String

status The status of the Co-Branded service request.
Type: String

Valid Values: See Status Codes (p. 117).

tokenID Specifies the token ID string associated with the token just
created (installed).
Type: String

warningCode There might be cases when the sender token is installed
successfully but there is an associated warning. This parameter
denotes that warning.
Type: String

Valid Values: invalidShippingAddress (returned when you
pass an incorrect shipping address in the request parameters
addressLine1, addressLine2, city, etc.)

warningMessage Specifies a human readable text that explains the warning
corresponding to the warningCode.
Type: String

Amazon FPS Advanced Quick Start Developer Guide
Status Codes

API Version 2008-09-17
117

Responses also include parameters common to all responses. For more information, see Response
Parameters (p. 111).

Status Codes

Status
Code

Description

SA Success status for the ABT payment method.

SB Success status for the ACH (bank account) payment method.

SC Success status for the credit card payment method.

SE System error.

A Buyer abandoned the pipeline.

CE Specifies a caller exception.

PE Payment Method Mismatch Error: Specifies that the buyer does not have payment
method that you have requested.

NP There are four cases where the NP status is returned:

• The payment instruction installation was not allowed on the sender's account, because
the sender's email account is not verified

• The sender and the recipient are the same

• The recipient account is a personal account, and therefore cannot accept credit card
payments

• A user error occurred because the pipeline was cancelled and then restarted

NM You are not registered as a third-party caller to make this transaction. Contact Amazon
Payments for more information.

Multi-Use Token API
The multi-use token API creates a token that makes multiple payments without the sender having
to repeatedly authorize payments. The payments can occur at any time; they don't have to be on
a regularly recurring basis. This token works like a voucher and the parameters you include in the
request govern the token's use, such as how much the token can pay per transaction, how much it can
pay during its lifetime, when it expires, what kind of personal payment instruments it can accept, and
the minimum payment it can make.

You can specify a maximum amount that can be charged over a period of time. Set
usageLimitType1 to Amount, and then use usageLimitPeriod1 and usageLimitValue1 to set
the time period and maximum amount.

You can also specify a maximum number of charges that can occur over a period of time. Set
usageLimitType2 to Count, and then use usageLimitPeriod2 and usageLimitValue2 to set
the time period and maximum number of charges.

Amazon FPS Advanced Quick Start Developer Guide
Request Parameters

API Version 2008-09-17
118

Request Parameters

Parameter Description Required

addressName
addressLine1

addressLine2

city

state

zip

phoneNumber

The sender's shipping address. You might choose to
collect the address on your web site and pass it to the
CBUI. If you choose to collect the shipping address
yourself, you can use these parameters to specify it.
This address will be displayed to the sender on the
payment authorization confirmation page. See also the
description of collectShippingAddress.
Type: String

Default: None

No

amountType Specifies whether the amount specified by
transactionAmount is the exact amount allowed
by the token, the minimum amount, or the maximum
amount.
Type: String

Default: Exact

Valid Values: Exact | Maximum | Minimum

No

callerReference A value you provide that uniquely identifies the request.
For more information, see Important Values to Store in
Your Database (p. 30).
Type: String

Default: None

Constraint: Max size = 128 bytes

Yes

collectShippingAddress If you set this value to True, all the shipping address
parameters (addressName, addressLine1, etc.)
are ignored, and the shipping/mailing address that the
sender confirms on the CBUI pages is returned as part
of the return URL.
Type: Boolean

Default: False

Valid Values: True | False

No

currencyCode Specifies the currency of all amounts that this pipeline
accepts.
Type: String

Default: USD

Valid Values: USD

No

globalAmountLimit Specifies the maximum amount of money this token
can be used for across all payments.
Type: String

Yes

Amazon FPS Advanced Quick Start Developer Guide
Request Parameters

API Version 2008-09-17
119

Parameter Description Required

isRecipientCobranding This parameter is for marketplace applications where
the caller is different from the recipient. If this value
is set to True, then the co-branding URL is picked
up from the recipient's settings. The parameter
recipientToken is mandatory if this value is set to
True. If this value is False, the co-branding URL is
picked up from the caller's setting.
Type: Boolean

Valid Values: True | False

Default: False

No

paymentMethod Specifies payment methods the recipient supports. Use
CC for credit cards, ACH for bank account withdrawal,
and ABT for Amazon Payments balance transfer.
Type: Comma-separated list

Default: ABT

Valid Values: CC | ACH | ABT

No

paymentReason Specifies the reason for this payment transaction. You
can provide a limited set of HTML tags to format your
text, including , <i>, <u>, , ,
, ,
, and <strike>. Other tags are ignored.
Type: String

No

recipientTokenList Specifies a comma-separated list of recipient token IDs
(for the merchants who can receive payment with this
token). If you create a merchant token list, you must
include the recipient token ID for the caller in addition to
any other tokens you add to the list.
Type: String

Default: Caller's recipient token ID

Conditional: Required if isRecipientCobranding is
True

Conditional

transactionAmount Specifies the amount payable in this transaction.
Type: Double

Condition: Required if you have specified amountType.

Conditional

usageLimitType1 See the description at the beginning of this topic for
how to use this field.
Type: String

Valid Values: Amount | Count

No

Amazon FPS Advanced Quick Start Developer Guide
Request Parameters

API Version 2008-09-17
120

Parameter Description Required

usageLimitPeriod1 If you specify usageLimitType1 but not
usageLimitPeriod1, the usage period is forever.
This parameter accepts an integer followed by one of
the following strings:

• Hour[s] (e.g., 12 Hours)

• Day[s] (e.g., 4 Days)

• Month[s] (e.g., 6 Months)

Type: String

Default: Forever

No

usageLimitValue1 Corresponds to the value for the parameter specified
by usageLimitType1.
Type: String if usageLimitType1=Amount; integer if
usageLimitType1=Count

Condition: Required if you specify usageLimitType1.

Conditional

usageLimitType2 See the description at the beginning of this topic for
how to use this field.
Type: String

Valid Values: Amount | Count

No

usageLimitPeriod2 If you specify usageLimitType2 but not
usageLimitPeriod2, the usage period is forever.
This parameter accepts an integer followed by one of
the following strings:

• Hour[s] (e.g., 12 Hours)

• Day[s] (e.g., 4 Days)

• Month[s] (e.g., 6 Months)

Type: String

Default: Forever

No

usageLimitValue2 Corresponds to the value for the parameter specified
by usageLimitType2.
Type: String if usageLimitType2=Amount; integer if
usageLimitType2=Count

Condition: Required if you specify usageLimitType2.

Conditional

validityExpiry When the token expires. The expiry date has no
restrictions, other than the date cannot be earlier than
the current date.
Type: Date

Default: No expiration

No

Amazon FPS Advanced Quick Start Developer Guide
Response Parameters

API Version 2008-09-17
121

Parameter Description Required

validityStart When the token becomes valid. By default this date is
current date. Provides seconds unit using the EPOCH
time.
Type: Date

Default: The current date

Constraint: The validity start date should be within one
year from the current date. The date cannot be beyond
one year or earlier than the current date.

No

The request also uses the parameters common to all Co-Branded service API requests. For more
information, see Common Parameters (p. 109).

Response Parameters

Parameter Description

addressName
addressLine1

addressLine2

city

state

zip

phoneNumber

The sender's shipping address. These parameters are returned only if
collectShippingAddress was set to True in the request.
Type: String

errorMessage This is text in a human readable form that specifies the reason for a request
failure.
Type: String

expiry Specifies the expiry (if any) of the payment method.
Type: String

status The status of the Co-Branded service request.
Type: String

Valid Values: See Status Codes (p. 122).

tokenID Specifies the token ID string associated with the token just created
(installed).
Type: String

warningCode There might be cases when the sender token is installed successfully but
there is an associated warning. This parameter denotes that warning.
Type: String

Valid Values: invalidShippingAddress (returned when you pass an
incorrect shipping address in the request parameters addressLine1,
addressLine2, city, etc.)

warningMessage Specifies a human readable text that explains the warning corresponding to
the warningCode.
Type: String

Responses also include parameters common to all responses. For more information, see Response
Parameters (p. 111).

Amazon FPS Advanced Quick Start Developer Guide
Status Codes

API Version 2008-09-17
122

Status Codes

Status
Code

Description

SA Success status for the ABT payment method.

SB Success status for the ACH (bank account) payment method.

SC Success status for the credit card payment method.

SE System error.

A Buyer abandoned the pipeline.

CE Specifies a caller exception.

PE Payment Method Mismatch Error: Specifies that the buyer does not have the payment
method you requested.

NP There are four cases where the NP status is returned:

• The payment instruction installation was not allowed on the sender's account, because
the sender's email account is not verified

• The sender and the recipient are the same

• The recipient account is a personal account, and therefore cannot accept credit card
payments

• A user error occurred because the pipeline was cancelled and then restarted

NM You are not registered as a third-party caller to make this transaction. Contact Amazon
Payments for more information.

Edit Token API
The Edit Token API enables you to view an existing token's details and to change the payment
instrument for the token.

Request Parameters

Parameter Description Required

callerReference A value you provide that uniquely identifies the request. For
more information, see Important Values to Store in Your
Database (p. 30).
Type: String

Default: None

Constraint: Max size = 128 bytes

Yes

paymentMethod A comma-separated list that enables you to pass payment
methods supported by the merchant.
Type: String

Default: ABT

Valid Values: CC | ACH | ABT

No

Amazon FPS Advanced Quick Start Developer Guide
Response Parameters

API Version 2008-09-17
123

Parameter Description Required

tokenID Specifies the token you want to edit. You can only edit multi-
use or recurring tokens.
Type: String

Constraint: Max size = 65 characters

Yes

The request also uses the parameters common to all Co-Branded service API requests. For more
information, see Common Parameters (p. 109).

Response Parameters

Parameter Description

errorMessage This is text in a human readable form that specifies the reason for a request
failure.
Type: String

expiry This specifies the expiry (if any) of the payment method associated with the
token.
Type: String

status The status of the Co-Branded service request.
Type: String

Valid Values: See Status Codes (p. 123).

tokenID This specifies the token ID associated with the new token.
Type: String

Responses also include parameters common to all responses. For more information, see Response
Parameters (p. 111).

Status Codes

Status
Code

Description

SU The token has not changed.

SA The status of the token that uses ABT as the payment method has changed.

SB The token that uses ACH as the payment method has changed.

SC The token that uses CC as the payment method has changed.

SE System error.

A Buyer abandoned the pipeline.

CE Specifies a caller exception.

IT Specifies an invalid token. The token passed is invalid, expired, or cannot be modified.

NA Specifies that the user account does not exist.

UT Specifies an unauthorized access to the token. The token does not belong to the user.

Amazon FPS Advanced Quick Start Developer Guide
Status Codes

API Version 2008-09-17
124

Status
Code

Description

PE Specifies a payment method mismatch error. The user does not have payment method
that you requested.

Amazon FPS Advanced Quick Start Developer Guide

API Version 2008-09-17
125

Code Samples

Topics

• Understanding the Amazon FPS Samples (p. 126)

• Understanding the Amazon CBUI Samples (p. 129)

• Understanding the IPNAndReturnURLValidation Sample (p. 133)

• Getting the Samples (p. 135)

This appendix provides an overview of the Amazon Flexible Payments Service development libraries
provided by Amazon. The sample code shows you how to implement most of the basic Amazon FPS
functions. Packaged in four programming languages (C#, Java, Perl, and PHP), the development
libraries are available from the Amazon Web Services developer community, under the Amazon
Flexible Payments Service category. Refer to the following table for specific sample packages.

Language Location

C# http://signature2-fps.s3.amazonaws.com/
amazon-fps-2008-09-17-cs-library.zip

Java http://signature2-fps.s3.amazonaws.com/
amazon-fps-2008-09-17-java-library.zip

Perl http://signature2-fps.s3.amazonaws.com/
amazon-fps-2008-09-17-perl-library.zip

PHP http://signature2-fps.s3.amazonaws.com/
amazon-fps-2008-09-17-php-library.zip

Each package is updated for signature version 2, and contains both a development library and sample
implementations of the Amazon FPS APIs. The development libraries enable you to

• Use the Co-Branded User Interface to create CBUI pipeline URLs

• Invoke any of the Amazon FPS APIs documented in this quickstart

• Generating request signatures

http://developer.amazonwebservices.com/connect/kbcategory.jspa?categoryID=191
http://signature2-fps.s3.amazonaws.com/amazon-fps-2008-09-17-cs-library.zip
http://signature2-fps.s3.amazonaws.com/amazon-fps-2008-09-17-cs-library.zip
http://signature2-fps.s3.amazonaws.com/amazon-fps-2008-09-17-java-library.zip
http://signature2-fps.s3.amazonaws.com/amazon-fps-2008-09-17-java-library.zip
http://signature2-fps.s3.amazonaws.com/amazon-fps-2008-09-17-perl-library.zip
http://signature2-fps.s3.amazonaws.com/amazon-fps-2008-09-17-perl-library.zip
http://signature2-fps.s3.amazonaws.com/amazon-fps-2008-09-17-php-library.zip
http://signature2-fps.s3.amazonaws.com/amazon-fps-2008-09-17-php-library.zip

Amazon FPS Advanced Quick Start Developer Guide
Understanding the Amazon FPS Samples

API Version 2008-09-17
126

• Validate the content of return URL responses and IPN notifications

The following sections describe the code libraries in more detail, with an eye towards enabling you
to build your applications quickly. If you want help building your first sample application using the
development libraries, see "Making a Pay Request" in the Amazon Flexible Payments Service Getting
Started Guide

Understanding the Amazon FPS Samples
Amazon provides dozens of samples in four programming languages (C#, Java, Perl, and PHP) which
show you how to perform numerous operation with Amazon FPS actions.

When you download a sample file, such as amazon-fps-2008-09-17-java-library, the
[package root]/src/com/amazonaws/fps/samples folder contains sample classes showing
how to invoke most Amazon FPS actions from your code ([package root] is the location you
extracted your sample package).

Each sample describes its requirements in its Readme.html file, located at the package root.
Typically, the entire library structure must be available to the compiler. For example, the amazon-
fps-2008-09-17-php-library.zip file contains the src/Amazon/FPS/Model and src/Amazon/
FPS/Mock folders, which the files in src/Amazon/FPS/Samples require.

In addition to these primary components, a sample may include other required resources. For example,
the Java samples all include numerous jar files in the [package-root]/third-party folder, which
must also be in your classpath in order to compile the sample.

For each sample, you must set your security credentials and Amazon FPS sandbox endpoints in a
library-dependant way. For example, to use the C# library, you set your security credentials in the
[package-root]/src/Amazon.FPS.Samples/Amazon.FPS.Samples/AmazonFPSSamples.cs
file, while for the perl library you set them in the individual [package-root]/src/Amazon/FPS/
Samples/*.pl file you are working with.

In the following section, we show how to work with the VerifySignature sample using the
Java library. You will use this fundamental API frequently for server-side validation of your
return URL responses and IPN notifications. You will find that the basic process you use for the
VerifySignature sample is the same for all the other samples in the FPS/Samples (or, in the case
of Amazon.FPS.Samples) folder. (The process for the CBUI and Return URL/IPN Validations samples
are different. For more information, see Understanding the Amazon CBUI Samples (p. 129) and
Understanding the IPNAndReturnURLValidation Sample (p. 133).)

Understanding the VerifySignature Sample
This section explains how to use the Java version of the VerifySignature API. If you want to
use one of the other sample libraries, they are set up nearly identical to the Java sample. To see
file locations for the VerifySignature sample for your preferred language, see Locations of the
VerifySignatureSample Files in Other Libraries (p. 128).

To use the sample, do the following

Using the VerifySignature Sample

1 Set up your programming environment so that the program will compile without warnings
or errors. For the Java sample, this includes ensuring that the files and sub folders in
the [package-root]/src and [package-root]/third-party folder are in the java
classpath.

http://docs.amazonwebservices.com/AmazonFPS/latest/FPSGettingStartedGuide/
http://docs.amazonwebservices.com/AmazonFPS/latest/FPSGettingStartedGuide/

Amazon FPS Advanced Quick Start Developer Guide
Understanding the VerifySignature Sample

API Version 2008-09-17
127

2 In the [package-root]/src/config.properties file, set the values for AwsAccessKey
and AwsSecretKey using your security credentials. To get your credentials, see
Getting an AWS Account in the http://docs.amazonwebservices.com/AmazonFPS/latest/
FPSGettingStartedGuide/.

In the same file, if you want to target the sandbox, change the AwsServiceEndPoint
property to http://fps.sandbox.amazon.com. Then save the file.

3 In the [package-root]/src/com/amazonaws/fps/samples/VerifySignature.java
file, find the section containing the lines:

VerifySignatureRequest fpsRequest = new VerifySignatureRequest();
 // @TODO: set request parameters here
 // invokeVerifySignature(service, fpsRequest);

(The VerifySignatureRequest, VerifySignatureResult, and
VerifySignatureResponse classes are located in [package-root]/src/com/
amazonaws/fps/model folder.)

4 In the same file, remove the comment on invokeVerifySignature, and after it add the
VerifySignature parameter assignments consistent with your transaction. For example:

fpsRequest.setAction("VerifySignature");
fpsRequest.setUrlEndpoint("http://myApplication/my-ipn-response.pgp");
fpsRequest.setHttpParameters(
 "Name1=Joe&
 "Name2=College&" +
 "signatureVersion=2&" +
 "signatureMethod=HMACSHA256&" +
 "certificateUrl=https://fps.amazonaws.com/cert/key.pem&" +
 "signature=aoeuAOE123eAUdhf]");

Save the file. For information on the parameters to VerifySignature, see
VerifySignature (p. 93).

5 Compile and run the sample.
The program copies to standard out a representation of the VerifySigatureResponse XML
fragment similar to the following:

VerifySignature Action Response
 =======================================
 VerifySignatureResponse
 VerifySignatureResult
 True
 VerificationStatus
 Success
 ResponseMetadata
 RequestId
 bda6-4f5f-b37b-1a146b9a-b9e45c3012a5:0

For information on the XML document returned by VerifySignature, see VerifySignature (p.
93).

In addition to simple API invocation, the samples provide you the following advanced options:

• The ability to simulate a mock Amazon FPS service and get responses without a live connection.

http://fps.sandbox.amazon.com

Amazon FPS Advanced Quick Start Developer Guide
Locations of the VerifySignatureSample

Files in Other Libraries

API Version 2008-09-17
128

• Specifying a proxy host and port, through config.properties.

• Setting the endpoint, through config.properties

• Logging, through log4j.properties

Locations of the VerifySignatureSample Files in
Other Libraries
The development libraries for C#, Perl, and PHP also enable you to perform a server-side validation
of a signature in a return URL or IPN notification. The following tables list the locations of the files
referenced in Understanding the Amazon FPS Samples (p. 126).

C# File Locations for the Amazon.FPS VerifySignature Sample

File Location

VerifySignatureRequest.cs [package root]/src/Amazon.FPS/
Amazon.FPS.Model

VerifySignatureSample.cs [package root]/src/
Amazon.FPS.Samples/
Amazon.FPS.Samples

Amazon.FPS.proj
(Visual Studio.NET project for the FPS
development library)

[package root]/src/Amazon.FPS/
Amazon.FPS

Amazon.FPS.Samples.proj
(Visual Studio.NET project for the Amazon
FPS API samples)

[package root]/src/
Amazon.FPS/Amazon.FPS.Samples/
Amazon.FPS.Samples

Amazon.FPS.sln
Visual Studio.NET solution for the library
package

Note

The Visual Studio.NET samples are
organized into this solution. After
setting your access parameters the
first time, you build the entire solution
to generate the dependency classes.
Then you modify the specific sample
you want. See the Readme.html file
for more information.

[package root]/src/Amazon.FPS/
Amazon.FPS

Perl File Locations for the Amazon.FPS VerifySignature Sample

Class Location

VerifySignatureRequest.pm [package root]/src/Amazon/FPS/Model

VerifySignatureSample.pl [package root]/src/Amazon/FPS/
Samples

ReadMe.html (readme for perl fps
library)

[package root]/src

Amazon FPS Advanced Quick Start Developer Guide
Understanding the Amazon CBUI Samples

API Version 2008-09-17
129

PHP File Locations for the Amazon.FPS VerifySignature Sample

Class Location

VerifySignatureRequest.php [package root]/src/Amazon/FPS/Model

VerifySignatureSample.php [package root]/src/Amazon/FPS/
Samples

ReadMe.html (readme for php fps
library)

[package root]/src

Understanding the Amazon CBUI Samples
Amazon provides five samples in four programming languages (C#, Java, Perl, and PHP) which show
you how to build Co-Branded User Interface request URLs.

When you download a sample file, such as amazon-fps-2008-09-17-java-library, the
[package root]/src/com/amazonaws/cbui/samples folder contains sample classes showing
how to generate pipeline-specific CBUI URLs from your code ([package root] is the location you
extracted your sample package).

Each sample describes its requirements in its Readme.html file, located at the package root.
Typically, the entire library structure must be available to the compiler. For example, the amazon-
fps-2008-09-17-php-library.zip file contains the src/Amazon/CBUI and folders which the
files in src/Amazon/CBUI/Samples require.

In addition to these primary components, a sample may include other required resources. For example,
the Java samples all include numerous jar files in the [package-root]/third-party folder, which
must also be in your classpath in order to compile the sample.

For each sample, you must set your security credentials and Amazon FPS sandbox endpoints in a
library-dependant way. For example, to use the C# library, you set your security credentials in the
[package-root]/src/Amazon.FPS.Samples/Amazon.FPS.Samples/AmazonFPSSamples.cs
file, while for the perl library you set them in the individual [package-root]/src/Amazon/CBUI/
Samples/*.pl file you are working with.

The following samples are provided with each sample library:

Class Description

CBUIEditTokenPipeline Sample Requests authorization for a one-time
payment.

CBUIMulitUsePipeline Sample Requests authorization for multiple payments.

CBUIRecipientPipeline Sample Requests authorization for a recipient token
pipeline, such as that needed for marketplace
fixed and variable fees.

CBUIRecurringTokenPipeline Sample Requests authorization for a recurring token
pipeline, such as that needed for periodic
charges.

CBUISingleUsePipelineSample Requests authorization for an edit-token
pipeline.

In the following section, we show how to work with the CBUISingleUsePipeline sample using
the Java library. This sample enables you to set up a single-use token for a one-time payment.

Amazon FPS Advanced Quick Start Developer Guide
Java

API Version 2008-09-17
130

You will find that the basic process you use for the CBUISingleUsePipeline sample is the
same for all the other samples in the CBUI/Samples (or, in the case of Amazon.CBUI.Samples)
folder. (The process for the FPS and Return URL/IPN Validations samples are different. For more
information, see Understanding the Amazon FPS Samples (p. 126) and Understanding the
IPNAndReturnURLValidation Sample (p. 133).)

Java
This section describes the Java version of the CBUISingleUsePipeline. The files for the C#, Perl,
and PHP CBUISingleUsePipeline samples are listed in Locations of the CBUISingleUsePipeline
Files in Other Libraries (p. 131)

The CBUISingleUsePipeline sample centers on the following files:

File Description

config.properties Set your AWS access key ID, AWS secret key,
and sandbox endpoint in this file.

CBUISingleUsePipelineSample.java In the main method, you create an
AmazonFPSSingleUsePipeline object
and use it to add parameters specific to your
application.

AmazonFPSSingleUsePipeline.java Invoked from
CBUISingleUsePipelineSample.java,
this class contains the
setMandatoryParameters and
validateParameters functions which you
can customize for your application.

Co-Branded service request with Java SDK Sample

1 Open the file [package-root]/src/config.properties, and set AwsAccessKey
and AwsSecretKey properties to your AWS access key and AWS secret key,
respectively. To get your security credentials, see Getting an AWS Account in the
Amazon Flexible Payments Service Getting Started Guide.

2 In the same file, set the AwsServiceEndPoint to https://
fps.sandbox.amazonaws.com/ (the Amazon FPS sandbox).

3 In the same file, set the CBUIServiceEndPoint to https://authorize.payments-
sandbox.amazon.com/cobranded-ui/actions/start (the Co-Branded service
sandbox).

http://docs.amazonwebservices.com/AmazonFPS/latest/FPSGettingStartedGuide/

Amazon FPS Advanced Quick Start Developer Guide
Locations of the CBUISingleUsePipeline

Files in Other Libraries

API Version 2008-09-17
131

4 Open the file [package-root]/src/com/amazonaws/cbui/samples/
CBUISingleUsePipelineSample.java, and find the following line:

AmazonFPSSingleUsePipeline pipeline= new
 AmazonFPSSingleUsePipeline(accessKey, secretKey);

Change the pipeline.setMandatoryParameters and pipeline.addParameters
method calls to the following:

//pipeline name, your return URL, and the amount
pipeline.setMandatoryParameters("callerReferenceSingleUse",
"[your returnUrl]", "5");

//optional parameters
pipeline.addParameter("currencyCode", "USD");
pipeline.addParameter("paymentReason", "Now and Forever - Richard
 Mark");
pipeline.addParameter("paymentMethod", "ABT,ACH,CC">;
pipeline.addParameter("callerReference", "[Unique ID for the
 transaction]");

Save the file.

5 Ensure that all the jar files in the third-party folder and sub folders are in your java
CLASSPATH.

6 Compile and run the sample. The Co-branded authorization page is printed to standard
out.

7 Using a web browser, navigate to the URL produced by the sample. You must use an
account different from your AWS developer or business accounts.

8 When complete, the page you specified as [your returnUrl] is hit with the
Co-Branded service response. If signed, you validate this response by testing
the signature. For information on validating the signature, see Understanding the
IPNAndReturnURLValidation Sample (p. 133).

You can customize the sample by modifying the file [package-root]/src/com/amazonaws/
cbui/AmazonFPSSingleUsePipeline.java. The setMandatoryParameters only requires
callerReference, returnUrl, and transactionAmount. If you want to make more parameters
mandatory, modify this method.

In the same file, the validateParameters function ensures that the transactionAmount
parameter is present. You can add custom validation checks to this method.

Locations of the CBUISingleUsePipeline Files in
Other Libraries
The development libraries for C#, Perl, and PHP also enable you to create CBUI pipeline urls. The
following tables indicate the locations of the files referenced in Understanding the Amazon CBUI
Samples.

Amazon FPS Advanced Quick Start Developer Guide
Locations of the CBUISingleUsePipeline

Files in Other Libraries

API Version 2008-09-17
132

C# File Locations for the Amazon.FPS CBUI Sample

File Location

CBUISingleUsePipelineSample.cs [package root]\src\Amazon.CBUI
\Amazon.CBUI.Model.

AmazonFPSSingleUsePipeline.cs [package root]\src
\Amazon.CBUI.Samples
\Amazon.CBUI.Samples

Amazon.CBUI.proj
(Visual Studio.NET solution for the
development library)

[package root]\src\Amazon.CBUI
\Amazon.CBUI\

Amazon.CBUI.Samples.proj
(Visual Studio.NET solution for the Amazon
FPS API samples)

[package root]\src\Amazon.CBUI
\Amazon.CBUI.Samples
\Amazon.CBUI.Samples

Amazon.FPS.sln
Visual Studio.NET solution for the library
package

Note

The Visual Studio.NET samples are
organized into this solution. After
setting your access parameters the
first time, you build the entire solution
to generate the dependency classes.
Then you modify the specific sample
you want. See the Readme.html file
for more information.

[package root]/src/Amazon.FPS/
Amazon.FPS

Perl File Locations for the Amazon.FPS VerifySignature Sample

Class Location

CBUISingleUsePipelineSample.pl [package root]/src/Amazon/CBUI/
Samples.

AmazonFPSSingleUsePipeline.pm [package root]/src/Amazon/CBUI

ReadMe.html (readme for perl fps
library)

[package root]/src

PHP File Locations for the Amazon.FPS VerifySignature Sample

Class Location

CBUISingleUsePipelineSample.php [package root]/src/Amazon/CBUI/
Model.

CBUISingleUsePipeline.php [package root]/src/Amazon/CBUI/
Samples

ReadMe.html (readme for php fps
library)

[package root]/src

Amazon FPS Advanced Quick Start Developer Guide
Understanding the

IPNAndReturnURLValidation Sample

API Version 2008-09-17
133

Understanding the
IPNAndReturnURLValidation Sample

Amazon provides samples in four programming languages which show you how to perform a client-
side verification of the signatures in both the return URL and in IPN notifications. In this section, we
will briefly go over the essential details of the Java version only. The other samples differ only in
the programming language used for rendering them. For specific comprehensive information on a
particular sample, see its IPNAndReturnURLValidation.html file.

Note

For most applications, Amazon recommends server-side signature verification using
VerifySignature. For more information, see VerifySignature (p. 93)

Each IPNAndReturnURLValidation sample contains three primary components in the src/com/
amazonaws/ipnreturnurlvalidation folder. These are:

File Description

ReturnUrlVerificationSampleCode.java This class contains the program entry
point for verifying the signature contained
in a return URL, and thereby validating
the return URL content. It sets up
initial parameter values for return URL
responses, and then calls the static method
SignatureUtilsForOutbound .validateRequest
with those values.

IPNVerificationSampleCode.java This class contains the program entry
point for verifying the signature contained
in an IPN notification. It sets up initial
parameter values for IPN notifications,
and then calls the static method
SignatureUtilsForOutbound .validateRequest
with those values.

SignatureUtilsForOutbound.java Invoked from
ReturnUrlVerificationSampleCode.java
and IPNVerificationSampleCode.java,
this class uses the signature version 2 process
to validate the signature contained in the
certificateUrl parameter using PKI. It
contains methods to reassemble the string to
sign, URL encode the string, and sign it using
the Amazon certificate listed as the signer.
Finally, it validates the signature and prints the
result to standard out.

In addition to these primary components, a sample may include other required resources. For example,
the Java samples all include the third-party folder, the jar files of which must be in your classpath
in order to compile the sample.

To use the sample, do the following

Amazon FPS Advanced Quick Start Developer Guide
Locations of the IPNAndReturnURLValidation

Files is Other SDKs

API Version 2008-09-17
134

Using the Standard Button IPNAndReturnURLValidation Sample for PKI-based
Validation

1 Set up your programming environment so that the program will compile without warnings
or errors. For the Java sample, this includes ensuring that the src/com/amazonaws/
ipnreturnurlvalidation folder and the files are available to the compiler, either by
including them as command line parameters, or, if you build using an IDE, by including them
as project resources.

2 The ReturnUrlVerificationSampleCode and IPNVerificationSampleCode classes
use a HashMap to store parameters which correspond to the fields returned during a return
URL response or an IPN notification. Modify these values to suit the response you want to
validate. These are the only values you need to change using this sample.

4 Compile the sample. For example, if you are including the [package-root]src/third-
party/commons-codec-1.3/commons-codec-1.3.jar using the linux command line, you
would type
$javac -cp .:[package-root]src/third-party/commons-codec-1.3/
commons-codec-1.3.jar ReturnUrlVerificationSampleCode.java
SignatureUtilsForOutbound.java

On Windows, you would type
$javac -cp .;[package-root]src/third-party/commons-codec-1.3/commons-
codec-1.3.jar SignatureUtilsForOutbound.java

5 Run the sample. Continuing the previous example, on linux, you would type
$javac -cp .:[package-root]src/third-party/commons-codec-1.3/commons-
codec-1.3.jar ReturnUrlVerificationSampleCode

On Windows, you would type
$javac -cp .;[package-root]src/third-party/commons-codec-1.3/commons-
codec-1.3.jar ReturnUrlVerificationSampleCode

The result "Is signature correct: true" is printed to standard out if the verification determines
the signature to be valid.

Locations of the IPNAndReturnURLValidation
Files is Other SDKs
The development libraries for C#, Perl, and PHP also enable you to test Return URL and IPN
notifications. The following tables indicate the locations of the files referenced in Understanding the
IPNAndReturnURLValidation Sample.

C# File Locations for the Amazon.IpnReturnUrlValidationSample Library

File Location

ReturnUrlVerificationSampleCode.cs [package root]src\
Amazon.IpnReturnUrlValidation\.

IPNVerificationSampleCode.cs [package root]src\Amazon.
IpnReturnUrlValidationSamples.
IpnReturnUrlValidationSamples\

SignatureUtilsForOutbound.cs [package root]src\Amazon.
IpnReturnUrlValidationSamples.
IpnReturnUrlValidationSamples\

Amazon FPS Advanced Quick Start Developer Guide
Getting the Samples

API Version 2008-09-17
135

File Location

IpnAndReturnUrlValidation.html
(readme for this sample)

[package root]src\Amazon.
IpnReturnUrlValidationSamples.
IpnReturnUrlValidationSamples\

IpnReturnUrlValidation.Samples.csproj
(Visual Studio.NET project for this
sample)

[package root]src\
Amazon.IpnReturnUrlValidation\

Perl File Locations for the IpnReturnUrlValidation Library

Class Location

ReturnUrlVerificationSampleCode.pl [package root]src/Amazon/
IpnReturnUrlValidation/Samples.

IPNVerificationSampleCode.pl [package root]src/Amazon/
IpnReturnUrlValidation/Samples

SignatureUtilsForOutbound.pm [package root]src/Amazon/
IpnReturnUrlValidation

IpnAndReturnUrlValidation.html
(readme for this sample)

[package root]src

PHP File Locations for the IpnReturnUrlValidation Library

Class Location

ReturnUrlVerificationSampleCode.php [package root]src/Amazon/
IpnReturnUrlValidation/Samples.

IPNVerificationSampleCode.php [package root]src/Amazon/
IpnReturnUrlValidation/Samples

SignatureUtilsForOutbound.php [package root]src/Amazon/
IpnReturnUrlValidation

IpnAndReturnUrlValidation.html
(readme for this sample)

[package root]src

Getting the Samples
The Amazon FPS sample applications are available from the Amazon Web Services developer center.

To download Amazon FPS samples:

1. Go to http://developer.amazonwebservices.com/connect/forumindex.jspa.

The Discussion Forums page opens.

2. From the Resources menu, choose Sample Code & Libraries.

3. In the Browse by Category area, choose Amazon Flexible Payments Service.

4. Choose your sample of interest in the programming language you prefer. To obtain the sample
applications listed in this guide, look for sample applications whose package name resembles the

http://developer.amazonwebservices.com/connect/forumindex.jspa

Amazon FPS Advanced Quick Start Developer Guide
Getting the Samples

API Version 2008-09-17
136

format "amazon-fps-2008-09-17-LANGUAGE-library". For example, the Java sample is available in
the file amazon-fps-2008-09-17-java-library.zip.

5. Read the instructions on the page. Note that this page enables you to start a community discussion
about sample. You can also review it. When you are ready to proceed, click Download.

The Opening Amazon window opens. Ensure it is the sample you want, and Click OK

6. Extract the zipped files to a convenient location on your workstation.

Each download includes sample-specific instructions in its README.txt file. For general guidance on
the samples applicable to this edition of Amazon FPS , see Code Samples (p. 125).

Amazon FPS Advanced Quick Start Developer Guide
Access Key Rotation Considerations

with Signature Version 1

API Version 2008-09-17
137

Appendix: Verifying Responses
Signed Using Signature Version 1

If the SignatureVersion parameter of your Return URL or IPN response has a value of 1, and you
want to validate the response, you must use the following process to verify the legitimacy of a return
from Amazon Payments.

Important

The previous method for signing will expire on 01 November, 2010. At that time, any signing
you do with your access keys must be done using the new method.

Because of the impending expiration of signature version 1, you should migrate to signature version 2
as soon as you can. For more information, see Appendix: Moving your Application to Signature Version
2 (p. 139)

Verifying a return signature

1 Decrypt the request.

2 Read the AWS Access Key ID from the request. Check that it is a valid Access Key ID.

3 Use the AWS Access Key ID value to look up the value of your Secret Key.

4 Remove the signature parameter and its value from the request.

5 Use your Secret Key and the remainder of the request to compute the signature of the
request. To generate a signature, see Working with Signatures (p. 41)

6 Compare that signature with the signature in the original request.

7 The signatures must match. If they do not, an error is returned.

Access Key Rotation Considerations with
Signature Version 1

If you enable access key rotation using signature version 1, the outbound notifications will be signed
according to the rules in the following table. These rules are dependant on three conditions:

Amazon FPS Advanced Quick Start Developer Guide
Access Key Rotation Considerations

with Signature Version 1

API Version 2008-09-17
138

• Your account has two active key pairs (referred to below as K1 and K2)

• K1 was created before K2.

• You use K2 to sign the incoming request (FPS API/CBUI pipeline/Simple Pay button request)

1. The responses will be signed using K2 for all the corresponding outbound notifications generated by
the request.

2. If you deactivated K2 before all the outbound notifications are generated, the signatures for all
pending notifications will be generated using K1 (the oldest active key). For example:

3. a. A Pay request is signed using K2.

b. The Payment Initiated IPN is signed using K2 and sent to the specified IPN endpoint.

c. K2 is deactivated or deleted and a new key, K3, is created.

d. The Payment Successful IPN is signed using K1 and sent to the specified IPN endpoint.

4. If all the keys are deactivated or deleted before the outbound notification is generated, we send the
notification without any signature.

For information about access key rotation, see Access Key Rotation (p. 45).

Amazon FPS Advanced Quick Start Developer Guide
Migrating Inbound Requests to Signature Version 2

API Version 2008-09-17
139

Appendix: Moving your
Application to Signature Version
2

Signature version 1 expires on 01 November, 2010. After that date, applications using signature
version 1 will not produce correct results. This sections details the process you use to migrate to
signature version 2 for inbound requests and outbound responses.

Amazon provides code samples to assist you in migrating your signature version 1 code to signature
version 2.

Language File

C# SigV2_MigrationSampleCode_CS.zip

Java SigV2_MigrationSampleCode_Java.zip

Perl SigV2_MigrationSampleCode_Perl.zip

PHP SigV2_MigrationSampleCode_PHP.zip

Ruby SigV2_MigrationSampleCode_Ruby.zip

The following sections describe the high-level process for migrating your signature version 1 signing
code.

Migrating Inbound Requests to Signature
Version 2

If you are currently signing your buttons using a signature calculated using signature version 1, and
want to begin using signature version 2, you need to make the following changes:

• Modify the way you assemble your signature. For more information, see Working with Signatures (p.
41) and Differences Between Signing Versions (p. 140).

http://sigv2-migrationsample-01oct2009.s3.amazonaws.com/SigV2_MigrationSampleCode_CS.zip
http://sigv2-migrationsample-01oct2009.s3.amazonaws.com/SigV2_MigrationSampleCode_Java.zip
http://sigv2-migrationsample-01oct2009.s3.amazonaws.com/SigV2_MigrationSampleCode_Perl.zip
http://sigv2-migrationsample-01oct2009.s3.amazonaws.com/SigV2_MigrationSampleCode_PHP.zip
http://sigv2-migrationsample-01oct2009.s3.amazonaws.com/SigV2_MigrationSampleCode_Ruby.zip

Amazon FPS Advanced Quick Start Developer Guide
Migrating Outbound Notifications

to Signature Version 2

API Version 2008-09-17
140

• Include the value 2 for the required SignatureVersion parameter in your button forms and FPS
actions.

• Determine your preferred signing algorithm (either the preferred HmacSHA256, or HmacSHA1), and
set the SignatureMethod parameter to the corresponding value in your button forms and FPS
actions.

• Check that your encryption method supports your chosen algorithm, and rewrite it if necessary.

After you change your code, validate it in the sandbox. You can check your signature code using the
samples listed in this guide. For more information, see Working with Signatures (p. 41).

Migrating Outbound Notifications to Signature
Version 2

If you are currently validating return URL and IPN notifications using signatures build using signature
version 1, and want to begin using signature version 2, you need to do the following:

Adjust the way you build the signature to comply with signature version 2. For more information, see
Working with Signatures (p. 41) and Differences Between Signing Versions (p. 140).

• Enable signature version 2 in your account settings. For more information, see Amazon Flexible
Payments Service Getting Started Guide.

• Replace your core validation code with a call to the FPS action, VerifySignature (p. 93). This server
side solution is the method we recommend.

• Or, if your application's performance requires it, you can replace your core validation code with
a client-side signature verification method using the value returned in the certificateUrl
parameter. For more information, see Client-side Signature Validation (p. 44). For an example of
how to do this in code, see Understanding the IPNAndReturnURLValidation Sample (p. 133).

Differences Between Signing Versions
As of 01 November, 2010, the signature version 1 is no longer supported. While the security benefits of
the new version are significant, the implementation differences between the two are few:

• You create the concatenated URL string differently:

Include additional components, including null parameters

Include the query string control characters '=' and '&'

Sort the query string parameters using byte ordering

URL-encode the concatenated URL string before signing

• You can now use HMAC-256 for signing inbound requests. Although we prefer HMAC-256, HMAC-
SHA1 is also supported. For outbound notifications, we support the RSA-SHA1 algorithm.

• You use the new signatureMethod parameter to indicate the signing algorithm (valid values are
HmacSHA256 or HmacSHA1).

• You include the new signatureVersion parameter, which must be set to 2.

http://docs.amazonwebservices.com/AmazonFPS/latest/FPSGettingStartedGuide/
http://docs.amazonwebservices.com/AmazonFPS/latest/FPSGettingStartedGuide/

Amazon FPS Advanced Quick Start Developer Guide

API Version 2008-09-17
141

Signature Version 2 FAQ

General Questions

1. Why is Amazon Payments upgrading from signature version 1 to 2?

The new signature protocol enhances the security for inbound API requests and outbound
notifications. Amazon Web Services has already released signature version 2 for Amazon EC2,
Amazon Simple DB, and Amazon SQS, and has deprecated signature version 1 for these services.
Additional information on signature version 2 can be found here http://www.amazon.com/gp/blog/
post/PLNK14GNSFUFPRSOA and http://developer.amazonwebservices.com/connect/entry.jspa?
externalID=1928.

2. Is there a timeframe to deprecate signature version 1 for FPS and Simple Pay?

Yes. Signature version 1 will be deprecated on 1 November 2010. After that date you must use
signature version 2 for signing your requests and verifying responses.

3. What do I need to do to migrate to signature version 2?

• You need to migrate all your inbound requests (FPS API requests, CBUI/Simple Pay requests) to
use signature version 2.

• You need to start verifying signatures in outbound notifications (CBUI/Simple Pay return URLs
and IPNs) using signature version 2.

The exact steps to migrate from version 1 to 2 are documented in all of our FPS Quick Start guides
and the Amazon Simple Pay Advanced User Guide. You can also download migration samples that
can assist you in the language of your choice: Java | C# | PHP | Perl

4. What changes can we expect going forward?

• Amazon Flexible Payments Service, Amazon Payments Cobranded UI and Amazon Simple Pay
will start supporting both signature version 1 and version 2 for inbound API requests.

• Amazon Payments will support the option to sign outbound notifications (Return URLs and IPNs)
using both signature version 1 and 2.

Differences between Signature Version 1 and Signature Version 2

1. How is the new signature algorithm different from the existing one for inbound API requests?

If you're familiar with signature version 1, these are the main differences with signature version 2:

• The string to sign is formed in a different way.

http://www.amazon.com/gp/blog/post/PLNK14GNSFUFPRSOA
http://www.amazon.com/gp/blog/post/PLNK14GNSFUFPRSOA
http://developer.amazonwebservices.com/connect/entry.jspa?externalID=1928
http://developer.amazonwebservices.com/connect/entry.jspa?externalID=1928
http://developer.amazonwebservices.com/connect/entry.jspa?externalID=2022&categoryID=277
http://docs.amazonwebservices.com/AmazonSimplePay/latest/ASPAdvancedUserGuide/
http://sigv2-migrationsample-01oct2009.s3.amazonaws.com/SigV2_MigrationSampleCode_Java.zip
http://sigv2-migrationsample-01oct2009.s3.amazonaws.com/SigV2_MigrationSampleCode_CS.zip
http://sigv2-migrationsample-01oct2009.s3.amazonaws.com/SigV2_MigrationSampleCode_PHP.zip
http://sigv2-migrationsample-01oct2009.s3.amazonaws.com/SigV2_MigrationSampleCode_Perl.zip

Amazon FPS Advanced Quick Start Developer Guide

API Version 2008-09-17
142

• HMAC-SHA256 can be used when the request is signed (we prefer HMAC-SHA256, but we still
support HMAC-SHA1).

• The SignatureVersion request parameter should be set to 2.

• The SignatureMethod request parameter should be set to either HmacSHA256 or HmacSHA1 to
indicate which signing method you want.

2. How is the new signature algorithm different from the existing one for outbound notifications (CBUI
\Amazon Simple Pay return URLs and IPNs)?

If you're familiar with validating signature using version 1, these are the main differences with
validating signature using version 2:

• The string to sign is formed in a different way.

• The signature computed is based on asymmetric keys (PKI and RSA-SHA1 encryption) instead of
symmetric (using the developer’s AWS Access Key ID and AWS Secret Key).

• Signature validation is simpler do to a VerifySignature API that can validate the signature
returned in IPNs and Return URLs.

3. What is different about forming the string to sign for signature version 2 (inbound and outbound)?

• Additional components of the request are included in the string to sign (HTTP method – GET
\POST, Server URL endpoint).

• The query string control parameters (the equal sign and ampersand) are included in the string to
sign.

• The query string parameters are sorted using byte ordering.

• The query string parameters and their values are URL encoded before signing the request.

4. Why does Amazon Web Services use asymmetric instead of symmetric keys to compute the
signature for outbound notifications?

Signature computation for outbound notifications on the AWS end and signature validation on your
end using symmetric keys becomes cumbersome and indeterministic by the introduction of AWS
access key rotation (refer to https://aws-portal.amazon.com/gp/aws/developer/account/index.html?
ie=UTF8&action=access-key for more details). Asymmetric key based signing will become an AWS
wide standard for outbound notifications.

Options to validate the signature in outbound notifications (CBUI\Simple Pay return URLs and
IPNs)

1. What are the options available to validate the signature?

The signature version 2 security has two methods for you to verify the signature of the responses
from Amazon Payments

• Server-side signature verification using the VerifySignature API

• Client-side signature verification using PKI

2. Who should use VerifySignature API?

• Developers/merchants who want to quickly integrate with our service.

• Small developers/merchants who do not worry about the latency introduced by an extra API call
and want to keep their code simple by executing a remote API call to verify the signature.

• Amazon Simple Pay merchants who do not have technical expertise to implement signature
validation.

3. Who should validate the signature on their end using PKI?

• Medium to large developers/merchants who worry about scaling and performance because of the
network latency introduced by making additional API calls to verify the signature.

• Developers and merchants who require a fallback mechanism for the VerifySignature API.

https://aws-portal.amazon.com/gp/aws/developer/account/index.html?ie=UTF8&action=access-key
https://aws-portal.amazon.com/gp/aws/developer/account/index.html?ie=UTF8&action=access-key

Amazon FPS Advanced Quick Start Developer Guide

API Version 2008-09-17
143

About Verify Signature API

1. How does the VerifySignature API work?

The VerifySignature API is pretty straightforward to use. Send the entire URL with the HTTP
parameters received to the VerifySignature API and it returns a Boolean expression that
indicates whether the signature was validated or not.

2. How do I access the VerifySignature API?

The API is hosted on the FPS endpoint along with all the other APIs:

• https://fps.amazonaws.com/ - Production

• https://fps.sandbox.amazonaws.com/ - Sandbox

3. Is the VerifySignature API different from the other APIs exposed by FPS?

Yes it is.

• This API does not require any authentication/authorization. Since the API is hosted at a HTTPS
endpoint, the data sent is secure and confidential.

• This API also does not require you to sign up for a developer account.

About PKI-based Signature Validation

1. About PKI based signature validation

Though we recommend the VerifySignature API, if you are worried about an additional API call, the
following steps detail the signature validation procedure:

• Decode the signature in the notification.

• Decode and read the signatureVersion and signatureMethod parameters from
the notification. The value of signatureVersion value should be 2, and the value for
signatureMethod value should be RSA-SHA1 (format is Algorithm-Digest).

• Decode and read the certificateUrl parameter from the notification.

• Verify that certificate corresponding to the URL was already downloaded and cached.

• If the certificate was not cached, download and cache it.

• Compute the StringToSign parameter using the signature version 2 algorithm (same as
inbound requests). StringToSign should include all the parameters sent in the notification
excluding the signature.

• Calculate the signature using the PKI based cryptography, using the StringToSign value you
created in the previous step and the certificate you cached earlier.

• Compare the calculated signature you just calculated with the signature you received in the
original notification.

• If the signatures match, process the notification. Otherwise, discard the notification.

2. How can I get the certificate?

The certificate is hosted on a trusted location and the URL to download the certificate will be
provided along with the outbound notifications.

3. Why does AWS provide the path to the certificate instead of the entire certificate in outbound
notifications?

When notification happens through the browser, the length of the notification for return URLs is
restricted by the maximum URL length supported by the browser (2083 characters in IE - http://
support.microsoft.com/kb/208427)

4. Should I validate the certificate before using it to verify the signature?

https://fps.amazonaws.com/
https://fps.sandbox.amazonaws.com/
http://support.microsoft.com/kb/208427
http://support.microsoft.com/kb/208427

Amazon FPS Advanced Quick Start Developer Guide

API Version 2008-09-17
144

No, you don’t need to validate the certificate, since it will be hosted in a trusted location under the
control of Amazon FPS. Since the cumbersome step of certificate validation is eliminated, verifying
signatures using asymmetric keys becomes as simple as using symmetric keys.

5. How often should I download the certificate?

We recommend you to cache the certificate using a certificate URL as the key so that you
can prevent downloading it every time you want to validate the signature. When the certificate
expires (once every year), we will host a new certificate in an alternate URL and start signing the
notifications using the new one. Since the certificate URL in the notification changes, your caching
implementation will automatically download the certificate again, cache the new one, and start using
it for signature validation.

Questions/Support

1. I am an existing customer. How can I get help with migration?

The exact steps to migrate from version 1 to 2 are documented in all of our FPS Quick Start guides
and the Amazon Simple Pay Advanced User Guide. You can also download migration samples that
can assist you in the language of your choice: Java | C# | PHP | Perl

If you face any problems, please feel free to contact-us on the Amazon FPS Developer Forum.

2. I have concerns about migrating to signature version 2. What do I do?

Please go to http://aws.amazon.com/contact-us to file a Contact-Us request. We will address your
concerns in the best possible way.

http://developer.amazonwebservices.com/connect/entry.jspa?externalID=2022&categoryID=277
http://sigv2-migrationsample-01oct2009.s3.amazonaws.com/SigV2_MigrationSampleCode_Java.zip
http://sigv2-migrationsample-01oct2009.s3.amazonaws.com/SigV2_MigrationSampleCode_CS.zip
http://sigv2-migrationsample-01oct2009.s3.amazonaws.com/SigV2_MigrationSampleCode_PHP.zip
http://sigv2-migrationsample-01oct2009.s3.amazonaws.com/SigV2_MigrationSampleCode_Perl.zip
http://developer.amazonwebservices.com/connect/forum.jspa?forumID=35
http://aws.amazon.com/contact-us

Amazon FPS Advanced Quick Start Developer Guide

API Version 2008-09-17
145

Glossary

access key rotation For added security, you can switch between an active and inactive
access key on your AWS security credentials page.

AWS Access Key ID A string distributed by AWS that uniquely identifies your AWS
developer account.
You include this ID in every request.

buyer Customer making a purchase. Also called a sender.

caller A developer who facilitates payment between a sender and a
recipient.

client-side signature
verification

With Amazon FPS, you can use client-side PKI-based verification
to validate IPN and Return URL responses with the value of the
certificateUrl parameter. The certificateUrl parameter is
provided in each Return URL and IPN response.

endpoint The URI that specifies the destination of an API request.

HMAC The Hash Message Authentication Code used to authenticate a
message.
The HMAC is calculated using a standard, hash cryptographic
algorithm, such as SHA-256. This algorithm uses a key value
to perform the encryption. That key is your Secret Key. For that
reason, your Secret Key must remain a shared secret between you
and Amazon Payments.

inbound requests Button click or other form request to Amazon Payments. Also
inbound notification.

Instant Payment Notification A notification that is sent whenever a payment, refund, or reserved
payment completes successfully or fails. The caller must host this
notification service and provide Amazon Payments with its URL.

marketplace An environment in which the caller charges a fee for facilitating a
transaction between a sender and a recipient.

order pipeline The steps through which an order passes between the time a
customer selects an item and the customer's pay instrument is
charged.

Amazon FPS Advanced Quick Start Developer Guide

API Version 2008-09-17
146

outbound notifications Response from Amazon Payments to your Amazon FPS
application by way of Return URL or IPN.

PKI , Public Key Infrastructure. A set of hardware, software, people,
policies, and procedures needed to create, manage, store,
distribute, and revoke digital certificates. Amazon FPS uses PKI in
the Return URL and IPN notifications it sends to your application in
response to an FPS action, rest request or query o.

recipient A seller who receives a payment from a buyer (sender) in exchange
for a service or product.

string-to-sign Prior to calculating the HMAC signature, you first assemble the
components for the signature in a sorted order, and then URL
encode them. The pre-encrypted string is the string-to-sign.

reserve The amount that is put in reserve against a credit card but not
charged.
Later, the transaction is settled (typically when the product is
actually shipped).

sandbox A part of the Amazon Payments web service where you can test
the functionality of your application without incurring charges or
purchasing products.

Secret Key A string distributed by AWS that uniquely identifies your AWS
developer account.
The Secret Key is a shared secret between the developer and
AWS. The Secret Key is used as the key in the HMAC algorithm
that encrypts the signature.

seller Same as a recipient.

sender The sender (also known as the buyer) pays a recipient for a product
or service.

settle To complete a transaction that has been reserved.
If you don't charge the sender immediately upon the initiation of
the purchase (and instead reserve the amount against the sender's
credit card), you settle the transaction later, typically after you
ship the product to the sender. Settle actually makes the reserved
amount move from the sender to the recipient.

SHA1, SHA256 Secure Hash Algorithms used for Amazon Web Services
signatures.
SHA1 is an earlier version of the algorithm, which is currently being
deprecated for Amazon Web Services. SHA256 is its more secure
replacement.

signature A URL-encoded string composed of request parameters and their
values encrypted using an HMAC algorithm.
Signatures are used to authenticate and safeguard requests.

Amazon FPS Advanced Quick Start Developer Guide
Typographical Conventions

API Version 2008-09-17
147

Document Conventions

This section lists the common typographical and symbol use conventions for AWS technical
publications.

Typographical Conventions
This section describes common typographical use conventions.

Convention Description/Example

Call-outs
A call-out is a number in the body text to give you a visual reference.
The reference point is for further discussion elsewhere.

Code in text Inline code samples (including XML) and commands are identified with a
special font.

You can use the command java -version.

Code blocks Blocks of sample code are set apart from the body and marked accordingly.

ls -l /var/www/html/index.html
-rw-rw-r-- 1 root root 1872 Jun 21 09:33 /var/www/html/
index.html
date
Wed Jun 21 09:33:42 EDT 2006

Emphasis Unusual or important words and phrases are marked with a special font.

You must sign up for an account before you can use the service.

Internal cross
references

References to a section in the same document are marked.

For more information, see Document Conventions (p. 147).

Logical values,
constants, and regular
expressions, abstracta

A special font is used for expressions that are important to identify, but are
not code.

If the value is null, the returned response will be false.

Product and feature
names

Named AWS products and features are identified on first use.

Create an Amazon Machine Image (AMI).

Amazon FPS Advanced Quick Start Developer Guide
Symbol Conventions

API Version 2008-09-17
148

Convention Description/Example

Operations In-text references to operations.

Use the GetHITResponse operation.

Parameters In-text references to parameters.

The operation accepts the parameter AccountID.

Response elements In-text references to responses.

A container for one CollectionParent and one or more
CollectionItems.

Technical publication
references

References to other AWS publications. If the reference is hyperlinked, it is
also underscored.

For detailed conceptual information, refer to the Amazon Mechanical Turk
Developer Guide.

User entered values A special font marks text that the user types.

At the password prompt, type MyPassword.

User interface controls
and labels

Denotes named items on the UI for easy identification.

On the File menu, click Properties.

Variables When you see this style, you must change the value of the content when
you copy the text of a sample to a command line.

% ec2-register <your-s3-bucket>/image.manifest

See also the following symbol convention.

Symbol Conventions
This section describes the common use of symbols.

Convention Symbol Description/Example

Mutually
exclusive
parameters

(Parentheses | and
| vertical | bars)

Within a code description, bar separators denote options from
which one must be chosen.

% data = hdfread (start | stride | edge)

Optional
parameters

XML variable
text

[square brackets] Within a code description, square brackets denote completely
optional commands or parameters.

% sed [-n, -quiet]

Use square brackets in XML examples to differentiate them
from tags.

<CustomerId>[ID]</CustomerId>

Variables <arrow brackets> Within a code sample, arrow brackets denote a variable that
must be replaced with a valid value.

% ec2-register <your-s3-bucket>/image.manifest

	Amazon FPS Advanced Quick Start
	Welcome
	Amazon FPS Quick Starts
	Audience
	Required Knowledge and Skills
	Business Requirements

	Reader Feedback
	How This Guide Is Organized
	Amazon FPS Resources

	What's New
	Introduction to Amazon FPS Advanced Quick Start
	Overview
	Business Model
	Features

	Key Concepts
	Amazon FPS Advanced Quick Start
	Amazon Flexible Payments Service

	Multi-Use Payment Tokens
	Usage Restrictions
	Buyer's Experience of a Multi-Use Payment Token

	Recurring Payment Tokens
	Buyer's Experience of a Recurring Payment Token
	Recurring Payments

	Recipient Tokens
	Other Integration Points
	Cancel Payment
	Refund Payment

	Sender, Recipient, and Caller Actions
	Request Security
	Co-Branded User Interface (CBUI)
	Where the CBUI Fits in the Workflow
	Recipient Registration on Your Web Site
	Payment Token Types
	Sender and Recipient Token Associations
	Token Creation

	Amazon FPS API and Co-Branded Service Requests

	Sandbox
	Instant Payment Notification
	Errors
	REST Errors
	SOAP Fault
	Response Codes
	CE and SE Status Codes
	CE (Caller Exception)
	SE (System Error)

	Business Considerations
	Amazon Payments and Your Web Site
	Supported Payment Instruments and Currencies
	Amazon Payments Account
	Account Management
	Amazon Recipient Fees
	Fraud
	Disputes
	Amazon A-z Guarantee
	Amazon Buyer Dispute Program
	Chargebacks

	WSDLs and Schemas
	WSDL
	Schema

	Programming Guide
	Important Values to Store in Your Database
	Caller Reference
	Transaction ID
	Request ID

	Getting Authorization
	Sending a Co-Branded Service Request

	Recipient Registration
	Recipient Registration on Your Web Site
	Implementing the Co-Branded API to Register a Recipient

	Making Payments
	Transacting the Payment
	Failed Payment Transactions
	Repeated Pay Requests

	Changing the Payment Instrument
	Notifications

	Handling Transactions that Don't Return
	Co-Branded Service Requests that Don't Return
	Resending Requests
	Co-Branded Service Requests
	Amazon FPS API Requests

	Order Cancellations
	Canceling a Recurring Transaction
	Refunding a Recurring Transaction
	Other Reversals and Issues

	Testing Your Applications for Free
	Sandbox Endpoints
	Sandbox Use
	Error Simulation
	Testing Signatures
	Migrating your Application from the Sandbox to Production

	Working with Signatures
	Generating a Signature
	About Signature Version 2

	Verifying the ReturnURL and IPN Notifications
	Client-side Signature Validation

	Access Key Rotation

	Soft Descriptor Customization
	SoftDescriptorType
	CSOwner

	Setting Up Instant Payment Notification
	Setting Up IPN Preferences
	Receiving IPN Notifications
	How To Verify the IPN Signature
	Common IPN Response Elements
	IPN Responses for Marketplace Transactions

	Amazon FPS API Reference
	Common Request Parameters
	Common Response Elements
	Error Codes
	Actions
	Cancel
	Description
	Request Parameters
	Response Elements
	Errors
	Examples
	Sample REST Request
	Sample SOAP Request
	Sample Response to REST Request
	Sample Response to SOAP Request
	Sample IPN Success Notification to Rest Request

	CancelToken
	Description
	Request Parameters
	Response Elements
	Errors
	Examples
	Sample REST Request
	Sample SOAP Request
	Sample Response to REST Request
	Sample Response to SOAP Request
	Sample IPN Notification to Rest Request

	GetTokenByCaller
	Description
	Request Parameters
	Response Elements
	Errors
	Examples
	Sample REST Request
	Sample SOAP Request
	Sample Response to REST Request
	Sample Response to SOAP Request

	GetTransactionStatus
	Description
	Request Parameters
	Response Elements
	Status Codes
	Errors
	Examples
	Sample REST Request
	Sample SOAP Request
	Sample Response to REST Request
	Sample Response to SOAP Request

	Pay
	Description
	Request Parameters
	Response Elements
	Errors
	Examples
	Sample REST Request
	Sample SOAP Request
	Sample Response to REST Request
	Sample Response to SOAP Request
	Sample IPN Pending Notification to Rest Request
	Sample IPN Success Notification to Rest Request

	Related Actions

	Refund
	Description
	Request Parameters
	Response Elements
	Errors
	Examples
	Sample REST Request
	Sample SOAP Request
	Sample Response to REST Request
	Sample Response to SOAP Request
	Sample IPN Pending Notification to Rest Request
	Sample IPN Success Notification to Rest Request

	Related Actions

	Reserve
	Description
	Request Parameters
	Response Elements
	Errors
	Examples
	Sample REST Request
	Sample SOAP Request
	Sample Response to REST Request
	Sample Response to SOAP Request
	Sample IPN Pending Notification to Rest Request
	Sample IPN Success Notification to Rest Request

	Related Actions

	Settle
	Description
	Request Parameters
	Response Elements
	Errors
	Examples
	Sample REST Request
	Sample SOAP Request
	Sample Response to REST Request
	Sample Response to SOAP Request
	Sample IPN Pending Notification to Rest Request
	Sample IPN Success Notification to Rest Request

	Related Actions

	VerifySignature
	Description
	Request Parameters
	Response Elements
	Errors
	Examples
	Sample REST Request
	Sample Query Request
	Sample Response to REST Request

	Data Types
	Enumerated Data Types
	AccountBalance
	ChargeFeeTo
	CurrencyCode
	FPSOperation
	InstrumentId
	InstrumentStatus
	PaymentMethod
	RelationType
	SortOrder
	TokenStatus
	TokenType
	TransactionalRole
	TransactionStatus
	TransactionStatus (IPN)

	Complex Data Types
	Amount
	AvailableBalances
	DebtBalance
	DescriptorPolicy
	MarketplaceRefundPolicy
	OutstandingDebtBalance
	OutstandingPrepaidLiability
	PrepaidBalance
	RelatedTransaction
	StatusHistory
	Token
	TokenUsageLimit
	Transaction
	TransactionDetail
	TransactionPart

	Co-Branded Service API Reference
	Common Parameters
	Request Parameters
	Co-Branding Styles

	Response Parameters

	Recipient Token API
	Request Parameters
	Response Parameters
	Status Code

	Recurring-Use Token API
	Request Parameters
	Response Parameters
	Status Codes

	Multi-Use Token API
	Request Parameters
	Response Parameters
	Status Codes

	Edit Token API
	Request Parameters
	Response Parameters
	Status Codes

	Code Samples
	Understanding the Amazon FPS Samples
	Understanding the VerifySignature Sample
	Locations of the VerifySignatureSample Files in Other Libraries

	Understanding the Amazon CBUI Samples
	Java
	Locations of the CBUISingleUsePipeline Files in Other Libraries

	Understanding the IPNAndReturnURLValidation Sample
	Locations of the IPNAndReturnURLValidation Files is Other SDKs

	Getting the Samples

	Appendix: Verifying Responses Signed Using Signature Version 1
	Access Key Rotation Considerations with Signature Version 1

	Appendix: Moving your Application to Signature Version 2
	Migrating Inbound Requests to Signature Version 2
	Migrating Outbound Notifications to Signature Version 2
	Differences Between Signing Versions

	Signature Version 2 FAQ
	Glossary
	

	Document Conventions
	Typographical Conventions
	Symbol Conventions

