
Metropolis Light Transport in Realistic Image Synthesis

Yunfeng Bai
mincomp@gmail.com

4/25/2011

1 Introduction

Computer graphics researchers had made great progresses towards realistic image synthesis in the past 30
years, from primitive Ray Tracing [6], to Avatar.

Figure 1: Primitive Ray Tracing

Figure 2: Avatar

The core mechanism behind realistic image synthesis is the simulation of light transportation. We can
partition all the objects in real world into two categories: luminous objects and non-luminous objects. It’s
easier for us to get the colors of luminous objects; however, it’s much harder in case of non-luminous
objects, because non-luminous objects can absorb or reflect or refract light beams. So correct calculation of
the radiance from non-luminous objects to eye is the main problem in realistic image synthesis. Following
in this section are the basic physics concepts of light transport, which is heavily adopted on [1].

1

1.1 Basic Concepts

Radiant Power or Flux
Φ, called radiant power, or flux, is the energy flows through a surface per unit time.
Irradiance
E, called irradiance, is the incident radiant power on a surface, per unit surface area, defined as:

E =
dΦ

dA
.

Radiance
L, called radiance, is the flux per unit projected area per unit solid angle. It expresses how much power
goes through a certain point on a surface, per unit solid angle, and per unit projected area. Radiance is a
function which varies with position x and direction vector Θ, so it’s written as L(x,Θ). Finally, it’s defined
as:

L =
d2Φ

dωdA⊥
=

d2Φ

dωdAcosθ
,

where dw is the differential solid angle, dA⊥ are the projected differential area and θ is the angle between
the surface normal and Θ.
Relationships between flux, irradiance and radiance
According to previous definitions, the 3 quantities have the following relationships:

Φ =

∫
A

∫
Ω

L(x→ Θ)cosθdωΘdAx,

E(x) =

∫
Ω

L(x→ Θ)cosθdωΘ,

where A is the total surface area, Ω is the total solid angle at each point on the surface, L(x→ Θ) and
L(x← Θ) represents the radiance leaving/arriving point x from direction Θ, respectively.

1.2 BRDF

BRDF(bidirectional reflectance distribution function) is widely used in computer graphics, to describe the
reflectance properties of surfaces. In BRDF, reflections on a surface are modeled as: at a given point x, for
a given incident ray in direction Ψ that hits x, the reflected ray will start at x and in direction Θ, which
carries a portion(which is denoted by BRDF) of the incident power at x. Formally, BRDF is defined as:

fr(x,Ψ→ Θ) =
dL(x→ Θ)

dE(x← Ψ)
.

BRDF can be acquired with empirical models or actual measurements, and we’ll assume that we have
known the function from now on.

1.3 The Rendering Equation

Now we have prepared all the concepts to build the rendering equation for describing light transportation.
By conservation of energy, total outgoing radiance at a point x and some direction Θ is the sum of the
emitted radiance and the reflected radiance at that point, if we denote the emitted radiance as Le(x→ Θ)
and the reflected radiance as Lr(x→ Θ), then

L(x→ Θ) = Le(x→ Θ) + Lr(x→ Θ).

Incorporating BRDF, the reflected radiance should be integrated through all possible incident directions Ψ:

Lr(x→ Θ) =

∫
Ωx

fr(x,Ψ→ Θ)L(x← Ψ)cos(Nx,Ψ)dωΨ,

where Nx is the surface normal at point x. In all,

L(x→ Θ) = Le(x→ Θ) +

∫
Ωx

fr(x,Ψ→ Θ)L(x← Ψ)cos(Nx,Ψ)dωΨ.

Now we have a recursive integration equation, the rendering equation, to solve, and what we want to get is
the radiance L(x→ Θ̄), where from point x through direction Θ̄ the outgoing radiance can arrive at the
eye(or camera), so that we can accumulate the flux at each pixel.
Because rendering equation is in such a complex form, we need some special technique to calculate its
value, which is Monte Carlo integration method introduced in the next section.

2 Monte Carlo Integration

Monte Carlo methods are a set of techniques that use statistical sampling to simulate phenomena or
evaluate values of functions. The discussion of Monte Carlo integration in this section is based on the third
chapter of [1].
Assume that we need to integrate a function:

∫
Ω
f(x)dx, and we want to compute the integral through

sampling f(x). The samples are selected randomly over the integral domain Ω with probability distribution
function p(x). Now we define a function ”estimator”, I, as

I =
1

N

N∑
i=1

f(xi)

p(xi)
,

where xi’s are i.i.d. random variables with distribution p.
The expectation of I, E[I] is,

E[I] = E[
1

N

N∑
i=1

f(xi)

p(xi)
]

=
1

N
E[

N∑
i=1

f(xi)

p(xi)
]

=
1

N
N

∫
Ω

f(x)

p(x)
p(x)dx

=

∫
Ω

f(x)dx,

actually the integral of f(x).
With a few more calculations, the variance of the estimator is:

σ2 =
1

N

∫
(
f(x)

p(x)
−

∫
f(x)dx)2p(x)dx,

thus the variance decreases linearly as N increases. In other words, the error will be slowly reduced to 0.

2.1 The Path Formulation of Rendering Equation

Now let’s explore the path formulation of rendering equation, so that we can use Monte Carlo integration
technique to integrate it.
Expanding the rendering equation:

L(x→ Θ) = Le(x→ Θ) + Lr(x→ Θ),

noticing that Lr(x→ Θ) can be split into direct illumination(the radiance directly from luminous objects
directly) and indirect illumination(the radiance received from non-luminous objects’ reflections):

Ldirect =

∫
Ωdirect

fr(x,Ψ→ Θ)Le(x← Ψ) cos(Nx,Ψ)dωΨ

Lindirect =

∫
Ωindirect

fr(x,Ψ→ Θ)L(x← Ψ) cos(Nx,Ψ)dωΨ

and Ωdirect ∩ Ωindirect = Ω, thus

Lr(x→ Θ) =

∫
Ωx

fr(x,Ψ→ Θ)L(x← Ψ) cos(Nx,Ψ)dωΨ =

= Ldirectx + Lindirectx

=

∫
Ωdirectx

fr(x,Ψ→ Θ)Le(x← Ψ) cos(Nx,Ψ)dωΨ +

∫
Ωindirectx

fr(x,Ψ→ Θ)L(x← Ψ) cos(Nx,Ψ)dωΨ

=

∫
Ωdirectx

fr(x,Ψ→ Θ)Le(x← Ψ) cos(Nx,Ψ)dωΨ +

∫
Ωindirectx

fr(x,Ψ→ Θ)L(x← Ψ) cos(Nx,Ψ)dωΨ

=

∫
Ωdirectx

fr(x,Ψ→ Θ)Le(x← Ψ) cos(Nx,Ψ)dωΨ

+

∫
Ωindirectx

fr(x,Ψ→ Θ)(Ldirecty + Lindirecty) cos(Nx,Ψ)dωΨ

(y is first hit point of the ray from the x and in direction Ψ)

=

∫
Ωdirectx

fr(x,Ψ→ Θ)Le(x← Ψ) cos(Nx,Ψ)dωΨ

+

∫
Ωindirectx

fr(x,Ψ→ Θ)(

∫
Ωdirecty

fr(y,Ψy → Ψ)Le(y ← Ψy) cos(Ny,Ψy)dωΨy
) cos(Nx,Ψ)dωΨ

+

∫
Ωindirectx

fr(x,Ψ→ Θ)(

∫
Ωindirecty

fr(y,Ψy → Ψ)L(y ← Ψy) cos(Ny,Ψy)dωΨy) cos(Nx,Ψ)dωΨ

=

∫
Ωdirectx

fr(x,Ψ→ Θ)Le(x← Ψ) cos(Nx,Ψ)dωΨ

+

∫
Ωindirectx

∫
Ωdirecty

fr(x,Ψ→ Θ)fr(y,Ψy → Ψ)Le(y ← Ψy) cos(Nx,Ψ) cos(Ny,Ψy)dωΨdωΨy

+

∫
Ωindirectx

∫
Ωindirecty

fr(x,Ψ→ Θ)fr(y,Ψy → Ψ)(Ldirectz + Lindirectz) cos(Nx,Ψ) cos(Ny,Ψy)dωΨdωΨy

(1)

if we continue expanding recursively, we can get the formulation:

Lr(x→ Θ) = Lzero reflection to x + Lone reflection to x + Ltwo reflection to x + Lthree reflection to x + ...

where Lzero reflection to x is just Ldirectx , and

Lone reflection to x =

∫
Ωindirectx

∫
Ωdirecty

fr(x,Ψ→ Θ)fr(y,Ψy → Ψ)Le(y ← Ψy) cos(Nx,Ψ) cos(Ny,Ψy)dωΨdωΨy

is the radiance received through one reflection, similarly Ltwo reflection to x is the radiance received through
two reflections, and so on.
Now let’s define Ωk be the set of all paths of the form x̄ = x0x1...xk, where k ≥ 1 and xi’s are surface
points, and xi and xi+1 can be observed by each other, then let’s define

dµ(x̄) = dµk(x0...xk) = dΨx0dΨ(x1 → x0)...dΨ(xk → xk−1). If we denote Ω∗ =
⋃

Ωk, we can write the
rendering equation as:

L(x→ Θ) = Le(x→ Θ) +

∫
Ω∗
g(x̄)dµ(x̄),

where g(x̄) = g(x0...xk) = Le(xk → xk−1) cos(Nx0 ,Ψx0) cos(Nx1 ,Ψ(x1 → x0))... cos(Nxk
,Ψ(xk → xk−1)) So

now we have this non-recursive path formulation of rendering equation. It’s possible to use Monte Carlo
integration by independently randomly sampling paths in Ω∗ according to some distribution, and calculate
g(x̄).
Similar method is proposed in [2], which is now called the “Path Tracing Algorithm”. Also we can reverse
the whole procedure(intuitively, shoot light from the eye), and get similar equations. This method is called
“Light Tracing”. Later on in “Bidirectional Path Tracing” [3], researchers combined both path tracing and
light tracing to produce better results.

2.2 Importance Sampling

In practice, we don’t want to sample too many points, so we want the variance to be as small as possible
(best if it’s 0!). If we use Lagrangian multipliers to minimize the variance, we can get the optimal p(x):

p(x) =
|f(x)|∫
f(x)dx

,

in which case the variance is 0. However,
∫
f(x)dx is what we want to solve, it’s impossible to know its

exact values beforehand.
Nevertheless, Metropolis sampling, which will be discussed in the next section, can magically sample points

so that whose distribution converges to |f(x)|∫
f(x)dx

.

3 Metropolis Light Transport

Metropolis Light Transport is proposed in [5], which adopted the method of Metropolis sampling [4] to the
light transport problem. It’s a robust algorithm that works well in variant scenes, and then became one of
the standard tools for calculating global illumination.

3.1 Metropolis Sampling Algorithm

First let’s give some formal definitions. We are given a state space Ω, a non-negative function f :ω → R+,
and an initial state X̄0 ∈ Ω.

Our goal is to generate a random walk X̄0, X̄1, ..., so that X̄i is eventually distributed to p(X̄) = f(X̄)∫
f(X̄)dX̄

.

In the random walk each X̄i is obtained from mutations of ¯Xi−1, thus this is a Markov chain.
The Metropolis sampling algorithm tries to construct a transition function K of X̄i, so that the stationary

distribution of this Markov chain is f(X̄)∫
f(X̄)dX̄

.

Detailed Balance Condition
If we adopt the idea of DBC in this problem, then we’ll get

f(X̄)∫
f(X̄)dX̄

K(X̄, Ȳ) =
f(Ȳ)∫
f(X̄)dX̄

K(Ȳ , X̄)

multiply both sides by
∫
f(X̄)dX̄, it becomes

f(X̄)K(X̄, Ȳ) = f(Ȳ)K(Ȳ , X̄)

then
K(X̄, Ȳ)

K(Ȳ , X̄)
=
f(Ȳ)

f(X̄)

if we let K(Ȳ , X̄) = 1, then K(X̄, Ȳ) = f(Ȳ)
f(X̄)

.

So if we can construct a transition function K according to above equation, then we can be sure that
f(X̄)∫
f(X̄)dX̄

is the stationary distribution.

The Acceptance Probability
Assume we already had a method to generate X̄i, with transition probability T (X̄, Ȳ), we can let

K(X̄, Ȳ) = T (X̄, Ȳ)a(X̄, Ȳ), and a(X̄, Ȳ) = K(X̄,Ȳ)
T (X̄,Ȳ)

, called the acceptance probability. We accept each Ȳ

of mutation from X with probability a(X̄, Ȳ) to take it into effect.

3.2 Metropolis Light Transport

Recall the path formulation of the rendering equation

L(x→ Θ) = Le(x→ Θ) +

∫
Ω∗
g(x̄)dµ(x̄),

we can solve this equation with path tracing, but carefully choosing the sampling distribution of x̄ to
reduce the variance.
With Metropolis sampling, now we can generate samples with distribution g(x̄)∫

g(x̄)dx̄
through random walk,

thus the variance can be reduced effectively.

4 Discussion

4.1 The Rendering Equation

The rendering equation successfully grasps the essentials of most reflections/refractions in real world, from
which we can generate images with impressive realism. However, there are several deficiencies in the
rendering equation.

1. Deficiency of BRDF. The rendering equation uses BRDF, which is not able to model more complex
surface properties, like subsurface scattering (the ray shots into the surface at x but comes out at y).
Later researchers develop BRDF further to give the rendering equation the ability to describe the
reflections on such surfaces.

2. Participating Media. In rendering equation, surfaces are generally considered as big and flat planes;
however, in special cases like smoke or sand, where the surfaces are too small, it’s hard for a ray to
hit on such surfaces even with careful direction choices. Later researchers consider this kind of
substances as “participating media” and developed rendering algorithms in such cases.

3. Human Perception. It’s generally known that humans don’t perceive radiance in linear scale, so
rendering equation is not enough to describe what we see. Researchers also proposed algorithms in
this direction to convert radiance to actually color values.

4.2 Metropolis Light Transport

Metropolis sampling greatly reduces the variance in Monte Carlo integration, thus accelerates the speed of
image generation greatly.

Though in long run we can see X̄i’s as i.i.d. with distribution g(x̄)∫
g(x̄)dx̄

, they are actually correlated because

we generate them using random walk. So in the first few steps, we need some extra steps to reduce the
bias. Another way to reduce this kind of bias is to run multiple random walks parallelly.
The other problem about Metropolis light transport is about the pre-chosen mutation T . Though in [5] the
authors proposed some ad hoc transformation, there is no general mathematical guideline yet to choose T
to speed up convergence.

References

[1] P. Dutre, K. Bala, and P. Bekaert. Advanced global illumination. AK Peters Ltd, 2006.

[2] J.T. Kajiya. The rendering equation. ACM SIGGRAPH Computer Graphics, 20(4):143–150, 1986.

[3] E.P. Lafortune and Y.D. Willems. Bi-directional path tracing. In PROCEEDINGS OF THIRD
INTERNATIONAL CONFERENCE ON COMPUTATIONAL GRAPHICS AND VISUALIZATION
TECHNIQUES (COMPUGRAPHICS93. Citeseer, 1993.

[4] N. Metropolis, A.W. Rosenbluth, M.N. Rosenbluth, A.H. Teller, E. Teller, et al. Equation of state
calculations by fast computing machines. The journal of chemical physics, 21(6):1087, 1953.

[5] E. Veach and L.J. Guibas. Metropolis light transport. In Proceedings of the 24th annual conference on
Computer graphics and interactive techniques, pages 65–76. ACM Press/Addison-Wesley Publishing
Co., 1997.

[6] T. Whitted. An improved illumination model for shaded display. Communications of the ACM,
23(6):343–349, 1980.

