@Iang Crash Dum@

Error in compiled code, beam file damaged ¢
Unexpected op code N

Cannot allocate <N> bytes of memory (of type "<T>" run out of memory

The kernel/stdlib applications are damaged
"Module Name undefined" | "Function Name undefined” |

function Name:start/2"

The start script is damaged

file descriptors for sockets exceed 1024 (Uni:

The limit on file-descriptors in some Unix flavors can be set to over 1(
simultaneously by Erlang (due to limitations in the Unix select call). The
this.

Driver_select called with too large file descriptor N

Received SIGUSR1 Unix only

usually (Who = application_controller, Why = shutdown). usually node name is already in use

Slogan

It is always due to some Kind of failure in an applicat

Kernel pid terminated (Who) (Exit-reason) written" one. Looking at the error log for your applical
This message comes from the Erlang code and ¢ take.

The primitive Erlang boot sequence was terminated, |
script has errors or cannot be read.

"Init terminating in do_boot ()"
This is usually a configuration error - the system may

boot parameter or with a boot script from the wrong-

One of the kernel processes could not start.

Config files are in their correct location and that the cc
damaged.
"Could not start kernel pid (Who) ()"

Usually there are also messages written to the control
explaining what's wrong.

Number of atoms

Memory information

hash_table
Internal table information

index_table
Allocated areas erlang:system_info(allocated_areas).
Allocator erlang:system_info({allocator, <A>}).

Scheduled - The process was scheduled to run but not currently running ("in the run queue").

Waiting - The process was waiting for something (in receive).

Running - The process was currently running. If the BIF erlang:halt/1 was called, this was the process calling it.

State
Exiting - The process was on its way to exit.

Garbing - This is bad luck, the process was garbage collecting when the crash dump was written, the rest of the information for this proces

Suspended - The process is suspended, either by the BIF erlang:suspend_process/1 or because it is trying to write to a busy port.

Registered name

Spawned as

Last scheduled in for | Current call

Spawned by The parent of the process

Started

Message queue length

Number of heap fragments
Process information

Size of fragmented heap data. This is data either created by messages being sent to the process or by the Erlang BIFs.
Heap fragment data

May also contain ports.

Link list If process monitoring is used, this field also tells in which direction the monitoring is in effect, i.e., a link being "to™ a |
"from" a process tells you that the other process was monitoring the current one.

Reductions

Stack+heap The size of the stack and heap (they share memory segment)

Heap unused, OldHeap unused

Stack If the system uses shared heap, the fields Stack+heap, OldHeap, Heap unused and OldHeap unused do not exist. Instead this field pre

Program counter

CP

Arity

The size of the "old heap". The Erlang virtual machine uses generational garbage collection with two generations. There is one heap fo
(which is almost always correct) is that data that survive two garbage collections can be "tenured" to a heap more seldom garbage colk
sum of the heaps and stack together constitute most of the process's allocated memory.

OldHeap

Port information This section lists the open ports, their owners, any linked processed, and the name of their driver or external process.

owner

buckets This occurs if the table is a hash table, i.e. if it is not an ordered_set.

This occurs only if the table is an ordered_set. (The number of elements is the same as the number of objects in i
ETS tables Ordered set (AVL tree), Elements

Objects The number of objects in the table

Words The number of words (usually 4 bytes/word) allocated to data in the table.

Message
Timers

Time left

Distribution information

Loaded module information

Fun information

Process Data

Note that the last created atom is printed first.
Atoms

	Page

