Kurapica .Net Reversing TIPS

Introductionto.NETcracking

Reflector

WDSM32 was one of the most popular tools for cracking in the past, after you decide
to crack something you disassembled its code in WDSM32 to search for strings
like"Registration successful" or "Invalid serial number !" and then you try to nop
or inverse the right bytes to get the job done..

1EId 2%, WDSM3 2B AR VAT B AR T . R ARl — NI, UR9T Frwdsam32, R %
Registration succesfullil invalid serial number ZZRHJFFFEH, RIGRIANSAS AL B
B 54 0 LA AR A BRI B A

Unfortunately this tool is now history, since all the .net programs are interpreted

and not compiled, you can no longer use the old technigques to or tools to crack
something written with this new technology.

AR, BANTHRHOZM LT AE, Jrai . net FEFFRMBA AR PERN), FRIGEAH
XA T 22 BIOARTN T H KA A P I TORT B AR QA A

All .net applications require the .net runtime [.NETFramework] to be installed on
your machine in order to be able to run them, unlike for instance Delphi executables
which you can run without any runtime needed to be installed on your pc, the .net
runtime works like java virtual machine which is needed to run java executables
on your PC.

A K . net NHRETFHEENL L2 . net HEZRN LMETIEIT .net FJF. MAESdelphi ATHE
P AT B AT AT A T S R BRI i e net MEZE LAEE KRS javaBflbl, E1T7javafifF
IS, WA 20 22 25 5 ava R FUATL 2 AR 1R LG -

Is this good or bad?

KR AF I AN 2

This is a good question, as we all know that native code executables run really
much faster than interpreted executables, this is a very notable fact when you
start ado-nothing .net executable you will see that It takes a little bit more
time to show the main form compared to a C++ or Delphi executables which will show
the main form faster.

R R, FRATTEE, AHACRS IS AT LU AR A ZEPUR 22 0 XA R RIS, HIRITIRST
It net P, BT L2 AN B F o+ + Bide 1phi FRE > LUK 28— 2L

If speed was the bad point about .net programs so what is good about them when
it comes to cracking?

The good point is that a typical .net program source code is compiled into something
called IL-code, which stands for"Intermediate Language", something like Java's byte
code sand later in run-time the IL-code is compiled into native code by the [JIT
compiler], this Just In Time compiler turns the IL bytes into native code that can
be run by your CPU, what is important here is a simple fact that IL-code is a higher
level code than machine code that we usually dealt with when we targeted native code



programs, meaning ?

LI . net FEFPIN, BREER — DAL, HRT AR 1. HE— M IAE net FFP
W B — P R RE SRS . S java e i, fEsATH, RIS Rt as gn B A MRS, RTE
G AL I G PR A A, — AR SSOE, IR S LSS S s ) —FiE AR
neh 2

This means that you can understand the IL instructions and analyze it more easily

than Assembly language that WDSM32 provided us with when we used to disassemble
native code executables.

XERE, IR R AR 1 S A, MR B IIETE S, IRRENS SE R S i e,

Compiler JIT Compiler

.NET Source Code =» IL Bytes "» Native code
Compiler JIT Compiler

.NET Seurece Code =3 IL Bytes . Native code

When we crack a .net executable we will be targeting it in the IL bytes level
before it's compiled to native code.

BIATTTIADSFE A . net FATIRFFI,  FRATH H AR R S 4 12 0 A A 2 J f h Ia)E 5

Now we will talk about the tool that should replace WDSM32,Actually there are many
tools today and the most popular one called "Reflector", This utility is the best
available tool that can help us disassemble .net applications and understand what's
going in the code, What makes this utility useful is that it can disassemble the
application and show us the IL instructions of the code which is more than enough
to do a crack, and it can also decompile the IL instructions into other higher level
languages like VB.net or C# or Delphi .net !

WAL, FITIBR BN A wdsam3 2/ TR, 9br b, WAEHIRLZ TH, reflector & —MRWHATH LA,
XA T RARE 5433, RES AR 2y 135 W) FATTBEAARHS B T 2 A 4 o AR T RARA I — AR 2
BRI FER, PR R TATTAE S, XX 2L 1, EIRI AR S e RE 5o HE
PGS, Wvb.net, c#, Bidelphi.net

This means that you can see the IL instructions or the source code itself with this
tool, but when it comes to cracking .net programs you must basically be dependent
upontheILinstructionsandnot onthehigher level decompilationof theILinstructions,
in most cases "Reflector" will be able to disassemble the program and show you the
IL instructions, but it will fail in many cases to decompile the IL instructions
into higher level languages and this is simply because the commercial applications
industry started to understand that "Reflector" is simply the new WDSM32 for crackers
and so they developed many tricks to confuse it and make it unable

to decompile the IL instructions into your favorite language 1like C# or VB.net.

KERA, T TAE R EE S, e, 2, UIREE . netFEPR, fRid 275 %
MO S S A S RIE T KZEMIEOE, reflectorfe Bingh IRFEF I IE T, W9
AR SR R A TR 5 S PN T S IR, R R S R P T K R BEAR T reflectorii %
wdasm32—Ff, BRI IEPHATRET, Bk, SN T —28vE oh s & A B Dl J 2w B v ()75 5 0 R &
RIPE S, We#, vb.net

As a good cracker you must expect that you will be depending on IL instructions
disassembly to analyze the code and crack the program you are targeting.

YE R — AT cracker, RN B T B 015 5, R )G 00E HFx.



Another tool to mentions here is "MSIL Disassembler" which is developed by Microsoft
and installed with Visual Studio as a part of the SDK tools, it's an excellent tool
todisassemble the .net applicationandyouwill beusingit sidebysidewith "Reflector"
because it does something that "Reflector" can't do.

F— AT ERAM T Hgmsil disassembler, WML, IHEAvisual studiolf]—i o % HEA(E
SDK L HH, BHLEMREMFB I miF . net P LH, R lil'E Sreflectorldifizdr, K hfLe
DigeEreflectore MNREMENT .

"MSIL Disassembler" can disassemble the .net executable just like reflector and
it also shows you the "Actualbytes" of these instructions.

Msil disassembler [N .net PUTFEF, HiFreflector—#f, B BTG MISLFR T
¥ Lutz Roeder's NET Reflector O] x|
| File Wiew Tools Help

lelal s Bl [xix om0 alle

3 Syskem, ¥ml _‘I Disassembler o
= -2 Wlnd-:u.ws.ﬁ.ppllcatlf:unz. method public hidebysig static void Maind) cil managed d
= WP WwindowsApplication?, exe {
<d| References .custam instance void [mscarlib]3yskem, STAThreadakbribot
{- Lentrypoint
= £} Windowsapplication? LTDESSEIaE:D?:
El “t§ Formi L_0001: newabi instance waoid Windowsapplicationz, Farm 1
¥} Base Types L_0006: call void [System. Windows, Forms ]5yskem, Windaw
(4 Derived Types L_000b: nop
v o o
.LJ,V Buttonl _Click{Object, Eventirgs) ¢ void b = b

-;{? DisposelBoolean) : Woid

.lev Formi_Load{Cbiject, Eventargs) @ vaid
.lev InitializeCampanent() ; Woid

% Main) : Yaoid

.lev ProgressGradl _Load{Object, Eventargs
.;;,v AT() 5 Moid

o B o B =TT R PR =T ¥ i
1 | | *

.method public hidebysig static woid Main cil managn;l
ik

¥

- L
1| | [# 1] | v

What you see here is reflector and on the right the disassembly of some procedure
called Main() :Void, You can see the IL instructions in the disassembly here:

AfR{Ereflector V& 21 [ 4 PE 2| KIMa in /7 VA AAD,
Down here you will see "MSIL Disassembler" which can show us the actual bytes of
this procedure after we click the"Show bytes" menu.

Enfrypoint

R REPRFNT, UIRIET “show bytes” SRS



L4 CADocuments and Settings(ENONIMy Docume._.. !E[

File | Wiew Help

Set Fonts F hZ.Forml 2
v Sort by nane ko ansi
v Full Clasz Names B i oses, Furis 13 wsLens, windows, Forn
Verbal T blobs late class [System, Windows, Forms )3y stem
te class [System, Windows, Forms]3ystem,
Hide Publiz te class [Syskem. Windows, Forms ]System.
Hide Private ate class [3vstem, Windows, Forms]3wsten
Hide: Famiby I : private class [Progressarad]Progressiar
Hide Azzembly rivate class [System]Svstem, Companenti
Hide FamdMDAzzem
Hide FamOR&szem void{object, class [macorlib]System, Event s
Hide PrivateScope pool)
oid{object, class [mecorlib]System, Evantit
Show member types Fent  void()

Show bytes

Show token values | Load : void{object, class [mscorlib]aystem
Show souice lines =

Huate all names tlass [System, Windows, Forms]3ystem, Win

v Expand tn/catch Bios [Swstern. indows, Forms]System, Wind

Headers has [System, Windows,Forms ]3yskem. wind

Ctatistics rlass [Systerm. Windows, Forms]Systerm, Wir

b etalrfo p adl :class [ProgressGrac]ProgressGrad.F
————my e oo voidiclass [Svstem.'-.-'-.-'inu:lu::ws.Fu:urms'ISa-'sI:e_rrl_;|

1 r
.{assembly Windowsapplicationz }3
Bd

| K 7

Now I will list the disassembly for the same procedure from"MSIL Disassembler"

WAE, FF)Z5Hmsil disassembler X% EFEFIMainid 72
.method public hidebysig static void Main() cil managed// SIG: 00 00 01{
.entrypoint

.custom instance void [mscorlib]System.STAThreadAttribute::.ctor() =( 01 00 00 00 )
// Method begins at RVA 0x3al4

// Code size 14 (0Oxe)
.maxstack 8

IL 0000: /* 00 | */ nop

IL 0001: /* 73 | (06)000002 */ newobj instance voidWindowsApplication2.Forml::.ctor ()

IL 0006: /* 28 | (0A)000001 */ call
void[System.Windows.Forms] System.Windows.Forms.Application: :Run(class[System.Windows.Forms
] System.Windows.Forms.Form)

IL 000b: /* 00 | */ nop

IL 000c: /* 00 | */ nop

IL 000d: /* 2A | */ ret} // end of method Forml::Main

How to read this?
WITHF 44 B B 8 4 4 2

The IL instructions will begin right after the "maxstack #"line, the first line is
IL 0000 which contains the instructions "NOP" and its actual bytes are "00" and that's
what we will find if we open the program's file in a hexeditor.



ILIEA Mmaxstack /g I —AT T GEHAT, FH—AT S A5 nop, & LbrFT 200, Bt 4ATH
hexeditor¥] T Il & 3 ¥

IL Line Actual bytes Instructions

IL 0000 00 1 byte nop

IL 0001 7302000006 5 bytes newob]
IL 0006 280100000A 5 bytes all
IL 000b 00 nop

IL 000c 00 nop

IL 0004 2A ret
If you open the program in a hex editor then you will find a series of these bytes
from first line to last 1line and that's what I mean by "Actual bytes" of instructions.

AR Mhex editordTIF— MR, IRESE R — R TT, WB—AT R G AT A TAR I SLbry
REEEE

The advantage of these actual bytes is that it tells you what to replace them with
when you want to invert some jump or modify any part of the code, to nop a call in
the past times we used to do that by replacing all its actual bytes of that call
by 90s in a hex editor, inverting a jump was done by replacing the JNE instruction
byte with JE instruction byte. 75 to 74 or 85 to 84 and so on.

SEBRF AT A AL, 2R SAL AR AR B SO B DAY B — B8 20 I, EAR A 2 i i R RIS 2 5 4k
MnopdR4 (182 ) BT I S2br 715 .

Another advantage is that it helps you locate the actual offset for these bytes
in a hex editor, for example if you decide to nop the call in line IL 0006 then
you will have to locate the file offset for these bytes, All you have to do is to
open the file in a hex editor and locate the series of bytes you are looking for
which are

g MERIE, fEhex editor T EREFBIMRIRA 5y XA LB M7 A% . B, ARE U noptia &8
IL 006MMIF WA, IRATEMIN EFhex editorT T e, ARG E— RV W T 171
Values 00 7302000006 280100000A

Bytes 15 5

And usually about 8 bytes are enough to locate these bytes in your hex editor, after
you find the right offset you will have to replace 280100000A with 0000000000

Every IL instruction has a specific actual byte and they are very important in
cracking too, for example in native code the nop instruction is expresses by one
byte of value0x90 but in .net Assembly the nop instruction is 0x00 byte,I will
list the IL instructions here with their function and the actual bytes too.

W, KT8 AL AW eI . MIRFEBEF WAL SR, FHoooooooolif280100000AK AI
DA

f— 2P Fa 2 8 — N2, BT T INA SRR AR L, B, AR, nopfr &N
FE0x90, HETE .net FEF4EY, nopfi& £ /RN oxoo. IXH, A RES FEATHINHE LA 5L b



)71

THE END

I hope this was a good tutorial and that you enjoyed reading it...In next tutorials
we will see how to replace bytes to invert jump or nop calls.That's all for now....

Kurapica Wednesday, December 27, 2006
A B L — I IR 2R, AR SR . 8 NoR I 2, FRATK A BB B s, A
B H .

P
Assembly FEF4E nop ZFRL



