
The Zen of ReactiveUI

Paul Betts

April 17, 2011

2

Contents

1 ReactiveXaml: A compelling combination of MVVM and Reactive Extensions (Rx) 5

What’s in this library . 5

Blend SDK Integration . 6

Other stuff that’s useful . 6

2 ReactiveXaml series: ReactiveCommand 7

What is ReactiveCommand . 7

Well that’s boring, where’s the fun stuff?? . 7

What about Execute? . 8

Sum it all up, like that guy in Scrubs does all the time 9

3 ReactiveXaml Series: ReactiveAsyncCommand 11

Motivation . 11

Dispatcher.BeginInvoke solves this . 11

We use this pattern a lot, let’s make it more succinct 12

Because we encapsulate the pattern, we can get other stuff for free 12

The first pattern - running an Action in the background 12

Putting it all together . 13

Using ReactiveAsyncCommand . 14

Why is this cool? . 15

Where’s the Code? . 15

3

4 CONTENTS

4 ReactiveXaml series: A Sample MVVM application 17

A Sample App makes understanding ReactiveXaml way easier 17

Make sure to read the code! . 18

Where’s the code again? . 19

5 ReactiveXaml series: ReactiveObject, and why Rx is awesome 21

ViewModels via ReactiveObject . 21

Other things that are nice to have . 21

Some philosophy . 22

Abstracting away context is critical for a multicore + cloud world 22

6 ReactiveXaml series: Implementing search with ObservableAsPropertyHelper 23

Implementing an auto-search TextBox using Rx and ReactiveXaml 23

The sample app . 24

Going through the code . 24

Now here’s the interesting part . 25

7 ReactiveXaml series: Using MemoizingMRUCache 29

Memoization and Caching . 29

Using MemoizingMRUCache . 29

Maintaining an on-disk cache . 30

Some other useful functions . 30

8 ReactiveXaml Series: On combining notifications 31

Combining notifications in meaningful ways . 31

Merge, CombineLatest, and Zip - the ‘And’ and ‘Or’ of Rx 32

Combining Notifications for Visual State Manager 33

9 ReactiveXaml Series: ObservableAsyncMRUCache - the async version of Memoiz-
ingMRUCache 35

A thread-safe, asynchronous MemoizingMRUCache 35

Using IObservable as a Future . 35

A difficult problem - preventing concurrent identical requests 36

CONTENTS 5

10 Making INotifyPropertyChanged type-safe using Expressions 37

Trying to make RaisePropertyChanged less verbose 37

Using Expression Trees to implement a better version 37

Some tricky caveats . 39

11 Calling Web Services in Silverlight using ReactiveXaml 41

Getting our function prototype correct . 41

An example: looking at the Bing Translation API 41

An important note for Silverlight! . 42

Turning this into a Command . 42

What does that get us? . 44

12 ReactiveXaml Series: Displaying a ‘Loading…’ value 45

13 Some annoying bugs to be aware of in ReactiveXaml for Silverlight 47

It works now, after some fixups . 47

List of bugs fixed as of today . 47

An annoying caveat for SL4 . 48

14 ReactiveXaml Series: Using ReactiveCollection to improve the Flickr Search sample 49

The basics, plus watching item change notifications 49

Automatically creating ViewModel collections . 50

Creating a collection from an Observable . 50

Improving our Flickr search sample . 50

Making it even snazzier - adding the fade-in . 52

15 Detecting whether your .NET library is running under a unit test runner 53

16 Making Async I/O work for you, Reactive style 55

How do the TPL and Rx.NET relate? . 55

Seeing the problem again . 55

Writing our initial stab at VerifyUrlAsync . 56

How can we use this? . 57

Now, let’s see how we can do arrays: . 57

Cool! Where can I learn more? . 58

6 CONTENTS

17 Testing your ViewModels using Time Travel and ReactiveUI 59

Testing asynchronous ViewModel interactions is tough 59

Using EventScheduler in a pinch . 59

Testing software via Time Travel?! . 60

How does the TestScheduler work? . 61

Faking out an asynchronous web call . 61

Writing the Unit Test . 61

Cool, right?? . 63

18 Watching DependencyProperties using ReactiveUI 65

Watching DependencyProperties in WPF is easy… 65

…but really ugly in Silverlight . 65

ReactiveUI now does this for you . 66

19 WCF.AsParallel() using ReactiveUI and Rx.NET 67

Select.AsParallel() for the Web . 67

It’s easy to be way too parallel . 69

CachedSelectMany throttles concurrency . 69

20 ReactiveUI Message Bus - decoupling objects using the publish/subscribe pattern 71

Message buses allow us to decouple code . 71

ReactiveUI’s MessageBus . 71

Special support for singleton ViewModels . 72

21 New Release: ReactiveUI 2.2.1 73

What does ReactiveUI do? . 73

ReactiveUI on Hanselminutes . 73

What’s New in ReactiveUI 2.2.1 - Now with 100% less Windows Phone crashes . . . 73

Breaking Change: Introducing ReactiveUI.Testing 74

Where can I find the library? . 74

CONTENTS 7

22 Using ReactiveUI with MVVM Light (or any other framework!) 75

ReactiveUI: Is it All or None? . 75

Using MVVM Light alongside ReactiveUI . 75

An important caveat about MakeObjectReactiveHelper 76

Watching ObservableCollections to create ViewModel collections 76

Creating ReactiveCommands like RelayCommands 77

8 CONTENTS

Chapter 1

ReactiveXaml: A compelling
combination of MVVM and Reactive
Extensions (Rx)

I’ve been hacking on a library in my spare time (Hah!) that I really think has the potential to
change how folks write Silverlight/WPF applications and I’m really excited about it. After testing
concepts and refining the interface using several different sample apps, I believe I’m confident
enough in the concept that it needs to be seen by more people. I also have a newfound respect
for the folks who worked on the BCL and the PMs in DevDiv - writing a library to get something
done is easy; writing a library that gets stuff done and is elegant and straightforward is decid-
edly not. This library is an exploration I’ve been working on for several weeks on combining
WPF Model-View-ViewModel paradigm with the Reactive Extensions for .NET (Rx). Combining
these two make managing concurrency as well as expressing complicated interactions between
objects possible in a declarative, functional way. Put simply, if you’ve ever had to chain events
/ callbacks together and declare state ints/booleans to keep track of what’s going on, Reactive
Extensions provides a sane alternative. I’m going to be posting quite a bit more about this library
as well as a sample application, but for now, check out the code to ReactiveXaml on Github.

What’s in this library

ReactiveCommand - an implementation of ICommand that is also a Subject whose OnNext is
raised when Execute is executed. Its CanExecute can also be defined by an IObservable which
means the UI will instantly update instead of implementations which rely on RequerySuggested.
ReactiveAsyncCommand - a derivative of ReactiveCommand that encapsulates the common
pattern of “Fire asynchronous command, then marshal result back onto dispatcher thread”. Al-
lows you to set a maximum level of concurrency as well (i.e. “I only want 3 inflight requests” -
when the maximum is reached, CanExecute returns false). ReactiveObject - a ViewModel

9

http://github.com/xpaulbettsx/ReactiveXaml

10CHAPTER 1. REACTIVEXAML: A COMPELLING COMBINATION OF MVVM AND REACTIVE EXTENSIONS (RX)

object based on Josh Smith’s implementation, that also implements IObservable as a way to
notify property changes. It also allows a straightforward way to observe the changes of a sin-
gle property. ReactiveValidatedObject - a derivative of ReactiveObject that is validated via
DataAnnotations by implementing IDataErrorInfo, so properties can be annotated with their re-
strictions and the UI will automatically reflect the errors. ObservableAsPropertyHelper<T> -
a class that easily lets you convert an IObservable into a property that stores its latest value, as
well as fires NotifyPropertyChanged when the property changes. This is really useful for com-
bining existing properties together and replacing IValueConverters, since your ViewModels will
also be IObservables. StopwatchTestScheduler - this class allows you to enforce time limits
on items scheduled on other threads. The main use for this is in unit tests, as well as being able
to say things in Debug mode like, “If any item runs in the Dispatcher scheduler for longer than
400ms that would’ve made the UI unresponsive, crash the application”.

Blend SDK Integration

AsyncCommandVisualStateBehavior - this behavior will watch a ReactiveAsyncCommand
and transition its target to different states based on the command’s status - for example, display-
ing a Spinner while a command is running. FollowObservableStateBehavior - this behavior
will use the output of an IObservable and call VisualStateManager.GoToState on its target; using
Observable.Merge makes it fairly straightforward to build a state machine based on the changes
in the ViewModel. ObservableTrigger - this trigger will fire when an IObservable calls OnNext
and can be tied to any arbitrary Expression Action.

Other stuff that’s useful

MemoizingMRUCache - this class is non-threadsafe most recently used cache, and can be used
to cache the results of expensive lookups. You provide thefunction to use to look up values that
aren’t known, then it will save the results. It also allows a “destructor” to be run when an item is
released from the cache, so you can use this to manage an on-disk file cache as well (where the
“Get” function downloads a file, then the “Release” function deletes it). QueuedAsyncMRUCache
- this class is by far the most complicated in this library, its goals are similar to MemoizingM-
RUCache, but instead of returning the result immediately, it will schedule a Task to run in the
background and return an IObservable representing the result (a Future). Once the Future com-
pletes, its result is cached so subsequent requests will come from memory. The advantage of
this class is that subsequent identical requests will block on the outstanding one (so if you ask
for “foo.com” on 3 separate threads, one of them will send out the web request and the other
two threads will receive the result as well). This class also allows you to place a blocking limit on
the number of outstanding requests, so that further requests will block until some of the inflight
requests have been satisfied. IEnableLogger - this is an implementation of a simple logger
that combines some of log4net’s syntax with the ubiquity of the Rails logger - any class that
implements the dummy IEnableLogger interface will able to access a logger for that class (i.e.
this.Log().Warn(”Something bad happened!”);)

Chapter 2

ReactiveXaml series:
ReactiveCommand

What is ReactiveCommand

ReactiveCommand is an ICommand implementation that is simultaneously a RelayCommand
implementation, as well as some extra bits that are pretty motivating. Let’s jump right into the
first example:

// This works just like Josh Smith’s RelayCommand
var cmd = ReactiveCommand.Create(x => true, x => Console.WriteLine(x));
cmd.CanExecute(null);
>> true

cmd.Execute(”Hello”);
”Hello”

Well that’s boring, where’s the fun stuff??

However, here’s where it gets interesting - we can also provide IObservable as our CanExecute.
For example, here’s a command that can only run when the mouse is up:

var mouseIsUp = Observable.Merge(
Observable.FromEvent<MouseButtonEventArgs>(window, ”MouseDown”)

.Select(_ => false),
Observable.FromEvent<MouseButtonEventArgs>(window, ”MouseUp”)

.Select(_ => true),

11

12 CHAPTER 2. REACTIVEXAML SERIES: REACTIVECOMMAND

).StartWith(true);

var cmd = new ReactiveCommand(mouseIsUp);
cmd.Subscribe(x => Console.WriteLine(x));

Or, how about a command that can only run if two other commands are disabled:

// Pretend these were already initialized to something more interesting
var cmd1 = new ReactiveCommand();
var cmd2 = new ReactiveCommand();

var can_exec = cmd1.CanExecuteObservable
.CombineLatest(cmd2.CanExecuteObservable, (lhs, rhs) => !(lhs && rhs));

var new_cmd = new ReactiveCommand(can_exec, Console.WriteLine);

One thing that’s important to notice here, is that the command’s CanExecute updates imme-
diately, instead of relying on CommandManager.RequerySuggested. If you’ve ever had the
problem in WPF or Silverlight where your buttons don’t reenable themselves until you switch
focus or click them, you’ve seen this bug. Using an IObservable means that the Commanding
framework knows exactly when the state changes, and doesn’t need to requery every command
object on the page.

What about Execute?

This is where ReactiveCommand’s IObservable implementation comes in - ReactiveCommand
itself can be observed, and it provides new items whenever Execute is called (the items being
the parameter passed into the Execute call). This means, that Subscribe can act the same as
the Execute Action, or we can actually get a fair bit more clever. For example:

var cmd = ReactiveCommand.Create(x => x is int, null);

cmd.Where(x => ((int)x) % 2 == 0)
.Subscribe(x => Console.WriteLine(”Even numbers like {0} are cool!”, x));

cmd.Where(x => ((int)x) % 2 != 0)
.Timestamps()
.Subscribe(x =>
Console.WriteLine(”Odd numbers like {0} are even cooler, especially at {1}!”, x.Value, x.Timestamp));

cmd.Execute(2);
>>> ”Even numbers like 2 are cool!”

cmd.Execute(5);
>>> ”Odd numbers like 5 are even cooler, especially at (the current time)!”

SUM IT ALL UP, LIKE THAT GUY IN SCRUBS DOES ALL THE TIME 13

Sum it all up, like that guy in Scrubs does all the time

Hopefully that gives you some motivating examples as to why combining the Reactive Exten-
sions with WPF is a really awesome idea, and not just for drag and drop! In the rest of this series
I’ll spend some time explaining the rest of the classes and their use, as well as going through a
small sample application that I’ve written that I’ll soon be posting.

14 CHAPTER 2. REACTIVEXAML SERIES: REACTIVECOMMAND

Chapter 3

ReactiveXaml Series:
ReactiveAsyncCommand

Motivation

If you’ve done any WPF programming that does any sort of interesting work, you know that
one of the difficult things is that if you do things in an event handler that take a lot of time, like
reading a large file or downloading something over a network, you will quickly find that you have
a problem: during the blocking call, the UI turns black. Silverlight heads this off at the pass - you
can’t even do blocking operations at all.

So you say, “Oh, I’ll just run it on another thread!” Then, you find the 2nd tricky part - WPF and Sil-
verlight objects have thread affinity. Meaning, that you can only access objects from the thread
that created them. So, at the end of the computation when you go to run textBox.Text = results;,
you suddenly get an Exception.

Dispatcher.BeginInvoke solves this

So, once you dig around on the Internet a bit, you find out the pattern to solve this problem
involves the Dispatcher:

void SomeUIEvent(object o, EventArgs e)
{

var some_data = this.SomePropertyICanOnlyGetOnTheUIThread;

var t = new Task(() => {
var result = doSomethingInTheBackground(some_data);

15

16 CHAPTER 3. REACTIVEXAML SERIES: REACTIVEASYNCCOMMAND

Dispatcher.BeginInvoke(new Action(() => {
this.UIPropertyThatWantsTheCalculation = result;

}));
}

t.Start();
}

We use this pattern a lot, let’s make it more succinct

So, the idea of ReactiveAsyncCommand is that many times, when we run a command, we often
are just:

1. The command executes, we kick off a thread

2. We calculate something that takes a long time

3. We take the result, and set a property on the UI thread, using Dispatcher

Because we encapsulate the pattern, we can get other stuff for
free

ReactiveAsyncCommand attempts to capture that pattern, and makes certain things easier. For
example, you often only want one async instance running, and the Command should be dis-
abled while we are still processing. Another common thing you would want to do is, display
some sort of UI while an async action is running - something like a spinner control or a progress
bar being displayed.

Since ReactiveAsyncCommand derives from ReactiveCommand, it does everything its base
class does - you can use it identically, and the Execute IObservable tells you when workitems are
queued.. What ReactiveAsyncCommand does that would be hard to do with ReactiveCommand
directly, is that it has code built-in to automatically keep track of in-flight workitems.

The first pattern - running an Action in the background

Here’s a simple use of a Command, who will run a task in the background, and only allow one
at a time (i.e. its CanExecute will return false until the action completes)

var cmd = new ReactiveAsyncCommand(null, 1 /*at a time*/);

cmd.RegisterAsyncAction(i => {

PUTTING IT ALL TOGETHER 17

Thread.Sleep((int)i * 1000); // Pretend to do work
};

cmd.Execute(5 /*seconds*/);
cmd.CanExecute(5); // False! We’re still chewing on the first one.

Putting it all together

Remember, ReactiveXaml is a MVVM framework - to fully demonstrate calculating a value and
displaying it in the UI, it’s easiest to make a very simple MVVM application. Here’s the XAML,
and the basic class:

<Window x:Class=”RxBlogTest.MainWindow”
x:Name=”Window” Height=”350” Width=”525”>

<Grid DataContext=”{Binding ViewModel, ElementName=Window}”>
<Stackpanel HorizontalAlignment=”Center” VerticalAlignment=”Center”>

<Textblock Text=”{Binding DataFromTheInternet}” FontSize=”18”/>

<Button Content=”Click me!” Command=”{Binding GetDataFromTheInternet}”
CommandParameter=”5” MinWidth=”75” Margin=”0,6,0,0”/>

</Stackpanel>
</Grid>

</Window>

And the codebehind:

using System;
using System.Threading;
using System.Windows;
using ReactiveXaml;

namespace RxBlogTest
{

public partial class MainWindow : Window
{

public AppViewModel ViewModel { get; protected set; }
public MainWindow()
{

ViewModel = new AppViewModel();
InitializeComponent();

}
}

18 CHAPTER 3. REACTIVEXAML SERIES: REACTIVEASYNCCOMMAND

public class AppViewModel : ReactiveValidatedObject
{

ObservableAsPropertyHelper<string> _DataFromTheInternet;
public string DataFromTheInternet {

get { return _DataFromTheInternet.Value; }
}

public ReactiveAsyncCommand GetDataFromTheInternet { get; protected set; }
}

}

This is a simple MVVM application, whose ViewModel has two items - a Command called “Get-
DataFromTheInternet”, and a place to store the results, a property called “DataFromTheInter-
net”. I’ll describe ObservableAsPropertyHelper later, but you can think of it as a class that
“Remembers the latest value of an IObservable”.

Using ReactiveAsyncCommand

The difference between RegisterAsyncAction and RegisterAsyncFunction is the return value.
The latter function returns an IObservable representing the results that will be returned. For
async calls, you can often think of IObservable as a Future Result, that is, a “promise” of a
result (or an Exception if something goes pear-shaped). In this case, our IObservable represents
the “output” pipeline, and will produce results every time someone fires the command, one per
Execute().

Here’s how we actually implement the async function, in the ViewModel constructor.

public AppViewModel()
{

GetDataFromTheInternet = new ReactiveAsyncCommand(null, 1 /*at a time*/);

//
// This function will return a ”stream” of results, one per invocation
// of the Command
//

var future_data = GetDataFromTheInternet.RegisterAsyncFunction(i => {
Thread.Sleep(5 * 1000); // This is a pretend async query
return String.Format(”The Future will be {0}x as awesome!”, i);

});

// OAPH will ”watch” future_data, and raise property changes when new values
// come in. It’ll also provide the latest result that came in.

WHY IS THIS COOL? 19

_DataFromTheInternet = new ObservableAsPropertyHelper<string>(future_data,
x => RaisePropertyChanged(”DataFromTheInternet”));

}

Why is this cool?

Notice what I didn’t have to do here: I didn’t have to use any sort of explicit async mechanism
like a Task or a new Thread, I didn’t have to marshal data back to the UI thread using Dis-
patcher.BeginInvoke, and my code reads way more like a simple, single-threaded application
again, instead of chaining async invocations. Stuff like this is why I’m really excited about some
of the concepts in ReactiveXaml.

Furthermore, there’s something else here that’s very motivating: testability. Using Dispatcher.BeginInvoke
means that we’re assuming that a Dispatcher exists and works. If you’re in a unit test runner,
this isn’t true. Which means, your Commanding code if you’re using other MVVM frameworks
that don’t handle this isn’t testable. ReactiveXaml automatically detects whether you are in a
test runner, and changes its default IScheduler to not use the Dispatcher. Test code still works,
without hacking your ViewModel code at all.

Where’s the Code?

Get the code here: ReactiveAsyncCmd.zip. Also, I’m too lazy to correct the typo in the names-
pace, but it doesn’t matter. Thoughts? Comments? Ideas?

http://paulbetts.org/blog_samples/ReactiveAsyncCmd.zip

20 CHAPTER 3. REACTIVEXAML SERIES: REACTIVEASYNCCOMMAND

Chapter 4

ReactiveXaml series: A Sample
MVVM application

A Sample App makes understanding ReactiveXaml way easier

I used this application to help guide the API design around ReactiveXaml, and I think it’s a good
illustration on how to use this library to write WPF applications. The original goal of it was to
teach WPF to folks, so it has a ton of documentation in the comments - it almost is “blogging via
code”, and I think it’s a really interesting way to express ideas, calling back somewhat to Knuth’s
ideas of Literate Programming

21

http://en.wikipedia.org/wiki/Literate_Programming

22 CHAPTER 4. REACTIVEXAML SERIES: A SAMPLE MVVM APPLICATION

Our sample app helps us make a list of Awesome People

Make sure to read the code!

A lot of people who originally saw this sample ran it, saw that it didn’t really do anything interest-
ing, then forgot about it. The app itself is boring, the code is what’s important! Read through
it, there are lots of “essays” scattered throughout the source code, they all start with the tag
“COOLSTUFF” - searching for it will help you find guidance on Rx, MVVM, as well as things like
layout and bindings.

WHERE’S THE CODE AGAIN? 23

This dialog shows validation, async web requests, and a clever use of Flickr

Where’s the code again?

It’s at the ReactiveXaml repository on Github - if any of you want to check this out but have
trouble getting Git to work, let me know via Email at paul@paulbetts.org or Email the mailing list
and I’ll help you out.

http://github.com/xpaulbettsx/ReactiveXaml
mailto:paul@paulbetts.org
mailto:reactivexaml@googlegroups.com

24 CHAPTER 4. REACTIVEXAML SERIES: A SAMPLE MVVM APPLICATION

Chapter 5

ReactiveXaml series:
ReactiveObject, and why Rx is
awesome

ViewModels via ReactiveObject

Like any other MVVM framework, ReactiveXaml has an object designed as a ViewModel class.
This object is based on Josh Smith’s ObservableObject implementation in MVVM Foundation
(actually, many of the classes’ inspiration come from MVVM Foundation, Josh does awesome
work!). The Reactive version as you can imagine, implements INotifyPropertyChanged as well
as IObservable so that you can subscribe to object property changes.

Other things that are nice to have

ReactiveObject also does a few nice things for you: first, when you compile ReactiveXaml in
Debug mode, it will print debug messages using its logging framework whenever a property
changes. Another example is, implementing the standard pattern of a property that raises the
changed event is a few lines shorter:

int _someProp;
public int SomeProp {

get { return _someProp; }
set { this.RaiseAndSetIfChanged(x => x.SomeProp, value);}

}

Compared to the traditional implementation which is a few lines longer:

25

http://github.com/xpaulbettsx/ReactiveXaml
http://mvvmfoundation.codeplex.com/

26CHAPTER 5. REACTIVEXAML SERIES: REACTIVEOBJECT, AND WHY RX IS AWESOME

int _someProp;
public int SomeProp {

get { return _someProp; }
set {

if (_someProp == value)
return;

_someProp = value;
RaisePropertyChanged(”SomeProp”);

}
}

Some philosophy

A lot of examples of the Reactive Extensions make its domain appear really constrained, like the
only thing it’s ever useful for is either handing web service requests and implementing drag-and-
drop. However, here’s the key thing to realize - a property change notification is an event.
Once you realize that Reactive Programming applies to any time an object changes state, Rx
suddenly becomes far more applicable to any programming domain - really, Rx is a library to
model state machines that are context-free with respect to threading.

Abstracting away context is critical for a multicore + cloud world

What do I mean by “context-free”? Well, just as LINQ abstracts away the idea of a for loop
into these operations like “Select” and “Where”, where the implementation is separate from the
semantics, Rx does the same thing. When you call Where() on an IEnumerable, the default
implementation is a simple loop - but add an .AsParallel(), and suddenly the same code is now
running on multiple cores. Use Dryad, and the same code is running on multiple machines in an
HPC cluster.

In traditional imperative programming, we are always explicit about the thread context in which
we were running in - to put work on another thread, we had to call new Thread(). The re-
ally interesting thing about Rx, and the reason that Rx is made by the “Cloud Programmability
Group” inside MS, is that Rx is also an abstraction above context - in Rx, you usually don’t
care what thread you’re running on, and you only have to specify it when you explicitly do care
via ObserveOn (like to deal with WPF’s thread affinity). Observables are essentially a way to
declaratively write dependencies between incoming data sources without explicitly specifying
the mechanism of their synchronization, only their semantics.

Do you see where I’m going with this? If the concept of “Lock” and “Thread” are no longer
concretely tied to a kernel thread and a Critical Section, this means that you can write the same
Rx code, and go from a single thread, event-based model with no locks, to a multicore model that
synchronizes via locking, to a cluster of computers in a lab which synchronize via a message-
passing model, to a giant cloud computing array that synchronizes via a service bus. I think
that’s awesome.

Chapter 6

ReactiveXaml series: Implementing
search with
ObservableAsPropertyHelper

Implementing an auto-search TextBox using Rx and ReactiveX-
aml

One of the most important classes in ReactiveXaml called ObservableAsPropertyHelper is
a class that allows you to take an IObservable and convert it into a read-only, change notifying
property. This class is really useful for exposing the results of your code (i.e. the “output”). This
class makes it easy to complete the scenario that was described in the previous blog post about
ReactiveAsyncCommand. One of the cool things about ObservableAsPropertyHelper, is that it
guarantees that it will run notifications on the UI thread via the Dispatcher so that you don’t have
to think about what thread the observable notification came in on.

27

http://github.com/xpaulbettsx/ReactiveXaml
http://blog.paulbetts.org/index.php/2010/06/27/reactivexaml-series-reactiveasynccommand/
http://blog.paulbetts.org/index.php/2010/06/27/reactivexaml-series-reactiveasynccommand/

28CHAPTER 6. REACTIVEXAML SERIES: IMPLEMENTING SEARCH WITH OBSERVABLEASPROPERTYHELPER

The sample app

Click on the image to download the sample project.

Going through the code

First, let’s look at our main data item - a Flickr search result item. Since we will never change
these objects, we don’t need any INotifyPropertyChanged goo, just regular old auto-properties:

public class FlickrPhoto {
public string Title { get; set; }
public string Description { get; set; }
public string Url { get; set; }

}

Now, the app data model - there’s two real bits; the current search text, and the List of Flick-
rPhoto results. In ReactiveXaml, all of this code below is boilerplate - these code chunks are
just some stuff to memorize or put into a snippet and never look at it again.

public class AppViewModel : ReactiveValidatedObject
{

//
// This is the canonical way to make a read-write property

http://www.paulbetts.org/blog_samples/OAPHSample.zip

NOW HERE’S THE INTERESTING PART 29

//

string _SearchTerm;
public string SearchTerm {

get { return _SearchTerm; }
set { this.RaiseAndSetIfChanged(x => x.SearchTerm, value); }

}

//
// This is the canonical way to make a read-only property whose value
// is backed by an IObservable
//

ObservableAsPropertyHelper<List<FlickrPhoto>> _Photos;
public List<FlickrPhoto> Photos {

get { return _Photos.Value; }
}

ObservableAsPropertyHelper<Visibility> _SpinnerVisibility;
public Visibility SpinnerVisibility {

get { return _SpinnerVisibility.Value; }
}

public ReactiveAsyncCommand ExecuteSearch { get; protected set; }
}

Now here’s the interesting part

Our goal is to write a search box which automatically issues searches in the background as the
user types, similar to what most browsers do with the address bar. However, there are a number
of tricky aspects to this:

• We don’t want to issue too many requests, especially when the user is still typing, so
wiring something directly to KeyUp would be lousy.

• Don’t issue queries for empty strings, and don’t issue the same query 2x (for example, if
the user types “foo”, then quickly hits Backspace, then retypes ‘o’, we should realize that
we already have the right results)

• The delay should be consistent, so having a global timer won’t work because sometimes
the user will hit the key right before the timer fires, so the delay will vary wildly between
the max time and instantaneous.

Implementing this properly using traditional methods would be absolutely awful. Here’s the code
on how we do it, and it’s 5 lines in the constructor:

30CHAPTER 6. REACTIVEXAML SERIES: IMPLEMENTING SEARCH WITH OBSERVABLEASPROPERTYHELPER

public AppViewModel()
{

ExecuteSearch = new ReactiveAsyncCommand(null, 0);

//
// Take the inflight items and toggle the visibility
//

var should_spin = ExecuteSearch.ItemsInflight
.Select(x => x > 0 ? Visibility.Visible : Visibility.Collapsed);

//
// This was described last time too, we actually do the async function
// here and RegisterAsyncFunction will return an IObservable which
// gives us the output, one item per invocation of ExecuteSearch.Execute
//

var results = ExecuteSearch.RegisterAsyncFunction(
term => GetSearchResultsFromFlickr((string)term));

//
// Here’s the awesome bit - every time the SearchTerm changes
// throttled to every 800ms (i.e. drop changes that are happening
// too quickly). Grab the actual text, then only notify on unique
// changes (i.e. ignore ”A” => ”A”). Finally, only tell us when
// the string isn’t empty. When *all* of those things are true,
// fire ExecuteSearch and pass it the term.
//

this.ObservableForProperty<AppViewModel, string>(”SearchTerm”)
.Throttle(TimeSpan.FromMilliseconds(800))
.Select(x => x.Value).DistinctUntilChanged()
.Where(x => !String.IsNullOrWhiteSpace(x))
.Subscribe(ExecuteSearch.Execute);

//
// This code is also boilerplate, it’s the standard way to take our
// observable and wire it up to the property, giving it an initial
// value.
//

_SpinnerVisibility = new ObservableAsPropertyHelper<Visibility>(
should_spin, x => RaisePropertyChanged(”SpinnerVisibility”), Visibility.Collapsed);

_Photos = new ObservableAsPropertyHelper<List<FlickrPhoto>>(
results, _ => RaisePropertyChanged(”Photos”));

NOW HERE’S THE INTERESTING PART 31

}

Here’s the code that actually does the work as an aside, it’s not nearly as pretty:

//
// If you don’t understand this code, don’t worry about it, I just got lazy.
// We’re just hack-parsing the RSS feed and grabbing out title/desc/url and
// newing up the list of FlickrPhotos while blatantly abusing Zip.
//

public static List<FlickrPhoto> GetSearchResultsFromFlickr(string search_term)
{

var doc = XDocument.Load(String.Format(CultureInfo.InvariantCulture,
”http://api.flickr.com/services/feeds/photos_public.gne?tags={0}

&format=rss_200”,
HttpUtility.UrlEncode(search_term)));

if (doc.Root == null)
return null;

var titles = doc.Root.Descendants(”{http://search.yahoo.com/mrss/}
title”)

.Select(x => x.Value);
var descriptions = doc.Root.Descendants(”{http://search.yahoo.com/

mrss/}description”)
.Select(x => HttpUtility.HtmlDecode(x.Value));

var items = titles.Zip(descriptions,
(t, d) => new FlickrPhoto() { Title = t, Description = d }).ToArray();

var urls = doc.Root.Descendants(”{http://search.yahoo.com/mrss/}thumbnail”)
.Select(x => x.Attributes(”url”).First().Value);

var ret = items.Zip(urls, (item, url) => { item.Url = url; return item; }).ToList();
return ret;

}

32CHAPTER 6. REACTIVEXAML SERIES: IMPLEMENTING SEARCH WITH OBSERVABLEASPROPERTYHELPER

Chapter 7

ReactiveXaml series: Using
MemoizingMRUCache

Memoization and Caching

One thing that is useful in any kind of programming is having a look-up table so that you don’t
have to spend expensive calls to fetch the same data that you just had recently, since fetching
the data and passing it around via parameters often gets ugly. A better way is to use a cache
- store values we’ve fetched recently and reuse them. So, a naïve approach would be to store
the data off in a simple Dictionary. This might work for awhile, but you soon realize as Raymond
Chen says, “Every cache has a cache policy, whether you know it or not.” In the case of a
Dictionary, the policy is unbounded - an unbounded cache is a synonym for ‘memory leak’.

To this end, one of the things that comes with ReactiveXaml is a class called MemoizingMRUCache.
As its name implies, it is a most recently used cache - we’ll throw away items whose keys haven’t
been requested in awhile; we’ll keep a fixed limit of items in the cache, unlike other approaches
involving WeakReference that keep references to items only if they’re used on some other thread
at the time. Since most desktop / Silverlight applications aren’t so massively multithreaded as a
web application, using a WeakReference approach means we’ll just get constant cache misses.

Using MemoizingMRUCache

Really when it comes down to it, you can just think of MemoizingMRUCache as just a proxy for
a function - when you call Get, it’s going to invoke the function you provided in the construc-
tor. One thing that’s important to understand with this class, is that your function must be a
function in the mathematical sense - i.e. the return value for a given parameter must always
be identical. Another thing to remember is that this class is not implicitly thread-safe - unlike

33

34 CHAPTER 7. REACTIVEXAML SERIES: USING MEMOIZINGMRUCACHE

QueuedAsyncMRUCache, if you use it from multiple threads, you have to protect it via a lock
just like a Dictionary or a List.

Here’s a motivating sample:

// Here, we’re giving it our ”calculate” function - the ’ctx’ variable is
// just an optional parameter that you can pass on a call to Get.
var cache = new MemoizingMRUCache<int, int>((x, ctx) => {

Thread.Sleep(5*1000); // Pretend this calculation isn’t cheap
return x * 100;

}, 20 /*items to remember*/);

// First invocation, it’ll take 5 seconds
cache.Get(10);
>>> 1000

// This returns instantly
cache.Get(10);
>>> 1000

// This takes 5 seconds too
cache.Get(15);
>>> 1500

Maintaining an on-disk cache

MemoizingMRUCache also has a feature that comes in handy in certain scenarios: when a
memoized value is evicted from the cache because it hasn’t been used in awhile, you can have
a function be executed with that value. This means that MemoizingMRUCache can be used to
maintain on-disk caches - your Key could be a website URL, and the Value will be a path to the
temporary file. Your OnRelease function will delete the file on the disk since it’s no longer in-use.

Some other useful functions

• TryGet - Attempt to fetch a value from the cache only

• Invalidate - Forget a cached key if we’ve remembered it and call its release function

• InvalidateAll - Forget all the cached keys and start from scratch

Chapter 8

ReactiveXaml Series: On
combining notifications

I was excited today when I got my first Email post to the Google Group for RxXaml, and even
better, it was a great question; what the poster was asking about really strikes to the core of
why Rx and ReactiveXaml are compelling in my mind. In my experimentation, I’ve come across
a number of useful patterns that I should’ve mentioned earlier - I showed you how to get the
notifications, but not how to use them!

When I say ‘notification’, you have to read into this term very broadly and kind of stretch your
brain a bit: as a reminder, here are some examples of what are notifications in Rx and RxXaml:

• A simple .NET event (i.e. via Observable.FromEvent)

• Whenever a property changes (via ReactiveObject)

• When an ICommand is invoked (ReactiveCommand)

• Any time any sort of asynchronous operation completes (via Observable.FromAsyncCommand,
ReactiveAsyncCommand, or QueuedAsyncMRUCache)

• In response to an explicit notification (via a Subject)

Combining notifications in meaningful ways

One of the most powerful parts of the Reactive Extensions is its ability to combine single events
compositionally - when I describe what Rx is to people, I often use the description, “Rx gives you
the ability to take simple events and combine them together into something more specific and
useful - I don’t really care when the ‘MouseUp’ and ‘KeyDown’ events happen, I want to know
when the ‘User dropped a file on the top left corner’ happens - tell me about that.”

35

http://groups.google.com/group/reactivexaml/

36 CHAPTER 8. REACTIVEXAML SERIES: ON COMBINING NOTIFICATIONS

To this effect, there are several tricks that we can do. The first one is, that you must remember
that ReactiveObject fires its IObservable when any property changes - this means, that it’s very
easy to watch an entire object. Often, this is useful enough - when it isn’t, Wherehelps you out:

ReactiveObject Toaster;

// Any change will print something
Toaster.Subscribe(x => Console.WriteLine(”{0} changed!”, x.PropertyName);

// This is an observable that only notifies when the Foo property changes
var FooChanged = Toaster.Where(x => x.PropertyName == ”Foo”);

Merge, CombineLatest, and Zip - the ‘And’ and ‘Or’ of Rx

So, to combine several IObservables, we have a few useful methods that stand out. The first is
Observable.Merge: as its name implies, Merge takes several IObservables of the same type,
and returns an IObservable that fires when any one of its inputs fires. Thinking in a boolean
sense, Merge is kind of likeOr. Having to be of the same type isn’t as onerous of a requirement:

IObservable<float> O1;
IObservable<int> O2;
IObservable<string> O3;

// Tell me when *any* of these 3 send a notification
var result = Observable.Merge(

O1.Select(_ => true), O2.Select(_ => true), O3.Select(_ => true)
);

One of the difficulties of Merge that can sometimes bite you, is that it is stateless - when you get
a notification about O1, you don’t have any knowledge about what items came in on O2 or O3.
For two IObservables, we have a handy method called Observable.CombineLatest. This
method will “remember” the last item that came in on both sides - when O1 changes, it will give
you the new O1 and the latest value of O2. Furthermore, we can take the result and expose it
as a change-notifying property via ObservableAsPropertyHelper.

// Subjects are just IObservables that we can trigger by-hand
// They’re the mutable variables of Rx
Subject<int> s1;
Subject<int> s2;

// Combine s1 with s2 and write its output to Console
s1.CombineLatest(s2, (a,b) => a * b).Subscribe(Console.WriteLine);

http://blog.paulbetts.org/index.php/2010/07/05/reactivexaml-series-implementing-search-with-observableaspropertyhelper/

COMBINING NOTIFICATIONS FOR VISUAL STATE MANAGER 37

s1.OnNext(5); // Nothing happens, no value for s2

s2.OnNext(10); // 10 came in, combine the 10 with whatever s1 was (5)
>>> 50

s2.OnNext(20); // 20 came in, still use s1’s latest value
>>> 100

s1.OnNext(2); // s1 is 1, take s2’s latest value (20)
>>> 40

Finally, we have Observable.Zip. Like the other two, this function also combines observables,
but this function like its IEnumerable counterpart, is only concerned about pairs of items. This
means, it’s more like “And” than the other two (remember that it’s extremely unlikely that notifica-
tions will come in at the exact same time so an “Observable.And” wouldn’t make much sense).
Zip will not yield elements until it has both of its “slots” filled for the next item.

Subject<int> s1;
Subject<int> s2;

s1.Zip(s2, (a,b) => a * b).Subscribe(Console.WriteLine);

s1.OnNext(2); // Nothing, no pair yet
s1.OnNext(5); // Still no pair
s2.OnNext(10); // We’ve got a pair (2,10), let’s send it down
>>> 20

s1.OnNext(10); // s2’s empty, no pair
s2.OnNext(1); // 5 * 1
>>> 5
s2.OnNext(10); // 10*10
>>> 100
s2.OnNext(100); // s1’s empty, no output

Combining Notifications for Visual State Manager

Here’s another clever trick that I really like - often, we need to change the visual state on a variety
of different notifications of different types and are unrelated. Here’s how to do it:

IObservable<int> SomethingToWatch, SomethingElse;
IObservable<float> AThirdThing;

var state = Observable.Merge(

38 CHAPTER 8. REACTIVEXAML SERIES: ON COMBINING NOTIFICATIONS

SomethingToWatch.Select(_ => ”State1”),
SomethingElse.Select(_ => ”State2”),
AThirdThing.Select(_ => ”State3”)

);

state.Subscribe(x => VisualStateManager.GoToState(this, x, true));

Observable.Merge can also be used along with Scan to keep a reference count, check out this
example from ReactiveAsyncCommand where we use two observables and Select them to 1
and –1, then keep a running count via Scan.

https://github.com/xpaulbettsx/ReactiveUI/blob/master/ReactiveUI.Xaml/ReactiveAsyncCommand.cs#L83
https://github.com/xpaulbettsx/ReactiveUI/blob/master/ReactiveUI.Xaml/ReactiveAsyncCommand.cs#L83

Chapter 9

ReactiveXaml Series:
ObservableAsyncMRUCache - the
async version of
MemoizingMRUCache

A thread-safe, asynchronous MemoizingMRUCache

As we saw in a previous entry, MemoizingMRUCache is great for certain scenarios where we
want to cache results of expensive calculations, but one disadvantage is that it is fundamentally
a single-threaded data structure: accessing it from multiple threads, or trying to cache the results
of several in-flight web requests at the same time would result in corruption. ObservableAsyncM-
RUCache solves all of these issues, as well as gives us a new method called AsyncGet, which
returns an IObservable. This IObservable will fire exactly once, when the async command re-
turns.

What places would I actually want to use this class? Here’s a motivating example: you’re writing
a Twitter client, and you need to fetch the profile icon for each message - a naive foreach loop
would be really slow, and even if you happened to write it in an asynchronous fashion, you would
still end up fetching the same image potentially many times!

Using IObservable as a Future

One of the things that an IObservable encapsulates is the idea of a Future, described simply as
the future result of an asynchronous operation. The pattern is implemented via an IObservable

39

http://blog.paulbetts.org/index.php/2010/07/13/reactivexaml-series-using-memoizingmrucache/
http://en.wikipedia.org/wiki/Future_(programming)

40CHAPTER 9. REACTIVEXAML SERIES: OBSERVABLEASYNCMRUCACHE - THE ASYNC VERSION OF MEMOIZINGMRUCACHE

that only produces one element then completes. Using IObservable as a Future provides a few
handy things:

• IObservables let us block on the result if we want, via Observable.First().

• IObservables have built-in error handling via OnError, so we can also handle the case
where something goes pear-shaped.

• We can easily group several IObservables together via Observable.Merge and wait for
any (or all) of them.

A difficult problem - preventing concurrent identical requests

Furthermore, ObservableAsyncMRUCache solves a tricky problem as well: let’s revisit the pre-
vious example. As we walk the list of messages, we will asynchronously issue WebRequests.
Imagine a message list where every message is from the same user:

For the first item, we’ll issue the WebRequest since the cache is empty. Then, we’ll go to the 2nd
item - since the first request probably hasn’t completed, we’ll issue the same request again. If you
had 50 messages and the main thread was fast enough, you could end up with 50 WebRequests
for the same file!

What should happen? When the 2nd call to AsyncGet occurs, we need to check the cache,
but we also need to check the list of outstanding requests. Really, for every possible input,
you can think of it being in one of three states: either in-cache, in-flight, or brand new. Observ-
ableAsyncMRUCache ensures (through a lot of code!) that all three cases are handled correctly,
in a thread-safe manner.

Chapter 10

Making INotifyPropertyChanged
type-safe using Expressions

Some folks on the mailing list for ReactiveXaml rightly pointed out some code in ReactiveXaml
that could really use some work - my implementation of INotifyPropertyChanged’s “RaiseAnd-
SetIfChanged”. For the impatient, here’s how I did it

Trying to make RaisePropertyChanged less verbose

This method is a helper method designed to encapsulate the following common code pattern
when implementing a property:

1. Make sure that the property is different than the original value

2. Set the property to the new value

3. Call RaisePropertyChanged with the name of the property that has changed

Doing this via a helper is a little bit tricky - the naive approach often forgets #1 entirely, or will
try to do #2 and #3 in the opposite order, resulting in WPF/Silverlight not correctly updating.
Another problem is that we usually have to pass in a string literal to RaisePropertyChanged
(as well as RaiseAndSetIfChanged). While I’m a Rubyist and string literals don’t bother me,
most .NET developers are annoyed by it, and it also can lead to really evil-to-debug issues after
refactoring.

Using Expression Trees to implement a better version

Here’s what the new syntax for defining properties looks like:

41

http://groups.google.com/group/reactivexaml/browse_thread/thread/c6fc10f65de05be0
http://bit.ly/rxxaml
http://github.com/xpaulbettsx/ReactiveXaml/commit/98001677500eeed55b53b63642a2f38292987a4d#L3R143

42CHAPTER 10. MAKING INOTIFYPROPERTYCHANGED TYPE-SAFE USING EXPRESSIONS

string _SomeProperty;
public string SomeProperty {

get { return _SomeProperty; }
set { this.RaiseAndSetIfChanged(x => x.SomeProperty, value); }

}

Much improved, and fairly clean (we could do way better if C# had Macros, but I digress). Com-
pare this with the old, dumb looking syntax:

string _SomeProperty;
public string SomeProperty {

get { return _SomeProperty; }
set { _SomeProperty = this.RaiseAndSetIfChanged(_SomeProperty, value,

x => _SomeProperty, ”SomeProperty”);
}

}

Or doing this by-hand:

string _SomeProperty;
public string SomeProperty {

get { return _SomeProperty; }
set {

if (_SomeProperty == value)
return;

_SomeProperty = value;
RaisePropertyChanged(”SomeProperty”);

}
}

How can we do this? Expression Trees! When we write Expression> as a type instead of Func,
instead of getting a compiled method pointer, we get an object representing the AST of the
lambda function. We’ll use this to grep out the property name.

Astute readers will notice an issue - how can we correctly decide T so that Intellisense works
correctly? If we naïvely choose ‘ReactiveObject’ as T, none of our properties will be defined,
since they’re all really defined on the derived class, not on ReactiveObject itself. To solve this,
we’ll use a Mixin plus a cleverly typed generic function - since the first parameter of an extension
method is the type itself, the compiler will automatically bolt this on to any ReactiveObject while
still treating it as the correct derived type:

public static class ReactiveObjectExpressionMixin
{

public static TRet RaiseAndSetIfChanged<TObj, TRet>(this TObj This,

http://en.wikipedia.org/wiki/Abstract_syntax_tree
http://en.wikipedia.org/wiki/Mixin

SOME TRICKY CAVEATS 43

Expression<Func<TObj, TRet>> Property,
TRet Value)

where TObj : ReactiveObject
{
}

}

Some tricky caveats

It’s not all biscuits and gravy though, there are a few subtle implementation details that might
catch you when using this - remember though, that you can always fall back to writing it by-hand
via RaisePropertyChanged, this method is solely a helper:

1. You must name the field that backs your property as _TheFieldName - we use Reflection
to set the backing field

2. Writing the ‘this’ in ‘this.RaiseAndSetIfChanged’ isn’t optional - otherwise the extension
method won’t be invoked, the old busted version will

44CHAPTER 10. MAKING INOTIFYPROPERTYCHANGED TYPE-SAFE USING EXPRESSIONS

Chapter 11

Calling Web Services in Silverlight
using ReactiveXaml

One of the scenarios that our summer intern Roberto Sonnino pointed out over the summer
that was somewhat annoying in ReactiveXaml (my MVVM library that integrates the Reactive
Extensions for .NET), was making RxXaml more friendly to asynchronous web service calls in
Silverlight. Since this is a pretty important scenario, I decided to hack on it some (it’s always
been possible, just not as easy).

Getting our function prototype correct

Remember from an earlier post that an IObservable can be used as a Future, a “box” that will
eventually contain the result of a web service call or other asynchronous function, or the error
information. So to this end, we’d really like our web service calls to all be vaguely of the form:

IObservable<Something> CoolWebServiceCall(object Param1, object Param2 /
etc/); However, we know that neither HttpWebRequest nor the web service generated code
looks anything like that. Normal Silverlight objects use an OnCompleted event to fire a callback
once the call completes. The Rx framework designers saw this coming however, and gave us
a pretty handy function to deal with it: Observable.FromAsyncPattern(). This function will
take a BeginXXXX/EndXXXX pair that follows the .NET Asynchronous Pattern and in return, will
give us a Func that follows the form above, without us having to write some boilerplate code to
connect the async method to an IObservable.

An example: looking at the Bing Translation API

One of the most simple public web services is the Bing Translation API, so its Translate() method
is a good candidate for our example. The synchronous signature is:

45

http://virtualdreams.com.br/blog/
http://bit.ly/reactivexaml
http://blog.paulbetts.org/index.php/2010/08/23/reactivexaml-series-queuedasyncmrucache-the-async-version-of-memoizingmrucache/
http://msdn.microsoft.com/en-us/library/ms228963.aspx
http://msdn.microsoft.com/en-us/library/ff512435.aspx

46 CHAPTER 11. CALLING WEB SERVICES IN SILVERLIGHT USING REACTIVEXAML

string Client.Translate(string appId, string text, string fromLang, string toLang);

Here’s how we could take this and turn it into an Rx-friendly Async function - don’t be scared off
by the five template parameters, they’re just the types of the parameters and return value, in the
same order as a Func:

var client = new LanguageServiceClient();
var translate_func = Observable.FromAsyncPattern<string,string,string,string,string>

(client.BeginTranslate, client.EndTranslate);

IObservable<string> future = translate_func(appId, ”Hello World!”, ”en”, ”de”);
string result = future.First(); // This will *wait* until the call returns!!
>>> ”Guten Tag, Welt!”

//
// Let’s try with an array...
//

var input = new[] {”one”, ”two”, ”three”};

// Fire off three asynchronous web service calls at the same time
var future_items = input.ToObservable()

.SelectMany(x => translate_func(appId, x, ”en”, ”fr”));

// This waits for *all* the web service calls to return
string[] result_array = future_items.ToArray();
>>> [”un”, ”deux”, ”trois”]

An important note for Silverlight!

Silverlight’s web service generated client code does something a bit annoying - it hides away the
BeginXXXX/EndXXXX calls, presumably to make the Intellisense cleaner. However, they’re not
gone, the way you can get them back is by casting the MyCoolServiceClient object to its under-
lying interface (i.e. the LanguageServiceClient object has a generated ILanguageServiceClient
interface that it implements)

Turning this into a Command

Once we’ve got the function, turning it into a command is easy via a new method introduced
to ReactiveAsyncCommand - RegisterObservableAsyncFunction. This method is almost
identical to RegisterAsyncFunction, but instead of expecting a synchronous Func which will be
run on the TPL Task pool, it expects a Func that returns an IObservable as described above.
Here’s a simple example of a good ViewModel object that demonstrates this:

http://github.com/xpaulbettsx/ReactiveXaml/commit/1c22a7df2fec043e51b417ef6802541420f319a6
http://blog.paulbetts.org/index.php/2010/06/27/reactivexaml-series-reactiveasynccommand/
http://msdn.microsoft.com/en-us/library/dd460717.aspx

TURNING THIS INTO A COMMAND 47

public class TranslateViewModel : ReactiveObject
{

//
// Input text
//

string _TextToTranslate;
public string TextToTranslate {

get { return _TextToTranslate; }
set { RaiseAndSetIfChanged(x => x.TextToTranslate, value); }

}

//
// The ”output” property we bind to in the UI
//

ObservableAsPropertyHelper<string> _TranslatedText;
public string TranslatedText {

get { return _TranslatedText.Value; }
}

public ReactiveAsyncCommand DoTranslate { get; protected set; }

const string appId = ”Get your own, buddy!”;
public TranslateViewModel()
{

var client = new LanguageServiceClient();
var translate_func = Observable.FromAsyncPattern<string,string,string,string,string>(

client.BeginTranslate, client.EndTranslate);

// Only one web call at a time please!
DoTranslate = new ReactiveAsyncCommand(null, 1);

//
// ’x’ is the CommandParameter passed in, which we will use as the
// source text
//

var results = DoTranslate.RegisterObservableAsyncFunction(
x => translate_func(appId, (string)x, ”en”, ”de”));

_TranslatedText = this.ObservableToProperty(
results, x => x.TranslatedText);

}
}

48 CHAPTER 11. CALLING WEB SERVICES IN SILVERLIGHT USING REACTIVEXAML

What does that get us?

Let’s review what this fairly short, readable code gets us - using a few simple bindings, we’ll have
a fully non-blocking, responsive UI that correctly handles a lot of the edge cases associated with
background operations: greying out the Button attached to the Command while the web call is
running, saving off the results, then notifying the UI that there is something new to display so
that it updates instantly, without any tricky callbacks or mutable state variables that have to be
guarded by Lock statements to ensure multithreaded safety. That’s pretty cool.

Chapter 12

ReactiveXaml Series: Displaying a
‘Loading…’ value

Some folks from the nRoute Framework were looking for an elegant way to handle displaying an
intermediate value during async updates - something like changing the text to say “Working…”
until the task is complete, then displaying the results. I realized this was pretty easy to do with
ReactiveXaml, so I wrote up some code - here it is:

public class CoolViewModel : ReactiveObject
{

//
// Standard way in RxXaml to declare a notification-enabled property
//

string _InputData;
public string InputData {

get { return _InputData; }
set { this.RaiseAndSetIfChanged(x => x.InputData, value); }

}

// Our ICommand - invoking this will *begin* the async operation
ReactiveAsyncCommand DoubleTheString;

//
// OAPH will create an ’output’ property - that is, a property who will
// be updated via an IObservable
//

ObservableAsPropertyHelper<string> _OutputData;
public string OutputData {

49

http://nroute.codeplex.com/Thread/View.aspx?ThreadId=227771
http://bit.ly/rxxaml

50 CHAPTER 12. REACTIVEXAML SERIES: DISPLAYING A ‘LOADING…’ VALUE

get { return _OutputData.Value; }
}

public CoolViewModel(Window MainWindow)
{

DoubleTheString = new ReactiveAsyncCommand(null, 1/*at a time*/);

IObservable<string> doubled_strings = DoubleTheString.RegisterAsyncFunc(x => {
// Pretend to be a slow function
Thread.Sleep(1000);
return String.Format(”{0}{0}”, x);

});

//
// ReactiveAsyncCommand will fire its OnNext when the command is *invoked*,
// and doubled_strings will fire when the command *completes* - let’s use

// this to our advantage:
//

IObservable<string> result_or_loading = Observable.Merge(
DoubleTheString.Select(x => ”Loading...”),
doubled_strings

);

// Hook up our new ’result_or_loading’ to the output
_OutputData = this.ObservableToProperty(result_or_loading, x => x.OutputData);

}
}

Chapter 13

Some annoying bugs to be aware of
in ReactiveXaml for Silverlight

Despite ReactiveXaml being available for WPF, Silverlight, and Windows Phone 7, I have a
confession to make: the vast majority of my use with this library is in WPF. The test suite runs
under WPF, all of the applications that I am building to prototype RxXaml features are WPF
applications, etc. This isn’t any slight against Silverlight, it just happens to be what I’m usually
working on. So, I assumed naïvely that ReactiveXaml under SL4 would “just work”.

It works now, after some fixups

After some folks messaged me about some issues in the Silverlight version, I decided to wire up
the SL test runner to see if I could reproduce some of these issues. Using a great test runner
called StatLight, I could quickly see that there are some bugs. Luckily, we now run the SL unit
test runner as part of the test suite, so hopefully this won’t be the case any more.

List of bugs fixed as of today

• ReactiveCollection failed any time someone called “coll[x] = foo”; this is because Sil-
verlight’s ObservableCollection returns different results than the desktop CLR on Notify-
CollectionChangedAction.Replace

• Any method involving Expression Trees failed, because SL’s Type.GetField doesn’t ap-
pear to return any results if you pass BindingFlags to it

• Notifications that were supposed to come in on the UI thread were coming in on other
threads - this was a dumb typo on my part

51

http://github.com/xpaulbettsx/ReactiveXaml
http://statlight.codeplex.com/

52CHAPTER 13. SOME ANNOYING BUGS TO BE AWARE OF IN REACTIVEXAML FOR SILVERLIGHT

An annoying caveat for SL4

On Silverlight 4, for security reasons, you cannot use Type.GetField to access private types -
whereas protection on the desktop CLR is done at compile time, on SL4 this is enforced at run-
time as well. This really sucks for RxXaml, since it uses reflection to set backing fields. The
workaround is ugly, you have to mark your backing field as public, or use the simpler Raise-
PropertyChanged and write properties by-hand. So, here’s the way for SL4 to correctly write a
read-write property:

[IgnoreDataMember]
public string _SearchText;
public string SearchText {

get { return _SearchText; }
set { this.RaiseAndSetIfChanged(x => x.SearchText, value); }

}

Alternatively, if the ‘public’ really annoys you, here’s how to do it by-hand:

string _SearchText;
public string SearchText {

get { return _SearchText; }
set {

if (_SearchText == value)
return;

_SearchText = value;
this.RaisePropertyChanged(”SearchText”);

}
}

Chapter 14

ReactiveXaml Series: Using
ReactiveCollection to improve the
Flickr Search sample

One of the types in ReactiveXaml that is quite useful that I haven’t mentioned before on the blog is
an extension of WPF/SL’s ObservableCollection (no relation to IObservable), called (predictably
enough), ReactiveCollection. It works wherever you’d use an ObservableCollection in a
traditional M-V-VM library, but it has a few useful tricks worth mentioning.

The basics, plus watching item change notifications

As you might imagine, ReactiveCollection adds the following IObservables that you can sub-
scribe to:

• BeforeItemsAdded / ItemsAdded

• BeforeItemsRemoved / ItemsRemoved

• CollectionCountChanging / CollectionCountChanged

In addition to this, ReactiveCollection can also watch item change notifications on the items in the
list, so you can express “Tell me when the collection itself changes, or any of its elements”. This
can be expensive for large lists, so it is disabled by default - use the ChangeTrackingEnabled
property to enable/disable it. As you add/remove items, ReactiveCollection will be subscribing/
unsubscribing to the underlying objects.

53

http://blog.paulbetts.org/index.php/2010/10/30/reactivexaml-1-4-0-0-is-released-including-samples-and-binaries/

54CHAPTER 14. REACTIVEXAML SERIES: USING REACTIVECOLLECTION TO IMPROVE THE FLICKR SEARCH SAMPLE

Automatically creating ViewModel collections

Since we now have information easily exposed about when items are added/removed, it was
fairly straightforward to create a Collection who automatically follows another Collection via a
Selector, called “CreateDerivedCollection”. Here’s the most useful case:

var Models = new ReactiveCollection[ModelClass]();
var ViewModels = Models.CreateDerivedCollection(x => new ViewModelForModelClass(x));

// Now, adding / removing Models means we
// automatically have a corresponding ViewModel
Models.Add(new Model(”Hello!”));

ViewModels.Count();
>>> 1

This really makes it easier follow the M-V-VM pattern properly when it comes to collections -
the code is editing the Models, and these new Models are being projected into new ViewModels
automatically.

Creating a collection from an Observable

A post–1.4 method called CreateCollection that I recently added will also allow you to create a
list based on an Observable, optionally spacing each of the items apart by a certain amount of
time. If the time is specified, the list returned is always empty, but slowly fills itself over time -
this is great for populating Listboxes in a more lifelike way. We’ll see this in action in the sample.

Improving our Flickr search sample

In the sample for ObservableAsPropertyHelper, I showed how to implement a simple Flickr tag
search. Using CreateCollection, we can make the tiles appear on a delay which looks snazzier.

http://blog.paulbetts.org/index.php/2010/07/05/reactivexaml-series-implementing-search-with-observableaspropertyhelper/

IMPROVING OUR FLICKR SEARCH SAMPLE 55

Animations don’t show up well as images. Click to download the sample project with binaries.

Let’s take a look at what changed - first, we changed our output results from a List to a Reac-
tiveCollection:

ObservableAsPropertyHelper<ReactiveCollection<FlickrPhoto>> _Photos;
public ReactiveCollection<FlickrPhoto> Photos {

get { return _Photos.Value; }
}

Next, we update GetSearchResultsFromFlickr to provide a ReactiveCollection instead of a List,
really only by changing the first and last lines:

public static ReactiveCollection[FlickrPhoto] GetSearchResultsFromFlickr(string search_term)
{

/* [[[SNIP]]] This part is long and boring */

var ret = items.Zip(urls, (item, url) =>
{ item.Url = url; return item; }).ToList();

// Take the return list, convert it to an Observable,
// then create a collection who will initially be
// empty, but we’ll copy one item at a time every
// 250ms until we’ve copied everything from ret.

return ret.ToObservable().CreateCollection(TimeSpan.FromMilliseconds(250.0));
}

http://www.paulbetts.org/blog_samples/ReactiveCollectionSample.zip

56CHAPTER 14. REACTIVEXAML SERIES: USING REACTIVECOLLECTION TO IMPROVE THE FLICKR SEARCH SAMPLE

Making it even snazzier - adding the fade-in

Adding the items every 250ms is okay, but to really make this look great we need an animation
to fire whenever an item is added. To do this, we override the ListBoxItemContainer template,
and make these changes (this has nothing to do with ReactiveXaml directly, but it’s a cool trick
nevertheless):

1. Make a copy of the ListBoxItemContainer template

2. Set the Border opacity to zero (its initial state)

3. Create a Storyboard which will animate the opacity back to 100% in 1.5 seconds (using
the Power easing function)

4. Add an Expression Blend EventTrigger on the Loaded event, that will kick off our Story-
board

Chapter 15

Detecting whether your .NET library
is running under a unit test runner

Here’s a piece of code that I found useful for ReactiveXaml, how to detect whether you are
running under the unit test runner. For WPF/Silverlight testing, this is important to know since
Dispatcher.Current exists but is bogus (i.e. none of the things you queue to it will run during the
unit tests). The official version comes from here.

public static bool InUnitTestRunner()
{

string[] test_assemblies = new[] {
”CSUNIT”,
”NUNIT”,
”XUNIT”,
”MBUNIT”,
”TESTDRIVEN”,
”QUALITYTOOLS.TIPS.UNITTEST.ADAPTER”,
”QUALITYTOOLS.UNITTESTING.SILVERLIGHT”,
”PEX”,

};

#if SILVERLIGHT
return Deployment.Current.Parts.Any(x =>
test_assemblies.Any(name => x.Source.ToUpperInvariant().Contains(name)));

#else
return AppDomain.CurrentDomain.GetAssemblies().Any(x =>
test_assemblies.Any(name => x.FullName.ToUpperInvariant().Contains(name)));

#endif
}

57

http://github.com/xpaulbettsx/ReactiveXaml
https://github.com/xpaulbettsx/ReactiveXaml/blob/master/ReactiveXaml/RxApp.cs#L86

58CHAPTER 15. DETECTING WHETHER YOUR .NET LIBRARY IS RUNNING UNDER A UNIT TEST RUNNER

Chapter 16

Making Async I/O work for you,
Reactive style

Earlier today, I read a fantastic article about the TPL by Scott Hanselman. In it, he describes
how to take a fairly straightforward function to detect if a given Url responds, and write it in an
asynchronous fashion. As soon as I read it, I knew that I had to write the Reactive Extensions
for .NET version!

How do the TPL and Rx.NET relate?

Both of these technologies are intended to help make writing asynchronous and concurrent
programs easier and more straightforward, so it’s really easy to be confused as to which one to
use. You can often think of Task and IObservable for async calls as the same thing - an object
that represents a future result that hasn’t completed yet - we saw this in a previous blog post.
In an asynchronous function, we send out the request, but we don’t have the data - we have to
return something that will allow us to eventually get the result.

When it comes down to it, Task is really a specialization of IObservable - Task is specifically
designed to run on the TPL threadpool, whereas IObservable abstracts away where the code
will execute unless you specify it explicitly.

Seeing the problem again

Let’s take a look at the synchronous version of the code again - we want to take this and rewrite
it so that it doesn’t block:

private static bool ValidateUri(string Uri)

59

http://www.hanselman.com/blog/BackToParallelBasicsDontBlockYourThreadsMakeAsyncIOWorkForYou.aspx
http://msdn.microsoft.com/en-us/devlabs/ee794896.aspx
http://msdn.microsoft.com/en-us/devlabs/ee794896.aspx
http://blog.paulbetts.org/index.php/2010/09/26/calling-web-services-in-silverlight-using-reactivexaml/

60 CHAPTER 16. MAKING ASYNC I/O WORK FOR YOU, REACTIVE STYLE

{
try
{

var request = WebRequest.Create(Uri) as HttpWebRequest;
var response = request.GetResponse() as HttpWebResponse;
return (response.StatusCode == HttpStatusCode.OK);

}
catch
{

return false;
}

}

Writing our initial stab at VerifyUrlAsync

Just like Scott’s Task-based async function, we’ll also define a function that returns a future
result. However, instead of using Task as our return type, we’ll define a function that returns
IObservable:

public IObservable<KeyValuePair<string, bool>> ValidateUrlAsync(string uri)

Now, let’s see the implementation:

IObservable<KeyValuePair<string, bool>> ValidateUriAsync(string Uri)
{

var request = WebRequest.Create(Uri);

// This gives us a ”GetResponseAsync” function whose prototype is
// IObservable[WebResponse] GetResponseAsync() - just like the sync
// version, but the return value wrapped in IObservable.
var response_fetcher = Observable.FromAsyncPattern<WebResponse>(

request.BeginGetResponse, request.EndGetResponse);

// The clever part here is the Catch - if the response_fetcher IObservable
// ends with OnError, we’ll instead act as if it didn’t end and splice in
// a ”completed successfully” IObservable who returns null and ends
return response_fetcher()

.Catch(Observable.Return<WebResponse>(null))
.Select(resp => new KeyValuePair<string, bool>(Uri, resp !

= null && resp.StatusCode == HttpStatusCode.OK));
}

HOW CAN WE USE THIS? 61

How can we use this?

This method will not block, it will instantly return you an IObservable representing the future
result. So, there are a couple of ways you can use the Observable to “unpack” the result:

// Block until I get the result
// Equivalent of Task.Wait
var output = ValidateUriAsync(”http://foo.com”).First();

// Don’t block, but notify me when we produce a result
// Equivalent(*) to Task.ContinueWith
ValidateUriAsync(”http://bar.com”).Subscribe(result => {

Console.WriteLine(result);
});

Now, let’s see how we can do arrays:

The truly revolutionary thing about Rx.NET is how the same primitive you used in LINQ now take
on awesome new meanings when applied to the domain of the future. So, the first thing we’ll
do is take our array and convert it to an IObservable via AsObservable. This means that the
resulting IObservable will produce n items, one for each element in the array, then OnComplete.

The natural thing we would do to get the result is someObservable.Select(x => ValidateUrlAsync(x)).
However, there’s a problem - our type is now IObservable>; we now have a “future list of futures”
(thinking of IObservable as a “future list” is a good analogy, whereas the web call is just a “future
list” with only one item). We need a way to flatten down our future list back to IObservable - so
what’s the way to flatten a list in LINQ? SelectMany, of course! SelectMany is the secret behind
writing async Rx code. Let’s see how to do it:

IObservable<IDictionary<string, bool>> ValidateManyUrisAsync(string[] Uris)
{

// Aggregate will take a ”future list” and return a future with only one item
// (Just like LINQ’s Aggregate takes a list and returns a single value)

// For every result that ValidateUrlAsync provides, we will execute the
// Aggregate block. When SelectMany completes, Aggregate can finally
// return its one result

return Uris.ToObservable()
.SelectMany(x => ValidateUriAsync(x))

.Aggregate(new ConcurrentDictionary<string, bool>(), (acc, pair) => {
acc.TryAdd(pair.Key, pair.Value);
return acc;

});
}

62 CHAPTER 16. MAKING ASYNC I/O WORK FOR YOU, REACTIVE STYLE

The code above is still asynchronous - at no time will we block, and it will instantly return. The
SelectMany’s default IScheduler will run items on the TaskPool (actually in this case, we never
used any synchronous method so we will never block, even on a Threadpool thread. To get the
result, similar to the above method, we’d have to call First() on it.

If we were to dump the IObservables at every point of the computation, it’d look something like
this:

[”http://foo”, ”http://bar”] ===> [{”http://foo”, false}, {”http://
bar”, false}] ===> [Dictionary]

Cool! Where can I learn more?

• The Rx Hands-on-lab is an awesome, thorough, and technically correct introduction to
Rx.NET

• The Rx.NET forums are full of really smart, helpful people - I’ve learned a ton by reading
through the forum posts

• The Rx.NET videos on Channel 9 are a great resource - the developers behind the library
itself explain the concepts in an easy-to-understand way

• My blog series on ReactiveXaml and Rx.NET is also a good way to understand many
practical uses of Rx, especially if you’re writing desktop / Silverlight / WP7 apps.

http://blogs.msdn.com/b/rxteam/archive/2010/07/15/rx-hands-on-labs-published.aspx
http://social.msdn.microsoft.com/Forums/en-US/rx/threads
http://channel9.msdn.com/Tags/rx-in-depth
http://blog.paulbetts.org/index.php/category/programming/reactive-extensions/

Chapter 17

Testing your ViewModels using
Time Travel and ReactiveUI

Testing asynchronous ViewModel interactions is tough

When running under a unit test runner, ReactiveUI makes it fairly straightforward to test in-
teractions between commands and changing properties. Fiddle with properties, execute the
commands, Assert what happens - done!

However, most non-trivial programs need to run something in the background - talk to a web
service, calculate something in the background, etc. Testing this can be way more challenging,
since it is easy to deadlock yourself with the Immediate scheduler (the one used by-default in
a unit test) - when it comes down to it, there is exactly one thread, and it can’t be doing two
+ things at a time. This will typically come into play when you use a blocking call like First(),
then find out your test runner never finishes. In a non-Rx context, we typically try to test this
via Thread.Sleep() calls or Waits, which are really slow and often give you really unpredictable
results.

Using EventScheduler in a pinch

What we need, is a replacement for RxApp.DeferredScheduler that is actually deferred, to take
the place of WPF/Silverlight’s Dispatcher. Enter EventLoopScheduler! We can use this to create
a “pretend” Dispatcher on-the-fly that we control:

[Fact]
public void FetchImageFromSiteCommandTest()
{

// Replace the immediate scheduler with an event loop (a thread who just

63

64 CHAPTER 17. TESTING YOUR VIEWMODELS USING TIME TRAVEL AND REACTIVEUI

// waits in the background to process stuff as it arrives, one at a time)
var origSched = RxApp.DeferredScheduler;
RxApp.DeferredScheduler = new EventLoopScheduler();

// MyCoolViewModel has an ICommand called FetchImageFromSite
var fixture = new MyCoolViewModel();
fixture.FetchImageFromSite(”myCoolImage.jpg”).Execute();

// While it’s running, make sure we can’t execute anything
Assert.False(fixture.FetchImageFromSite.CanExecute(”myCoolImage.jpg”));
Assert.False(fixture.DownloadedImages.Any(x => x.Name == ”myCoolImage.jpg”));

// Wait until it completes
fixture.FetchImageFromSite.ItemsInflight

.Where(count => count == 0)

.First();

// Verify that the Image is downloaded
Assert.True(fixture.DownloadedImages.Any(x => x.Name == ”myCoolImage”));

// Now we *should* be able to execute the command
Assert.True(fixture.FetchImageFromSite.CanExecute(”myCoolImage.jpg”));

// Replace the old scheduler
RxApp.DeferredScheduler = origSched;

}

This is alright, but it still will slow down our test suite by quite a bit, waiting for network access.
What’s worse, if we were testing something more complicated, we could get tests that pass
sometimes but not others, depending on the timing - this is a huge time sink for QA folks who
have to then debug the test failures.

Testing software via Time Travel?!

The guys from DevLabs came up with a pretty ingenious way to solve this. Let’s look at the
definition of IScheduler, the interface through which we send all of our deferred processing:

public interface IScheduler
{

IDisposable Schedule(Action action);
IDisposable Schedule(Action action, TimeSpan dueTime);
DateTimeOffset Now { get; }

}

HOW DOES THE TESTSCHEDULER WORK? 65

So, we can schedule code to run right now, we can schedule it to run after a certain amount
of time has elapsed, and then there’s that third member: Now. You might ask, “Why do I need
to know Now, don’t I get it from DateTime.Now?” Here’s the clever bit: What if you made a
scheduler where Now was settable? This scheduler would never run anything, just queue it to
a list of stuff to run. Then, when “Now” is set (i.e. we “move through time”), we activate anything
that would have run in that time period.

How does the TestScheduler work?

In fact, this is exactly how TestScheduler works. When Rx operators call Schedule(), nothing
happens. Then, TestScheduler has two interesting methods, Run(), which will run all of the
queued items (i.e. execute anything that it can), and RunToMilliseconds(), which lets you travel
to a certain time period n milliseconds away from t=0.

Faking out an asynchronous web call

Sounds great, right? Here’s the caveat about TestScheduler though - if you use any other asyn-
chronous methods like Event or Task.Wait(), it’ll be tougher to integrate TestScheduler, since
not all sources of async’ness are going through the TestScheduler. However, if you’re using Rx
in a project, I consider using other sync/thread patterns to be an Rx Code Smell - like casting
IEnumerables in LINQ to Array because I happen to know it’s an Array.

Let’s see how we can create a fake async Read method, that will simulate taking up some time
and returning a result:

IObservable<byte[]> mockReadBytesAsync()
{

// Wait ten seconds, then return the byte array
return Observable.Return(new byte[] {1,2,3}).Delay(TimeSpan.FromSeconds(10), RxApp.TaskpoolScheduler);

}

The cool thing about this mock, is that if you used it in a normal environment or under an Event-
LoopScheduler, it’d do exactly as it said: wait 10 seconds, then return that array. Under the
TestScheduler, we’ll make it return immediately!

Writing the Unit Test

Here’s how we could write the Unit Test above to execute instantly using TestScheduler (actually
fleshing out the MyCoolViewModel so you can see how it’s wired up). Inverting the control to
actually get the mock function here is pretty ugly, there are certainly better ways to go about it.

66 CHAPTER 17. TESTING YOUR VIEWMODELS USING TIME TRAVEL AND REACTIVEUI

public class MyCoolViewModel: ReactiveObject
{

// Create a Property to store the results
ObservableAsPropertyHelper<byte[]> _BytesWeHaveRead;
public byte[] BytesWeHaveRead {

get { return _BytesWeHaveRead.Value; }
}

// The command we’ll be testing
ReactiveAsyncCommand ReadBytesCommand { get; private set; }

public MyCoolViewModel(Func<IObservable<byte[]>> readBytesFunc)
{

ReadBytesCommand = new ReactiveAsyncCommand();

// Take our Command, send it through the readBytesFunc function, then
// pipe the results to the BytesWeHaveRead property
_BytesWeHaveRead = ReadBytesCommand

.RegisterAsyncObservable(_ => readBytesFunc())

.ToProperty(this, x => x.BytesWeHaveRead);
}

}

IObservable<byte[]> mockReadBytesAsync()
{

// Wait ten seconds, then return the byte array
return Observable.Return(new byte[] {1,2,3}).Delay(TimeSpan.FromSeconds(10), RxApp.TaskpoolScheduler);

}

[Fact]
public void ReadBytesAsyncCommandTest()
{

// Replace all schedulers with the TestScheduler
(new TestScheduler()).With(sched => {

var fixture = new MyCoolViewModel(mockReadBytesAsync);

// Execute the command - remember that it should take 10 seconds to
// execute before returning
fixture.ReadBytesCommand.Execute(null);

// 1 second in, it should still be running, the results should be empty
sched.RunToMilliseconds(1000)
Assert.False(fixture.ReadBytesCommand.CanExecute(null));
Assert.Null(fixture.BytesWeHaveRead);

// 9 seconds in, same deal. Remember though, this doesn’t take 9 seconds

COOL, RIGHT?? 67

// of actual wall time to execute, this entire test is finished instantly
sched.RunToMilliseconds(9000)
Assert.False(fixture.ReadBytesCommand.CanExecute(null));
Assert.Null(fixture.BytesWeHaveRead);

// 11 seconds in, it should be complete - we should be able to read
// another block since we’re done with the first one.
sched.RunToMilliseconds(11000)
Assert.True(fixture.ReadBytesCommand.CanExecute(null));
Assert.Equal(1, fixture.BytesWeHaveRead[0]);
Assert.Equal(2, fixture.BytesWeHaveRead[1]);
Assert.Equal(3, fixture.BytesWeHaveRead[2]);

});
}

Cool, right??

Okay, well maybe not cool, but learning about this definitely helped the ReactiveUI unit tests
themselves become much more reliable and run way faster once I rewrote them to take advan-
tage of TestScheduler - those Sleeps really add up! If you want to learn more about TestSched-
uler, Wes Dyer and Jeffrey Van Gogh from the Rx team talk about it in-depth here: Wes Dyer
and Jeffrey Van Gogh: Rx Virtual Time

http://channel9.msdn.com/Shows/Going+Deep/Wes-Dyer-and-Jeffrey-Van-Gogh-Inside-Rx-Virtual-Time
http://channel9.msdn.com/Shows/Going+Deep/Wes-Dyer-and-Jeffrey-Van-Gogh-Inside-Rx-Virtual-Time

68 CHAPTER 17. TESTING YOUR VIEWMODELS USING TIME TRAVEL AND REACTIVEUI

Chapter 18

Watching DependencyProperties
using ReactiveUI

Watching DependencyProperties in WPF is easy…

One of the things that is pretty useful in XAML-based frameworks like WPF and Silverlight when
working in the codebehind is being able to be notified when a DependencyProperty changes. In
the ViewModel, we have a different mechanism called INotifyPropertyChanged to accomplish
this, but DependencyProperties are still an important part of WPF/Silverlight.

Let’s see how we would do this in WPF - it’s fairly straightforward:

public static void RegisterDepPropCallback(This DependencyObject owner, DependencyProperty property, EventHandler handler)
{

var dpd = DependencyPropertyDescriptor.FromProperty(property, owner.GetType());
dpd.AddValueChanged(owner, handler);

}

mainWindow.RegisterDepPropCallback(MainWindowClass.ViewModelProperty, (o,e) => {
Console.WriteLine(”ViewModel changed!”);

});

…but really ugly in Silverlight

Unfortunately, this isn’t possible in Silverlight - it’s only possible to wire up a single callback, and
it can only be done by the class that actually creates the DependencyProperty. This might work
fine in some scenarios, but something less tightly coupled is often needed.

69

70 CHAPTER 18. WATCHING DEPENDENCYPROPERTIES USING REACTIVEUI

The solution is to use Attached Properties, as described Anoop Madhusudanan’s blog post -
register an attached property, then hook that change notification.

ReactiveUI now does this for you

In ReactiveUI as of v2.0, there is a new method called ObservableFromDP - this method works
similarly to the ViewModel’s ObservableFromProperty, but with less syntactic noise:

mainWindow.ObservableFromDP(x => x.ViewModel).Subscribe(x => {
Console.WriteLine(”ViewModel changed!”);

})

Of course, since it’s an Observable and not an event handler, all of the power of Rx.NET applies
to this as well. Nothing revolutionary, but definitely makes things easier!

http://amazedsaint.blogspot.com/2009/12/silverlight-listening-to-dependency.html

Chapter 19

WCF.AsParallel() using ReactiveUI
and Rx.NET

Select.AsParallel() for the Web

I’ve mentioned it before, but SelectMany is the secret to using web services. Check out this
previous article on Web Services if you’re new to using SelectMany with web services. Here’s
the easy way to understand it in two lines, in terms of PowerShell / *nix pipes:

// This is Pseudo-Powershell :)
[1,2,3] | someService | someOtherService

// is like this in Rx.NET; the difference though is that we
// never wait anywhere.
new[]{1,2,3}.AsObservable()

.SelectMany(someService)

.SelectMany(someOtherService)

.Subscribe(Console.WriteLine);

The cool thing about Rx.NET is that it makes it easy to write completely non-blocking calls a-la
node.js. If you’ve ever used the BeginXXXX/EndXXXX calls, you know that it’s not particularly
easy to use once you get into more complex examples, but that’s one of the advantages of
Rx.NET - being able to take a bunch of asynchronous operations and sews them together in a
sane way. It’s easy to write, but what actually happens when we run it? Let’s see what code
runs where:

71

http://blog.paulbetts.org/index.php/2010/09/26/calling-web-services-in-silverlight-using-reactivexaml/
http://blog.paulbetts.org/index.php/2010/09/26/calling-web-services-in-silverlight-using-reactivexaml/

72 CHAPTER 19. WCF.ASPARALLEL() USING REACTIVEUI AND RX.NET

Figure 19.1: image

IT’S EASY TO BE WAY TOO PARALLEL 73

It’s easy to be way too parallel

Non-blocking web service calls take almost no time to execute - this is one of its big advantages,
but it also means we can go through the input array really quickly. In effect, this means that if
we have an array with 100 elements, we will end up issuing 100 WCF requests at the same
time!

Not only is this not friendly to the web server on the other end, it isn’t possible - WCF will throttle
your requests to 5 concurrent requests by default, and fail the rest. We need a way to keep a
“pending queue”, run a few at a time, and when each one completes, pull a few more from the
pending queue.

CachedSelectMany throttles concurrency

Let’s see how the diagram looks like when we use CachedSelectMany instead of SelectMany
- from a code standpoint, CachedSelectMany can simply be substituted in places where you
use SelectMany with a web service. CachedSelectMany internally uses a class called Observ-
ableAsyncMRUCache to manage concurrency. Despite the fact that calls can be queued, your
code doesn’t actually wait - you just won’t be called back until the call completes.

74 CHAPTER 19. WCF.ASPARALLEL() USING REACTIVEUI AND RX.NET

Bar has to wait in line before it can run

Chapter 20

ReactiveUI Message Bus -
decoupling objects using the
publish/subscribe pattern

Message buses allow us to decouple code

If you’ve used the MVVM pattern enough, you’ll sometimes find that you get “stuck” - you need
to access a certain ViewModel (usually the “main” ViewModel), but at the point you need it, it’s
too far removed from the context that you’re using it in. Sometimes if the object is a Singleton it’s
appropriate to think of something like the Managed Extensibility Framework to get a reference.

Other times, a Messaging framework is more appropriate - ReactiveUI provides an “Rx”-take on
the Messenger (Publish/Subscribe) pattern. With the Messenger pattern, we don’t have to make
all our ViewModels related to each other, which is important for writing testable code, since I can
easily replace related objects with mock objects.

ReactiveUI’s MessageBus

ReactiveUI’s MessageBus is based on the Type of the message object. If the Message type
isn’t unique enough, an extra Contract string can be provided to make the source unique.

There are three main methods that we’re interested in:

• RegisterMessageSource(IObservable source) - Register an IObservable as a message
source - anything that is published on the IObservable gets published to the bus.

• SendMessage(message) - Publish a single item on the bus instead of having to use an
Observable.

75

http://en.wikipedia.org/wiki/Managed_Extensibility_Framework

76CHAPTER 20. REACTIVEUI MESSAGE BUS - DECOUPLING OBJECTS USING THE PUBLISH/SUBSCRIBE PATTERN

• IObservable Listen() - Get an Observable for the specified source - you can either Sub-
scribe to it directly, or use any of the Rx operators to filter what you want.

Special support for singleton ViewModels

For ViewModels that only have a single instance, there are a number of helper methods that
make using the MessageBus easier - use these methods instead of the above ones:

• RegisterViewModel(ViewModel) - Registers a ViewModel object; call this in your View-
Model constructor.

• IObservable ListenToViewModel - Listen for change notifications on a ViewModel object

• IObservable ViewModelForType - Return the ViewModel for the specified type

Chapter 21

New Release: ReactiveUI 2.2.1

What does ReactiveUI do?

ReactiveUI is a M-V-VM framework like MVVM Light or Caliburn.Micro, that is deeply integrated
with the Reactive Extensions for .NET. This allows you to write code in your ViewModel that is far
more elegant and terse when expressing complex stateful interactions, as well as much simpler
handling of async operations.

ReactiveUI on Hanselminutes

Check out the recent Hanselminutes episode about the Reactive Extensions as well if you’ve
got more time. Scott and I chat about some of the ideas in RxUI and how we can take the ideas
in the Reactive Extensions and use RxUI to apply them to Silverlight and WPF apps.

What’s New in ReactiveUI 2.2.1 - Now with 100% less Windows
Phone crashes

This release is just a maintenance release - if you don’t currently have any issues with RxUI,
there is no reason to upgrade. However, there are two major fixes that were worth creating a
new release for:

• .NET 4.0 Client Profile - by including System.Reactive.Testing into ReactiveUI.dll, we
broke everyone using the Client profile with WPF. This is now fixed and future versions
of RxUI will be built against the Client profile.

77

http://www.reactiveui.net
http://hanselminutes.com/default.aspx?showID=271

78 CHAPTER 21. NEW RELEASE: REACTIVEUI 2.2.1

• WP7 Crashes - if you tried to use RxUI with WP7, you would receive a TypeLoadEx-
ception whenever a type was instantiated, or possibly a XamlParseException telling you
something to the effect of “MainWindow class does not exist”. This issue is now fixed!

Breaking Change: Introducing ReactiveUI.Testing

To facilitate fixing the first bug above, a new Assembly / NuGet package has been introduced,
“ReactiveUI.Testing.dll / ReactiveUI-Testing” - this was originally in ReactiveUI Core, and the li-
braries here help you write better unit tests for your applications (similar to Rx’s System.Reactive.Testing).
As a result of this, you may need to add an extra package / library reference to your project when
you upgrade to 2.2.1.

Where can I find the library?

On NuGet! The best way to install ReactiveUI for a project is by installing the ReactiveUI package
for WPF/Silverlight projects, or ReactiveUI-WP7 for Windows Phone 7 projects.

If NuGet isn’t your thing, you can also find the binaries on the Github page: ReactiveUI 2.2.1.0.zip.

http://nuget.org
http://nuget.org/Packages/Packages/Details/reactiveui-2-2-1-0
http://nuget.org/Packages/Packages/Details/reactiveui-wp7-2-2-1-0
https://github.com/downloads/xpaulbettsx/ReactiveUI/ReactiveUI%202.2.1.0.zip

Chapter 22

Using ReactiveUI with MVVM Light
(or any other framework!)

ReactiveUI: Is it All or None?

No! RxUI provides all of the core components that you need to use the M-V-VM pattern, but many
people already have applications written using some of the other great .NET MVVM frameworks,
such as MVVM Light or Caliburn.Micro - rewriting an entire codebase just to use Rx is a total
bummer.

Fortunately, in ReactiveUI 2.2, there have been several features introduced in order to make
using RxUI with existing frameworks easier - you can try out RxUI on a per-page basis, instead
of rewriting your whole app.

There are really three core bits that are central to MVVM: a ViewModel object, an ICommand
implementation, and a change-notifying Collection. Let’s take a look at how we can Rx’ify these
three items.

Using MVVM Light alongside ReactiveUI

First, File->New Project and create a new “MVVM Light” projects via the template. Then via
NuGet (you are using NuGet, right?), add a reference to the “ReactiveUI” project. Now, crack
open MainViewModel.cs. The critical thing to know is, all of RxUI’s awesomeness are exten-
sions onto an interface called IReactiveNotifyPropertyChanged. Ergo, we need to make Main-
ViewModel implement this. But don’t panic, it’s easy!

Step 1: Change the class definition to implement IReactiveNotifyPropertyChanged.

public class MainViewModel : ViewModelBase, IReactiveNotifyPropertyChanged

79

80CHAPTER 22. USING REACTIVEUI WITH MVVM LIGHT (OR ANY OTHER FRAMEWORK!)

Step 2: Add a field of type “MakeObjectReactiveHelper”, and initialize it in the constructor:

MakeObjectReactiveHelper _reactiveHelper;
public MainViewModel()
{

_reactiveHelper = new MakeObjectReactiveHelper(this);
/* More stuff */

}

Step 3: Paste in the following code at the end of your class, which just uses _reactiveHelper to
implement the entire interface:

public IObservable<IObservedChange<object, object>> Changed {
get { return _reactiveHelper.Changed; }

}

public IObservable<IObservedChange<object, object>> Changing {
get { return _reactiveHelper.Changing; }

}

public IDisposable SuppressChangeNotifications() {
return _reactiveHelper.SuppressChangeNotifications();

}

public event PropertyChangingEventHandler PropertyChanging;

An important caveat about MakeObjectReactiveHelper

One thing that probably won’t affect you, but it might: MakeObjectReactiveHelper doesn’t prop-
erly completely implement IReactiveNotifyPropertyChanged unless you are also implementing
INotifyPropertyChanging - most ViewModel implementations don’t (in fact, the interface doesn’t
even exist in Silverlight or WP7). This means that in certain circumstances when you use the
WhenAny or ObservableForProperty with a deep path (i.e. x.Foo.Bar.Baz), you may get dupli-
cate notifications. In practice, this usually isn’t a big deal.

Watching ObservableCollections to create ViewModel collec-
tions

With RxUI 2.2, you can easily create a collection which tracks an existing collection, even if the
source is an ObservableCollection. Here’s the syntax:

CREATING REACTIVECOMMANDS LIKE RELAYCOMMANDS 81

// This is the WPF/Silverlight ObservableCollection, not from Rx at all!
ObservableCollection<MyCoolModel> modelCollection;

model.Length
>>> 4

// Create a View Model Collection that will track the Model collection
var viewModelCollection = modelCollection.CreateDerivedCollection(

x => new MyCoolViewModel(x));

viewModelCollection.Length
>>> 4

// Now, changes to modelCollection are mirrored in viewModelCollection
modelCollection.Add(new MyCoolModel());

viewModelCollection.Length
>>> 5

Creating ReactiveCommands like RelayCommands

Unfortunately, the story for ICommand isn’t as easy, you have to wrap commands one-at-a-time
in order to subscribe to them. Here’s how to do it:

public static ReactiveCommand WrapCommand(ICommand cmd)
{

return ReactiveCommand.Create(cmd.CanExecute, cmd.Execute);
}

	ReactiveXaml: A compelling combination of MVVM and Reactive Extensions (Rx)
	What's in this library
	Blend SDK Integration
	Other stuff that's useful

	ReactiveXaml series: ReactiveCommand
	What is ReactiveCommand
	Well that's boring, where's the fun stuff??
	What about Execute?
	Sum it all up, like that guy in Scrubs does all the time

	ReactiveXaml Series: ReactiveAsyncCommand
	Motivation
	Dispatcher.BeginInvoke solves this
	We use this pattern a lot, let's make it more succinct
	Because we encapsulate the pattern, we can get other stuff for free
	The first pattern - running an Action in the background
	Putting it all together
	Using ReactiveAsyncCommand
	Why is this cool?
	Where's the Code?

	ReactiveXaml series: A Sample MVVM application
	A Sample App makes understanding ReactiveXaml way easier
	Make sure to read the code!
	Where's the code again?

	ReactiveXaml series: ReactiveObject, and why Rx is awesome
	ViewModels via ReactiveObject
	Other things that are nice to have
	Some philosophy
	Abstracting away context is critical for a multicore + cloud world

	ReactiveXaml series: Implementing search with ObservableAsPropertyHelper
	Implementing an auto-search TextBox using Rx and ReactiveXaml
	The sample app
	Going through the code
	Now here's the interesting part

	ReactiveXaml series: Using MemoizingMRUCache
	Memoization and Caching
	Using MemoizingMRUCache
	Maintaining an on-disk cache
	Some other useful functions

	ReactiveXaml Series: On combining notifications
	Combining notifications in meaningful ways
	Merge, CombineLatest, and Zip - the `And' and `Or' of Rx
	Combining Notifications for Visual State Manager

	ReactiveXaml Series: ObservableAsyncMRUCache - the async version of MemoizingMRUCache
	A thread-safe, asynchronous MemoizingMRUCache
	Using IObservable as a Future
	A difficult problem - preventing concurrent identical requests

	Making INotifyPropertyChanged type-safe using Expressions
	Trying to make RaisePropertyChanged less verbose
	Using Expression Trees to implement a better version
	Some tricky caveats

	Calling Web Services in Silverlight using ReactiveXaml
	Getting our function prototype correct
	An example: looking at the Bing Translation API
	An important note for Silverlight!
	Turning this into a Command
	What does that get us?

	ReactiveXaml Series: Displaying a `Loading…' value
	Some annoying bugs to be aware of in ReactiveXaml for Silverlight
	It works now, after some fixups
	List of bugs fixed as of today
	An annoying caveat for SL4

	ReactiveXaml Series: Using ReactiveCollection to improve the Flickr Search sample
	The basics, plus watching item change notifications
	Automatically creating ViewModel collections
	Creating a collection from an Observable
	Improving our Flickr search sample
	Making it even snazzier - adding the fade-in

	Detecting whether your .NET library is running under a unit test runner
	Making Async I/O work for you, Reactive style
	How do the TPL and Rx.NET relate?
	Seeing the problem again
	Writing our initial stab at VerifyUrlAsync
	How can we use this?
	Now, let's see how we can do arrays:
	Cool! Where can I learn more?

	Testing your ViewModels using Time Travel and ReactiveUI
	Testing asynchronous ViewModel interactions is tough
	Using EventScheduler in a pinch
	Testing software via Time Travel?!
	How does the TestScheduler work?
	Faking out an asynchronous web call
	Writing the Unit Test
	Cool, right??

	Watching DependencyProperties using ReactiveUI
	Watching DependencyProperties in WPF is easy…
	…but really ugly in Silverlight
	ReactiveUI now does this for you

	WCF.AsParallel() using ReactiveUI and Rx.NET
	Select.AsParallel() for the Web
	It's easy to be way too parallel
	CachedSelectMany throttles concurrency

	ReactiveUI Message Bus - decoupling objects using the publish/subscribe pattern
	Message buses allow us to decouple code
	ReactiveUI's MessageBus
	Special support for singleton ViewModels

	New Release: ReactiveUI 2.2.1
	What does ReactiveUI do?
	ReactiveUI on Hanselminutes
	What's New in ReactiveUI 2.2.1 - Now with 100% less Windows Phone crashes
	Breaking Change: Introducing ReactiveUI.Testing
	Where can I find the library?

	Using ReactiveUI with MVVM Light (or any other framework!)
	ReactiveUI: Is it All or None?
	Using MVVM Light alongside ReactiveUI
	An important caveat about MakeObjectReactiveHelper
	Watching ObservableCollections to create ViewModel collections
	Creating ReactiveCommands like RelayCommands

