
v7.20

Technical Reference

October 2010



Legal Notice

DISCLAIMER
Schneider Electric (Australia) Pty. Ltd. makes no representations or warranties with respect to this manual and, to the max-
imum extent permitted by law, expressly limits its liability for breach of any warranty that may be implied to the replacement
of this manual with another. Further, Schneider Electric (Australia) Pty. Ltd. reserves the right to revise this publication at any
time without incurring an obligation to notify any person of the revision.

COPYRIGHT
© Copyright 2010 Schneider Electric (Australia) Pty. Ltd. All rights reserved.

TRADEMARKS
Schneider Electric (Australia) Pty. Ltd. has made every effort to supply trademark information about company names, products
and services mentioned in this manual.

Citect, CitectHMI, and CitectSCADA are registered trademarks of Schneider Electric (Australia) Pty. Ltd.

IBM, IBM PC and IBM PC AT are registered trademarks of International Business Machines Corporation.

MS-DOS, Windows, Windows NT, Microsoft, and Excel are either registered trademarks or trademarks of Microsoft Cor-
poration in the United States and/or other countries.

DigiBoard, PC/Xi and Com/Xi are trademarks of Digi International Inc.

Novell, Netware and Netware Lite are either registered trademarks or trademarks of Novell, Inc. in the United States and other
countries..

dBASE is a trademark of dataBased Intelligence, Inc.

All other brands and products referenced in this document are acknowledged to be the trademarks or registered trademarks of
their respective holders.

GENERAL NOTICE
Some product names used in this manual are used for identification purposes only and may be trademarks of their respective
companies.

October 2010 edition for CitectSCADA Version v7.20

Manual Revision Version v7.20.

Contact Schneider Electric (Australia) Pty. Ltd. today at www.Citect.com/citectscada

http://www.citect.com/citectscada


Contents

Legal Notice 2

Contents 3

Safety Information 7

Technical Reference 9

Chapter: 1 Parameters 11
Rules for using parameters 11
Using parameterson a network 12
ParametersDialog 13

Parameter Properties 13

Chapter: 2 Configuration Parameters 15
Parameter Syntax 15
Setting Parameter Values 16
Parameter Precedence 19
HierarchicalParameters 20
Comments inCitect.ini 21

Chapter: 3 Reference Information 23
Specifications 23

Graphics 24
I/O Device data types 26
ReservedANs 27
Predefined Templates 29
PredefinedCommands 32
PredefinedCharacter Sets 35

3



Predefined Fonts 36
PredefinedDevices 38
PredefinedCicode Files 39
PredefinedColor NamesandCodes 40
PredefinedKeyboard KeyCodes 41
Predefined Labels 50
ASCII/ANSI Character Code Listings 58

Format Fields 69
Alarmdisplay fields 70
Alarm summary fields 73

UsingCommandFields 75
Error Messages 77

ProtocolGenericErrors 77
Genericdriver errors 84
Protocol-SpecificErrors 88
Standard driver errors 91

Chapter: 4 CtAPI Functions 97
I/O Point Count 98
CtAPI SynchronousOperation 98
ReadingDataUsing theCTAPI Functions 99

I/O tags interface 100
The Tag functions 100
List functions 100
Arraysupport 101
Bit shiftingwhen reading digital arrays 101

CTAPI fromCitectSCADAor CitectSCADADriver 101
Error Codes 101
Debug Tracing 103
FunctionReference 103

Chapter: 5 CSV_Include Reference 157
CSV_IncludeParameters 157
CSV_Include Functions 157

Chapter: 6 Graphics Builder Automation Interface 259
Error Handling 260
Automation Events 262
FunctionCategories 262
Arrange andPosition Functions 264
EventsFunctions 270

PasteGenie 271
PasteSymbol 271

SpecificFunctions 272
Visible 273

DynamicPropertiesFunctions 273
PropertiesInputTouchGet 300

Contents

4



PropertiesInputTouchPut 301
PropertiesShowDialog 302
PropertiesSymbolSetGet 302
PropertiesSymbolSetPut 303
PropertiesSymbolSetSymbolGet 305
PropertiesSymbolSetSymbolPut 306
PropertiesTransCentreOffsetExpressGet 307
PropertiesTransCentreOffsetExpressPut 308
PropertiesTransformationGet 309
PropertiesTransformationPut 311

LibraryObject Functions 321
Metadata Functions 332
MiscellaneousFunctions 337
Object Drawing andPropertyFunctions 340
OptionsFunctions 392
Page Functions 394
PagePropertiesFunctions 421
Project Functions 441
Text PropertyFunctions 451

Chapter: 7 Frequently Asked Questions 461
Pages 461
Graphics 462
Runtime 462
Trends 463
Controls 464
Alarms 464
Miscellaneous 466

Glossary 469

Index 493

Contents

5



Contents

6



Safety Information
Hazard categories and special symbols

The following symbols and special messages may appear in this manual or on the prod-
uct to warn of potential hazards or to call attention to information that clarifies or sim-
plifies a procedure.

A lightning bolt or ANSI man symbol in a "Danger" or "Warning" safety label on the
product indicates an electrical hazard which, as indicated below, can or will result in
personal injury if the instructions are not followed.

The exclamation point symbol in a safety message in a manual indicates potential per-
sonal injury hazards. Obey all safety messages introduced by this symbol to avoid pos-
sible injury or death.

Symbol Name

Lightning Bolt

ANSI man

Exclamation Point

DANGER indicates an imminently hazardous situation, which, if not avoided, will result in
death or serious injury.

WARNING indicates a potentially hazardous situation, which, if not avoided, can result in
death or serious injury.

CAUTION indicates a potentially hazardous situation which, if not avoided, can result in
minor or moderate injury.

Safety Information

7



CAUTION

CAUTION used without the safety alert symbol, indicates a potentially hazardous situation
which, if not avoided, can result in property damage.

Please Note

Electrical equipment should be installed, operated, serviced, and maintained only by
qualified personnel. No responsibility is assumed by Schneider Electric (Australia) Pty.
Ltd. for any consequences arising out of the use of this material.

Before You Begin

CitectSCADA is a Supervisory Control and Data Acquisition (SCADA) solution. It facil-
itates the creation of software to manage and monitor industrial systems and processes.
Due to CitectSCADA's central role in controlling systems and processes, you must appro-
priately design, commission, and test your CitectSCADA project before implementing it
in an operational setting. Observe the following:

UNINTENDED EQUIPMENT OPERATION

Do not use CitectSCADA or other SCADA software as a replacement for PLC-based control pro-
grams. SCADA software is not designed for direct, high-speed system control.

Failure to follow these instructions can result in death, serious injury, or equip-
ment damage.

LOSS OF CONTROL

l The designer of any control schememust consider the potential failure modes of control
paths and, for certain critical control functions, provide a means to achieve a safe state
during and after a path failure. Examples of critical control functions are emergency
stop and overtravel stop.

l Separate or redundant control paths must be provided for critical control functions.
l System control paths may include communication links. Consideration must be given to
the implications of unanticipated transmission delays or failures of the link.*

l Each implementation of a control system created using CitectSCADA must be individ-
ually and thoroughly tested for proper operation before being placed into service.

Failure to follow these instructions can result in death, serious injury, or equip-
ment damage.

* For additional information, refer to NEMA ICS 1.1 (latest edition), "Safety Guidelines
for the Application, Installation, and Maintenance of Solid State Control".

Safety Information

8



Technical Reference

This section contains the following technical reference information
and the CitectSCADA Glossary:
Configuration Parameters
CitectSCADA Reference Information
CtAPI Functions
Graphics Builder Automation
Glossary

9



10



Chapter: 1 Parameters

Parameters determine how each CitectSCADA computer operates in the CitectSCADA
configuration and runtime environments. For example, there is a parameter which
allows you to show or hide the toolbar in the Citect Project Editor, and there is a param-
eter which determines whether the primary and redundant reports servers send out
heartbeat signals to each other at runtime.

UNINTENDED EQUIPMENT OPERATION

l Read and understand the applicable material in this manual before changing or remov-
ing any citect.ini parameters.

l Never change or remove any undocumented citect.ini parameters.
l Before deleting sections of the citect.ini file, confirm that no necessary or undoc-
umented parameters will be deleted.

l Do not edit your configuration file while your project is running.

Failure to follow these instructions can result in death, serious injury, or equip-
ment damage.

Note: Always seek the advice of Technical Support personnel for this product regard-
ing necessary and undocumented features.

You can set operating parameters in:

l The project database.

l From v7.10, CitectSCADA expects the Citect.ini file to exist in the config folder of the
CitectSCADA User and Data folder selected during installation. If the file is not found
in the location, it will not search elsewhere and will instead display an error. If you
need to store your INI file elsewhere, specify the path to it on the command line when
starting citect32.exe and ctexplor.exe. See Text Editors for more information.

l Both the project database and the citect.ini file (see Parameter Precedence).

Rules for using parameters

You need to observe the following rules when using parameters:

l Parameters set in the citect.ini file take precedence over parameters set in the project
database.

11



l If you set (or change) parameters in the project database, you need to re-compile the
project before the parameter settings are used.

l Some citect.ini file parameters require a restart of CitectSCADA before they are used,
while others are used as soon as the process to which they apply is restarted. For
example, an Events parameter for an Alarm Server will be used as soon as the spe-
cific Alarm Server is restarted.

l Parameters set in the database are local to the specific CitectSCADA project. Param-
eters set in the citect.ini file apply to every CitectSCADA project (if you are using
multiple CitectSCADA systems).

To set parameters in the project database:

1. Choose System | Parameters.

2. Enter the Section Name of the parameter.

3. Enter the Name of the parameter.

4. Enter a value for the parameter.

5. Add the record to the database.

To set parameters in the local citect.ini file:

1. Locate the parameter in Help.

2. Use the button (below the default value) to edit the value.

Note: The current value of the parameter is displayed in the dialog field. (If the
dialog field is blank, the parameter is set to its default value)

or -

3. Use a text Editor to Edit the citect.ini file.

4. Enter the parameter in the following format:

[SECTION NAME]

Parameter=<value>

Using parameters on a network

If using CitectSCADA on a network, you can use parameters globally, locally (local to
each server and client), or both globally and locally. Any parameter set in the project
database applies to every client unless the parameter is also set in the citect.ini of a
Control Client. The value set in the local citect.ini file takes precedence over the
project database for that client only. For example:

Chapter: 1 Parameters

12



Here, a parameter (Parameter x) is set to a value n in the project database (on the file
server). When the system is running, this value (n) applies to the alarms server and both
clients. The same parameter is set to different values for both the I/O Server and the
trends server (set locally in the respective citect.ini files). When the system is running,
the I/O Server uses the value p for the parameter, and the trends server uses the value
m.

Parameters Dialog

You use the Parameters dialog box to assign properties to your parameters.

Parameter Properties

Parameters have the following properties:

Section Name

The parameter section. Enter a value of 48 characters or less.

Name

Chapter: 1 Parameters

13



The name of the parameter for which you want to define a value. Enter a value of 32
characters or less.

Value

The value of the parameter. Enter a value of 254 characters or less.

Comment

Any useful comment. Enter a value of 48 characters or less.

Chapter: 1 Parameters

14



Chapter: 2 Configuration Parameters

Parameter Overview

CitectSCADA has a comprehensive set of parameters that are used to configure the oper-
ational settings of a project, and, how each computer participates in a CitectSCADA net-
work.

You can set operating parameters in:

l The project database
Parameters set in the project database are local to the specific CitectSCADA project.

l The Citect.ini file
Parameters set in the Citect.ini file apply to every CitectSCADA project running on
the machine on which the Citect.ini file is located.

This chapter covers the following topics:

l Parameter Syntax
The syntax of the Citect.ini file.

l Setting Parameter Values
The different tools available to set parameter values within CitectSCADA.

l Parameter Precedence
The rules outlining which parameter value is used when the value is set in both the
Citect.ini file and the parameter database.

l Hierarchical Parameters
How to fine tune parameter settings to a specific clusters or server process.

l Comments in Citect.ini
How to add comments to a Citect.ini file.

For a list of the system parameters, refer to the Parameters help file.

Parameter Syntax

Parameters are grouped into Sections according to their purpose.

The syntax used in the citect.ini file to define a section is as follows:

[Section Name]

<parameter name1> = <parameter value1>

<parameter name2> = <parameter value2>

<parameter nameX> = <parameter valueX>

15

parameters.chm::/CSE_HomePage.html


For Example:

[Alarm]

SavePeriod = 600

SaveSecondary =

ScanTime = 500

The maximum length for a parameter is 254 characters.

Sections which relate to server components (Alarms, Trend, Reports, IOServer) also sup-
port hierarchical inheritance to allow parameters to be fine tuned to the cluster or server
component level. The syntax used is as follows:

[Section Name.ClusterName.ServerName]

<parameter name1> = <parameter value1>

<parameter name2> = <parameter value2>

<parameter nameX> = <parameter valueX>

For Example:

[Alarm.Cluster1.Server1]

SavePeriod = 600

ScanTime = 500

For more information see Hierarchical Parameters.

Setting Parameter Values

UNINTENDED EQUIPMENT OPERATION

l Read and understand the applicable material in this manual before changing or remov-
ing any citect.ini parameters.

l Never change or remove any undocumented citect.ini parameters.
l Before deleting sections of the citect.ini file, confirm that no necessary or undoc-
umented parameters will be deleted.

l Do not edit your configuration file while your project is running.

Failure to follow these instructions can result in death, serious injury, or equip-
ment damage.

Note: Always seek the advice of Technical Support personnel for this product regard-
ing undocumented features.

Chapter: 2 Configuration Parameters

16



There are a number of methods to create or edit parameter values within CitectSCADA:

l Citect Project Editor
Used to create or change values in the project database.

l Computer Setup Wizard
Used to set up both necessary and commonly used citect.ini parameters on each
machine. This Wizard steps user through a series of pages collecting information
used to set parameter values.

l Computer Setup Editor
Used to create or modify parameters in the citect.ini file. This tool provides users
with a quick and convenient mechanism to set the value of a specific parameter by
combining a graphical interface with a context-sensitive help reference.

l Text Editors
A text editor can be used to modify the citect.ini file, although because of the risk
involved where system configuration contains an error, this is not the recommended
approach.

If you set (or change) parameters in the citect.ini file, you need to restart CitectSCADA
before the new parameter settings are used. There are a few exceptions to this rule where
citect.ini parameters are read at regular intervals and can be changed during runtime.
Where this is the case, the parameter is documented accordingly.

Citect Project Editor

The only method available to create or change parameters in the project database is to
use Citect Project Editor.

To set parameters in the project database:

1. From the System menu, select Parameters to display the Parameters dialog box.

2. Enter the Section Name of the parameter (16 characters or less).

3. Enter the Name of the parameter (16 characters or less).

4. Enter a Value for the parameter (254 characters or less).

5. Add the record to the database.

Note: To locate an existing parameter use the scroll bar (on the right of the form) to
move between each parameter record. The record number is shown in the bottom left
hand corner of the form.

If you set (or change) parameters in the project database, you need to re-compile the
project before the new parameter settings are used.

Chapter: 2 Configuration Parameters

17



Computer Setup Wizard

The Computer Setup Wizard provides the user with simple interface to configure nec-
essary and commonly used system parameters. The Wizard steps the user through a
series of pages:

l utilizing the configuration stored in the project database to provide the user with con-
textual information;

l shielding the user from the need to understand the syntax of the Citect.ini file or the
parameters; and

l modifying its behavior to reflect any relevant previous values already set within the
Wizard.

It is used during the initial setup of each machine running CitectSCADA and can be re-
used on a machine at a later time to modify parameter settings. Parameter values col-
lected from the user through the Wizard interface are written to the local Citect.ini file.

See Using the Computer Setup Wizard for more information.

Computer Setup Editor

The Computer Setup Editor provides the user with a graphical interface to configure
Citect.ini parameters making it a quick and convenient tool to locate and change
values for specific parameters. The Editor includes:

l a graphical interface which represents the parameters within the Citect.ini file as an
expandable tree with a node for each Section;

l a built-in help reference for Citect.ini parameters;

l the ability to generate a comparison report between two separate Citect.ini files; and

l the ability to generate an analysis report on a Citect.ini file to check validity of
parameter values.

For instructions on how to use Computer Setup Editor, see Using Computer Setup Editor
Help from the Help menu within Computer Setup Editor.

Note: The Computer Setup Editor cannot be used to maintain or set server param-
eters when being configured at the component or server level using Hierarchical
Parameters.

Chapter: 2 Configuration Parameters

18



Text Editors

The citect.ini file is a text file which stores CitectSCADA's operating parameters. Dur-
ing installation, a default version of this file is copied to the config folder of the Citect-
SCADA User and Data directory, as selected during installation.

If the file is not found in this location, it will not search elsewhere and will display an
error. If you need to store your ini file elsewhere, specify the path to it on the command
line when starting citect32.exe and ctexplor.exe.

Note: The filename and location of the citect.ini file can be changed by using the -
i"file_path.INI" option when calling the CitectSCADA Explorer or Citect32 runtime.

To set parameters in the local citect.ini file:

1. Use a text editor to open the citect.ini file.

2. Enter the parameter in the following format:
[SECTION NAME]

Parameter=<value>

3. Save the changes to the citect.ini file.

Parameter Precedence

On a machine where a parameter is set in both the project database and the citect.ini
file the value contained in the citect.ini will be used by that machine.

For example, in the diagram below the project value for parameterX (which is stored in
the project database) is n. This is the value used for parameterX on every server and
client EXCEPT the I/O Server and Trends Server, both of which use the values set in
their local citect.ini files (p and m respectively).

Chapter: 2 Configuration Parameters

19



A parameter which is global to a project and applies to the majority of servers running a
project is recommended therefore to be defined in the project database where it can be
centrally managed and controlled. Any exceptions to this global value can then be man-
aged by modifying the citect.ini file on the machine to which the exception applies.

Where a parameter is not set in either the project database or the citect.ini file, the
default value for that parameter will be used by the system.

Hierarchical Parameters

As CitectSCADA supports clustering and the ability to run multiple servers of the same
type on one machine, there are circumstances when the server component parameters
(Alarm, Report, Trend, IOServer) need to be tuned to a finer level than just machine
level. For this reason, these parameters are hierarchical parameters that are capable of
being implemented at a number of levels:

l Component Type Level
The widest scope, the parameter value will apply to every instance of the server type.

l Cluster Level
The parameter value will apply to every instance of the server running in the spec-
ified cluster.

l Server Level
The parameter value will apply to the instance of the server running in the specified
cluster, on the specified machine.

These parameters support hierarchical inheritance, that is, a parameter will:

1. Apply a value set for it at a server level;

2. If that is not specified, apply a value set for it at a cluster level;

3. If that is not specified, apply a value set for it at a component level;

4. If that is not specified, apply the default value for that parameter.

Example

The following Citect.ini file is applied to Server1 and Server2 both in Cluster1, and to
Server3 and Server4 both in Cluster2.

[Alarm]SavePeriod = 500

[Alarm.Cluster1]SavePeriod = 600

[Alarm.Cluster1.Server1]SavePeriod = 1000

This is illustrated in the diagram below.

Chapter: 2 Configuration Parameters

20



The values applied at each server for [Alarm]SavePeriod would be as follows:

Cluster Name Computer Name SavePeriod Value

Cluster1 Server1 1000

Cluster1 Server2 600

Cluster2 Server3 500

Cluster2 Server4 500

Note: Hierarchical parameters may be set in the parameters database. In this case
normal rules of precedence will apply. For more information see Parameter Prec-
edence.

Comments in Citect.ini

Comments can be placed in the Citect.ini file using the following special characters:

l Use `#' at the start of a new line to add a comment followed by the text of the com-
ment. Relate the comment to the following INI element (section or parameter). The
equals character is not acceptable in comments.

l Use `!' at the start of a parameter to show that the parameter is disabled and the
default value applies.

Note: Any line containing an '=' will be considered a parameter, regardless of what
the line starts with.

Example:

Chapter: 2 Configuration Parameters

21



[LAN]

#Disable Networking

Disable=1

Chapter: 2 Configuration Parameters

22



Chapter: 3 Reference Information

This section contains the reference information for CitectSCADA, including:

Specifications

Format Fields

Error Messages

UNINTENDED EQUIPMENT OPERATION

Always use buffers with 2 extra bytes when reading digital types with CtAPI. This prevents bit-
wise shift operations from corrupting systemmemory.

Failure to follow these instructions can result in death, serious injury, or equip-
ment damage.

Specifications

This section defines the reference information for CitectSCADA specifications.

l Graphics

l Projects

l I/O Device data types

l Reserved ANs

l Predefined Templates

l Predefined Commands

l Predefined Character Sets

l Predefined Fonts

l Predefined Devices

l Predefined Cicode Files

l Predefined Color Names and Codes

l Predefined Keyboard Key Codes

23



l Predefined Labels

l ASCII/ANSI Character Code Listings

Graphics

The table below defines CitectSCADA graphics specifications.

High-resolution color presentation VGA, SVGA, XGA, SXGA (Any res-
olution)

Colors in Palette 255

User definable colors can be selected from a
palette of

16.8 Million

Free-form graphics/display pages 65000*

Object animation points (ANs) per page 32000

Screen update time 500 milliseconds (see note)

Note: Screen update time depends on the I/O Device protocols used and your system
design. The minimum update rate is 1 millisecond, which can be achieved only if
the PLC can provide data fast enough. CitectSCADA maintains the fastest possible
screen update rate with the use of read on demand and dynamic optimization. These
technologies allow CitectSCADA to read only what is necessary from the PLC, mak-
ing the most of the communication channel to the I/O Devices. Performance test from
real installed systems with 100,000 points can maintain screen update rates of 400
milliseconds.

Projects
The table below defines CitectSCADA projects specifications:

Con-
figuration
Projects

1022*

Number of
Variable
Tags
defined in
CitectSCADA

4,194,303 (but no more than 500,000* is the recommended)

This is a system wide limitation for a running system. Tags in every
project included in the project you are currently compiling and running
will contribute to this figure, regardless of clustering.

Chapter: 3 Reference Information

24



Be aware that if you are using one or more tag based drivers in your
project, the figure depends on the bit length of your variables defined for
the driver(s). This is due to the need for these drivers to use OIDs to iden-
tify each tag. For example, a tag based driver that uses 32-bit digitals
may reduce the number of possible variables by 32 (i.e. if your project
contains only 32-bit digitals, you can have a maximum of 131,072). If no
bit size is defined for digitals by for the driver, it defaults to 16.

Number of
Included
projects

240 (including the Include project)

Simul-
taneously
logged-in
users

250*

Number of
reports

1000*

Number of
I/O Device
addresses
monitored
by alarms

150000*

Number of
historical
trends

32000*

Number of
trends dis-
played on
the same
chart

16*

Number of
alarms

65,535 per alarm type

Number of
trends dis-
played on
the same
page

16000

Number of
user func-
tions

4500*

Number of 700

Chapter: 3 Reference Information

25



standard
built-in func-
tions pro-
vided

Number of
operator
commands
for the sys-
tem

3000*

Number of
I/O Devices
connected
to Citect-
SCADA

16383

Number of
simultaneous
multiple
protocols

4095

Number of
areas

255

Number of
alarm cat-
egories

16376

Maximum
simultaneous
multi-task-
ing threads

512

*There is no actual limit to these values; they are maximum recommended values only.
However, exceeding this number can impact the Trends Server performance (CPU load-
ing) and the CPU loading of the Client displaying the Process Analyst.

I/O Device data types

The table below displays the data types, size, and allowed values.

Data Type Size Allowed Values

BCD 2 bytes 0 to 9,999

Byte 1 byte 0 to 255

Chapter: 3 Reference Information

26



Digital 1 bit or 1 byte 0 or 1

Integer 2 bytes -32,768 to 32,767

Unsiged Integer

Long Integer 4 bytes

Long BCG 4 bytes

Floating Point
(Real)

4 bytes

String 256 bytes (Tags and Cicode Functions) ASCII (null ter-
minated)

128 bytes (Global Cicode Variables)

Reserved ANs

The following table describes reserved ANs:

AN Description Comments

1 Keyboard
Entry Line

Where keyboard input from the operator is echoed (dis-
played).

2 Prompt Line The Prompt Line is used to convey important information to
your operators. You can use the Prompt() function to display
prompts to help an operator with a process, or DspError() to
display alert or error messages. You need to use a Cicode
function to display a prompt message.

The following ANs are reserved for Version 2.xx style templates only (or for pages that are
upgraded from Version 2.xx):

3 Reserved

4 Reserved

5 Unac-
knowledged
Alarms

If an alarm has not been acknowledged, the message "UNAC-
KNOWLEDGED ALARMS" is displayed. You could then select
an alarm page to display details of the alarm.

Chapter: 3 Reference Information

27



6 Hardware
Alarms

If a hardware alarm is detected by CitectSCADA, the mes-
sage "HARDWARE ALARMS" is displayed. You could then
select an alarm page to display details of the alarm.

7 Disabled
Alarms

If an alarm is disabled, the message "DISABLED ALARM" is
displayed. You could then select an alarm page to display
details of the alarm.

8 Reserved

9 Time The current system time is displayed. To set the format for
the time display, use the Windows Control Panel in the Main
Windows program group, or set a CitectSCADA Parameter.

10 Date The current system date is displayed. To set the format for
the date display, use the Windows Control Panel in the Main
Windows program group, or set a CitectSCADA Parameter.

11 Last Alarm Where the last activated alarm is displayed.

12 Page Title Where the title of the graphics page is displayed.

13 Page Name Where the name of the graphics page is displayed.

14 Command
Help

Where help text associated with a button or animation object
is displayed.

15 Buttons Page-dependent buttons.

16 Buttons Page-dependent buttons.

17 Buttons Page-dependent buttons.

18 Last Page But-
ton

A button to select the graphics page that was displayed
before the current page.

19 Page Up But-
ton

A button to select the next graphics page in the page
sequence.

20 Page Down
Button

A button to select the previous graphics page in the page
sequence.

Chapter: 3 Reference Information

28



Predefined Templates

The following templates are provided in various styles. Most of these templates are com-
pletely configured; you can create pages with little (or no) customization of the tem-
plates.

Template Name Description

Normal A template for basic graphics display pages. This template
contains buttons for basic page control (such as displaying
alarm and menu pages) and a large blank area for drawing
plant layouts, control buttons, etc.

Blank A completely blank template. Use this template to configure
an entire page.

PageMenu A template to create a simple menu page. CitectSCADA auto-
matically generates a menu page (based on this template)
as you develop your project. You can modify the menu page
to suit your specific requirements.

Book1Menu . .
Book5Menu

Templates to create alternative menu pages (in open book
format). An operator can move through the menu pages by
clicking on the appropriate tab. To use these templates,
add buttons to each menu page to display other graphics
pages as necessary.

create your pages with the same names as the templates to
avoid extra configuration. If your pages are not linked , you
can modify the menus so that any page name will be
accepted.

Tab1Menu . .
Tab6Menu

Templates to create alternative menu pages (in tab format).
An operator can move through the menu pages by clicking
on the appropriate tab. To use these templates, add but-
tons to each menu page to display other graphics pages as
necessary.

create your pages with the same names as the templates to
avoid extra configuration. If your pages are not linked , you
can modify the menus so that any page name will be
accepted.

SingleTrend A template to create trend pages with one trend window.
There are several ways to configure the trend pens:
1. Double-click the window.
2. Open the trend page using the PageTrend() function and
pass in the trend pens as parameters.

3. Select the pens manually (from the page) at runtime

Chapter: 3 Reference Information

29



SingleTrend pages can be configured with trend tags of
type Periodic or Periodic Event.

DoubleTrend A template to create trend pages with two trend windows.
To configure the trend pens for each window, double-click
either window, or select the pens manually (from the page)
at runtime. Add a button to the menu page to display each
trend page.

DoubleTrend pages can be configured with trend tags of
type Periodic or Periodic Event.

CompareTrend A template to create trend pages with two trends - one over-
laid on the other. To configure the trend pens for each
trend (maximum of 4 each), double-click the trend win-
dow, or select the pens manually (from the page) at run-
time. Add a button to the menu page to display each trend
page. CompareTrend pages can be configured with trend
tags of type Periodic or Periodic Event.

EventTrend A template to create trend pages with one event trend win-
dow. There are several ways to configure the trend pens:
1) double-click the window
2) Open the trend page using the PageTrend() function
and pass in the trend pens as parameters.
3) select the pens manually (from the page) at runtime

EventTrend pages can only be configured with trend tags
of type Event.

ZoomTrend A template to create trend pages with one trend window
and a zoom window. To configure the trend pens, double-
click in the window, or select the pens manually (from the
page) at runtime.

ZoomTrend pages can be configured with trend tags of
type Periodic or Periodic Event.

PopTrend A template to create a small trend page to display as a pop-
up trend. To configure the trend pens, open the trend page
using the PageTrend() function and pass in the trend pens
as parameters, or select the pens manually (from the page)
at runtime.

PopTrend pages can be configured with trend tags of type
Periodic or Periodic Event.

MeanMeanChart A template to create SPC pages with twomean windows.

RangeChart A template to create SPC pages with mean and range win-
dows.

Chapter: 3 Reference Information

30



StandardChart A template to create SPC pages with mean and standard
deviation windows.

SPCCPK A template to create SPC capability charts. To configure
your pen, double-click the window, or select the pen man-
ually (from the page) at runtime.

SPCCPK pages can be configured with SPC tags of type Peri-
odic or Event.

SPCPareto A template to create SPC Pareto charts. To configure your
variable tags (NOT trend tags), double-click the window.

SPCXRSChart A template to create SPC control chart with mean, range,
and standard deviation windows. To configure your pen,
double-click the window, or select the pen manually (from
the page) at runtime.

SPCXRSChart pages can be configured with SPC tags of
type Periodic or Event.

EventSPCXRS A template to create trend pages with one event SPCXRS
window. To configure your pen, double-click the window,
or select the pen manually (from the page) at runtime.

EventSPCXRS pages can only be configured with SPC tags
of type Event.

Alarm A template to create an alarm display page. You need to
create a page called "Alarm" based on this template, so that
the alarm display button (on other pages such as the menu
page) operates correctly. (The alarm display button calls
the PageAlarm() function.) You can create the "Alarm" page
directly from this template (without modification), or mod-
ify the page to suit your requirements.

Summary A template to create an alarm summary page. You need to
create a page called "Summary" based on this template, so
that the alarm summary button (on other pages such as the
menu page) operate correctly. (The alarm summary button
calls the PageSummary() function.) You can create the
"Summary" page directly from this template (without mod-
ification), or modify the page to suit your requirements.

Hardware A template to create a hardware alarm page. You need to
create a page called "Hardware" based on this template, so
that the hardware alarm button (on other pages such as
the menu page) operate correctly. (The hardware alarm
button calls the PageHardware() function.) You can create
the "Hardware" page directly from this template (without
modification), or modify the page to suit your require-
ments.

Chapter: 3 Reference Information

31



Disabled A template to create a disabled alarm page. You need to
create a page called "Disabled" based on this template, if
you use the PageDisabled() function. You can create the
"Disabled" page directly from this template (without mod-
ification), or modify the page to suit your requirements.

File A template to create a file-to-screen display page. You can
use this page to display any ASCII files (such as reports or
other information). You need to create a page called "File"
based on this template, if you use the PageFile() function.
You can create the "File" page directly from this template
(without modification), or modify the page to suit your
requirements.

GroupStatus A template to create a status table page for groups of plant
floor devices.

TrnPopStat A template to create a page displaying trend statistics. You
need to create a page called "!TrendStats" based on this
template. When called from a trend window, it will display
the statistics of the trend pens used in that window (such
as Min, Max, Average etc.). With the TrnPopStat window
displayed, you can also rubber-band an area of the trend,
and the statistics for that area will display.

Predefined Commands

This section describes the system keyboard commands that are predefined in the Include
Project. (System keyboard commands operate on any graphics page displayed on the
computer screen).

l System keyboard commands database

l Predefined keyboard keys

l Keyboard keys database

System keyboard commands database

The table below gives the key sequences associated with commands and their function.

Key Sequence Command Description

*BS KeyBS() Backspace over the current key

DOWN KeyDown() Move the cursor down

Chapter: 3 Reference Information

32



PGDN PagePrev() Display the previous page

PGUP PageNext() Display the next page

RIGHT KeyRight() Move the cursor right

UP KeyUp() Move the cursor up

Usually you can override a predefined command by configuring a new command in
your project with the same key sequence. The only command that you cannot override is
the *BS command, as this sequence is a hotkey used to remove the last key from the key
command line.

Note: Do not modify the Include Project. Your changes to the Include project will be
lost when you reinstall CitectSCADA or upgrade to a new version.

Predefined keyboard keys

The keyboard keys described below are predefined in the Include Project. You can use
these keys in any key sequence field; for example, to define the keyboard commands for
an object.

Keyboard keys database

The table below defines the key names, codes, and description.

Key Name Key Code Description

BS KEY_BACKSPACE BackSpace key

DOWN KEY_DOWN Cursor down

DOWN_SHIFT KEY_DOWN_SHIFT Shift down key

ENTER KEY_ENTER Enter key

LBUTTON_DBL KEY_LBUTTON_DBL Left mouse button double click

LBUTTON_DN KEY_LBUTTON_
DN

Left mouse button down

LBUTTON_UP KEY_LBUTTON_
UP

Left mouse button up

Chapter: 3 Reference Information

33



Key Name Key Code Description

LBUTTON_CMD_
DN

KEY_LBTN_CMD_
DN

Left mouse button down (command cursor)

LBUTTON_CMD_
DNC

KEY_LBTN_CMD_
DNC

Ctrl left mouse button down (command cur-
sor)

LBUTTON_CMD_
DNS

KEY_LBTN_CMD_
DNS

Shift left mouse button down (command cur-
sor)

LBUTTON_CMD_
UP

KEY_LBTN_CMD_
UP

Left mouse button up (command cursor)

LBUTTON_CMD_
UPC

KEY_LBTN_CMD_
UPC

Ctrl left mouse button up (command cursor)

LBUTTON_CMD_
UPS

KEY_LBTN_CMD_
UPS

Shift left mouse button up (command cursor)

LEFT KEY_LEFT Cursor left

MBUTTON_DN KEY_MBUTTON_
DN

Middle mouse button down

MBUTTON_UP KEY_MBUTTON_
UP

Middle mouse button up

PGDN KEY_PGDN Page down key

PGUP KEY_PGUP Page up key

RBUTTON_DN KEY_RBUTTON_
DN

Right mouse button down

RBUTTON_UP KEY_RBUTTON_
UP

Right mouse button up

RBUTTON_CMD_
DN

KEY_RBTN_CMD_
DN

Right mouse button down (command cur-
sor)

RBUTTON_CMD_
UP

KEY_RBTN_CMD_
UP

Right mouse button up (command cursor)

RIGHT KEY_RIGHT Cursor right

UP KEY_UP Cursor up

UP_SHIFT KEY_UP_SHIFT Shift up key

Chapter: 3 Reference Information

34



Note: Do not modify the Include Project. Changes to the Include project are lost when
you reinstall or upgrade CitectSCADA.

Predefined Character Sets

The following character sets are predefined as labels in the Include Project:

Label Value Description

DEFAULT_CHARSET 1 Use the default Windows character set

SHIFTJIS_CHARSET 128 Japanese character set

HANGEUL_CHARSET 129 Korean character set

GB2312_CHARSET 134 Chinese character set

CHINESEBIG5_CHARSET 136 Chinese character set

JOHAB_CHARSET 130

HEBREW_CHARSET 177

ARABIC_CHARSET 178

GREEK_CHARSET 161

TURKISH_CHARSET 162

VIETNAMESE_CHARSET 163

THAI_CHARSET 222

EASTEUROPE_CHARSET 238

RUSSIAN_CHARSET 204

BALTIC_CHARSET 186

Note: Do not modify the Include Project. Changes to the Include project are lost when

Chapter: 3 Reference Information

35



you reinstall or upgrade CitectSCADA.

Predefined Fonts

The following fonts are predefined in the Include Project:

Font Name Font Type Size Color

AlmAccOffFont Arial 10 White

AlmAccOnFont Arial 10 Cyan

AlmDisabledFont Arial 10 White

AlmUnAccOffFont Arial 10 Brown

AlmUnAccOnFont Arial 10 Yellow

ButtonFont Arial 10 Black

Casanova Arial -10 Black

ControlLimits Times New Roman 14 Black

DefaultFont Courier New 14 White

DisabledFont Arial 10 White

FontOP Courier New 14 Light Cyan

FontPV Courier New 14 Light Green

FontSP Courier New 14 Light Red

FontTune Courier New 14 Yellow

GraphBigFont Arial 60 Black

GraphColour Arial 32 Blue

GraphColourBig Arial 60 Red

Chapter: 3 Reference Information

36



GraphColourSmall Courier New 20 Black

GraphFont Arial 32 Black

GraphSmallFont Courier New 20 Black

HardwareFont Arial 10 Light_Red

Pen1SpcFont Courier 10 White

Pen1TrendFont Courier New 14 Light_Green

Pen2SpcFont Courier New 14 Light_Green

Pen2TrendFont Courier New 14 Yellow

Pen3SpcFont Courier New 14 Light_Cyan

Pen3TrendFont Courier New 14 Light_Red

Pen4SpcFont Courier New 14 Light_Blue

Pen4TrendFont Courier New 14 Light_Cyan

Pen5TrendFont Courier New 14 Light_Magenta

Pen6TrendFont Courier New 14 White

Pen7TrendFont Courier New 14 Light_Blue

Pen8TrendFont Courier New 14 Gray

PromptFont Arial 10 White

SpcFont Courier New 14 White

TextFont Arial 10 White

TimeFont Arial 10 Black

TrendFont Courier New 14 White

TrendHistFont Courier New 14 Yellow

Chapter: 3 Reference Information

37



TrendSHistFont Arial -10 Magenta

TrendSFont Arial -10 Black

UnacceptedFont Arial 10 Yellow

Vanuatu Arial -9 Black

System Arial 10 Black

TrendSCentreFont Arial -10 Yellow

PopFont Arial 9 Black

You can override a predefined font by adding a new font with the same name to your
project.

Note: Do not modify the Include Project. Changes to the Include project are lost when
you reinstall or upgrade CitectSCADA.

Predefined Devices

This section describes devices that are predefined in the Include Project.

Devices database

The table below shows the devices supported by CitectSCADA.

Device Name Type Description

ASCII_DEV 0 Ascii Device number

PRINTER_DEV 1 Printer Device number

dBASE_DEV 2 dBASE device number

SQL_DEV 4 SQL device number

AlarmDisk 0 (ASCII File) Default alarm log file

AlarmPrint 0 (ASCII File) Default alarm print device

Chapter: 3 Reference Information

38



KeyDisk 0 (ASCII File) Default keyboard log file

KeyPrint 1 (Printer) Default keyboard printer log

Printer1 1 (Printer) LPT1: Printer 1 device

Printer2 1 (Printer) LPT2: Printer 2 device

SummaryPrint 0 (ASCII File) Default alarm summary printer device

SummaryDisk 0 (ASCII File) Default alarm summary log file

_Trend 3 (dBASE) Trend RDB device

Scratch 0 (ASCII File) Device for DevModify function

Note: Do not modify the Include Project. Changes to the Include project are lost when
you reinstall or upgrade CitectSCADA.

Predefined Cicode Files

The following Cicode files are part of the Include Project:

File Name Description

citect.ci General utility functions

debug.ci User Cicode debugging functions

export.ci Information functions

graph.ci Trend data export functions

info.ci Information functions

numpad.ci Number entry keypad functions

page.ci Graphics page utility functions

pareto.ci Functions for the Pareto charts

Chapter: 3 Reference Information

39



spc.ci Default SPC functions

spcplus.ci SPC functions - extension

statpop.ci Trend statistic functions

tag.ci Functions for Tag assignment and manipulation

trend.ci Default trend functions

trninfo.ci Functions to gather trend information

zoom.ci Trend zoom functions

Note: Do not modify the Include Project. Changes to the Include project are lost when
you reinstall or upgrade CitectSCADA.

Predefined Color Names and Codes

Sixteen standard colors are available for use with your CitectSCADA system. They have
been predefined in the Include Project. refer to these colors by name which make then
more readily understandable, wherever you would use the code value:

Color Label Code

Black 0x000000

Blue 0x000080

Green 0x008000

Cyan 0x008080

Red 0x800000

Magenta 0x800080

Brown 0x808000

Grey 0xBFBFBF

Chapter: 3 Reference Information

40



Dark_Grey 0x7F7F7F

Light_Blue 0x0000FF

Light_Green 0x00FF00

Light_Cyan 0x00FFFF

Light_Red 0xFF0000

Light_Magenta 0xFF00FF

Yellow 0xFFFF00

White 0xFFFFFF

TRANSPARENT 0XFF000000

Note: Do not modify the Include Project. Changes to the Include project are lost when
you reinstall or upgrade CitectSCADA.

Predefined Keyboard Key Codes

The following meaningful key code labels are predefined in the CitectSCADA Include
Project. They can be entered as key codes when you define your keyboard keys, so you
don't need to remember the hex value associated with each key.

Key Code (CitectSCADA
label)

Key Code (Hex
Value)

Key Description

KEY_LBUTTON 0x0001 Left Mouse Button

KEY_RBUTTON 0x0002 Right Mouse Button

KEY_MBUTTON 0x0004 Middle Mouse Button

KEY_LBUTTON_UP 0x0201 Left Mouse Button Up

KEY_RBUTTON_UP 0x0202 Right Mouse Button Up

KEY_MBUTTON_UP 0x0204 Middle Mouse Button Up

Chapter: 3 Reference Information

41



Key Code (CitectSCADA
label)

Key Code (Hex
Value)

Key Description

KEY_LBUTTON_DBL 0x0401 Left Mouse Button Double Click

KEY_RBUTTON_DBL 0x0402 Right Mouse Button Double Click

KEY_MBUTTON_DBL 0x0403 Middle Mouse Button Double Click

KEY_LBUTTON_DN 0x0801 Left Mouse Button Down

KEY_RBUTTON_DN 0x0802 Right Mouse Button Down

KEY_MBUTTON_DN 0x0804 Middle Mouse Button Down

KEY_LBTN_CMD_UP 0x0601 Left Mouse Button Up (Command Cur-
sor)

KEY_RBTN_CMD_UP 0x0602 Right Mouse Button Up (Command Cur-
sor)

KEY_MBTN_CMD_UP 0x0604 Middle Mouse Button Up (Command
Cursor)

KEY_LBTN_CMD_DN 0x0605 Left Mouse Button Down (Command
Cursor)

KEY_RBTN_CMD_DN 0x0606 Right Mouse Button Down (Command
Cursor)

KEY_MBTN_CMD_DN 0x0608 Middle Mouse Button Down (Command
Cursor)

KEY_LBTN_CMD_UPS 0x1601 Shift Left Mouse Button Up (Command
Cursor)

KEY_RBTN_CMD_UPS 0x1602 Shift Right Mouse Button Up (Com-
mand Cursor)

KEY_MBTN_CMD_UPS 0x1604 Shift Middle Mouse Button Up (Com-
mand Cursor)

KEY_LBTN_CMD_DNS 0x1605 Shift Left Mouse Button Down (Com-
mand Cursor)

KEY_RBTN_CMD_DNS 0x1606 Shift Right Mouse Button Down (Com-
mand Cursor)

Chapter: 3 Reference Information

42



Key Code (CitectSCADA
label)

Key Code (Hex
Value)

Key Description

KEY_MBTN_CMD_DNS 0x1608 Shift Middle Mouse Button Down (Com-
mand Cursor)

KEY_LBTN_CMD_UPC 0x2601 Ctrl Left Mouse Button Up (Command
Cursor)

KEY_RBTN_CMD_UPC 0x2602 Ctrl Right Mouse Button Up (Command
Cursor)

KEY_MBTN_CMD_UPC 0x2604 Ctrl Middle Mouse Button Up (Com-
mand Cursor)

KEY_LBTN_CMD_DNC 0x2605 Ctrl Left Mouse Button Down (Com-
mand Cursor)

KEY_RBTN_CMD_DNC 0x2606 Ctrl Right Mouse Button Down (Com-
mand Cursor)

KEY_MBTN_CMD_DNC 0x2608 Ctrl Middle Mouse Button Down (Com-
mand Cursor)

KEY_BACKSPACE 0x0008 Backspace

KEY_TAB 0x0009 Tab

KEY_LF 0x000A Line Feed

KEY_VT 0x000B Vertical Tab

KEY_FF 0x000C Form Feed

KEY_RETURN 0x000D Return

KEY_ENTER 0x000D Enter (same key as above)

KEY_ESCAPE 0x001B Escape

KEY_ESC 0x001B Escape (same key as above)

KEY_DELETE 0x012E Delete

KEY_PGUP 0x0121 PageUp

KEY_PGDN 0x0122 PageDown

Chapter: 3 Reference Information

43



Key Code (CitectSCADA
label)

Key Code (Hex
Value)

Key Description

KEY_END 0x0123 End

KEY_HOME 0x0124 Home

KEY_LEFT 0x0125 Cursor Left

KEY_UP 0x0126 Cursor Up

KEY_RIGHT 0x0127 Cursor Right

KEY_DOWN 0x0128 Cursor Down

KEY_LEFT_SHIFT 0x1125 Shift Left

KEY_UP_SHIFT 0x1126 Shift Up

KEY_RIGHT_SHIFT 0x1127 Shift Right

KEY_DOWN_SHIFT 0x1128 Shift Down

KEY_INSERT 0x012D Insert

KEY_HELP 0x012F Help

KEY_F1 0x0170 F1

KEY_F2 0x0171 F2

KEY_F3 0x0172 F3

KEY_F4 0x0173 F4

KEY_F5 0x0174 F5

KEY_F6 0x0175 F6

KEY_F7 0x0176 F7

KEY_F8 0x0177 F8

KEY_F9 0x0178 F9

Chapter: 3 Reference Information

44



Key Code (CitectSCADA
label)

Key Code (Hex
Value)

Key Description

KEY_F10 0x0179 F10

KEY_F11 0x017A F11

KEY_F12 0x017B F12

KEY_F13 0x017C F13

KEY_F14 0x017D F14

KEY_F15 0x017E F15

KEY_F16 0x017F F16

KEY_F1_SHIFT 0x1170 Shift F1

KEY_F2_SHIFT 0x1171 Shift F2

KEY_F3_SHIFT 0x1172 Shift F3

KEY_F4_SHIFT 0x1173 Shift F4

KEY_F5_SHIFT 0x1174 Shift F5

KEY_F6_SHIFT 0x1175 Shift F6

KEY_F7_SHIFT 0x1176 Shift F7

KEY_F8_SHIFT 0x1177 Shift F8

KEY_F9_SHIFT 0x1178 Shift F9

KEY_F10_SHIFT 0x1179 Shift 10

KEY_F11_SHIFT 0x117A Shift F11

KEY_F12_SHIFT 0x117B Shift F12

KEY_F13_SHIFT 0x117C Shift F13

KEY_F14_SHIFT 0x117D Shift F14

Chapter: 3 Reference Information

45



Key Code (CitectSCADA
label)

Key Code (Hex
Value)

Key Description

KEY_F15_SHIFT 0x117E Shift F15

KEY_F16_SHIFT 0x117F Shift F16

KEY_F1_CTRL 0x2170 Ctrl F1

KEY_F2_CTRL 0x2171 Ctrl F2

KEY_F3_CTRL 0x2172 Ctrl F3

KEY_F4_CTRL 0x2173 Ctrl F4

KEY_F5_CTRL 0x2174 Ctrl F5

KEY_F6_CTRL 0x2175 Ctrl F6

KEY_F7_CTRL 0x2176 Ctrl F7

KEY_F8_CTRL 0x2177 Ctrl F8

KEY_F9_CTRL 0x2178 Ctrl F9

KEY_F10_CTRL 0x2179 Ctrl F10

KEY_F11_CTRL 0x217A Ctrl F11

KEY_F12_CTRL 0x217B Ctrl F12

KEY_F13_CTRL 0x217C Ctrl F13

KEY_F14_CTRL 0x217D Ctrl F14

KEY_F15_CTRL 0x217E Ctrl F15

KEY_F16_CTRL 0x217F Ctrl F16

KEY_A_SHIFT 0x1041 Shift A

KEY_B_SHIFT 0x1042 Shift B

KEY_C_SHIFT 0x1043 Shift C

Chapter: 3 Reference Information

46



Key Code (CitectSCADA
label)

Key Code (Hex
Value)

Key Description

KEY_D_SHIFT 0x1044 Shift D

KEY_E_SHIFT 0x1045 Shift E

KEY_F_SHIFT 0x1046 Shift F

KEY_G_SHIFT 0x1047 Shift G

KEY_H_SHIFT 0x1048 Shift H

KEY_I_SHIFT 0x1049 Shift I

KEY_J_SHIFT 0x104A Shift J

KEY_K_SHIFT 0x104B Shift K

KEY_L_SHIFT 0x104C Shift L

KEY_M_SHIFT 0x104D Shift M

KEY_N_SHIFT 0x104E Shift N

KEY_O_SHIFT 0x104F Shift O

KEY_P_SHIFT 0x1050 Shift P

KEY_Q_SHIFT 0x1051 Shift Q

KEY_R_SHIFT 0x1052 Shift R

KEY_S_SHIFT 0x1053 Shift S

KEY_T_SHIFT 0x1054 Shift T

KEY_U_SHIFT 0x1055 Shift U

KEY_V_SHIFT 0x1056 Shift V

KEY_W_SHIFT 0x1057 Shift W

KEY_X_SHIFT 0x1058 Shift X

Chapter: 3 Reference Information

47



Key Code (CitectSCADA
label)

Key Code (Hex
Value)

Key Description

KEY_Y_SHIFT 0x1059 Shift Y

KEY_Z_SHIFT 0x105A Shift Z

KEY_A_CTRL 0x2041 Ctrl A

KEY_B_CTRL 0x2042 Ctrl B

KEY_C_CTRL 0x2043 Ctrl C

KEY_D_CTRL 0x2044 Ctrl D

KEY_E_CTRL 0x2045 Ctrl E

KEY_F_CTRL 0x2046 Ctrl F

KEY_G_CTRL 0x2047 Ctrl G

KEY_H_CTRL 0x2048 Ctrl H

KEY_I_CTRL 0x2049 Ctrl I

KEY_K_CTRL 0x204B Ctrl K

KEY_L_CTRL 0x204C Ctrl L

KEY_M_CTRL 0x204D Ctrl M

KEY_N_CTRL 0x204E Ctrl N

KEY_O_CTRL 0x204F Ctrl O

KEY_P_CTRL 0x2050 Ctrl P

KEY_Q_CTRL 0x2051 Ctrl Q

KEY_R_CTRL 0x2052 Ctrl R

KEY_S_CTRL 0x2053 Ctrl S

KEY_T_CTRL 0x2054 Ctrl T

Chapter: 3 Reference Information

48



Key Code (CitectSCADA
label)

Key Code (Hex
Value)

Key Description

KEY_U_CTRL 0x2055 Ctrl U

KEY_V_CTRL 0x2056 Ctrl V

KEY_W_CTRL 0x2057 Ctrl W

KEY_X_CTRL 0x2058 Ctrl X

KEY_Y_CTRL 0x2059 Ctrl Y

KEY_Z_CTRL 0x205A Ctrl Z

KEY_A_ALT 0x4041 Alt A

KEY_B_ALT 0x4042 Alt B

KEY_C_ALT 0x4043 Alt C

KEY_D_ALT 0x4044 Alt D

KEY_E_ALT 0x4045 Alt E

KEY_F_ALT 0x4046 Alt F

KEY_G_ALT 0x4047 Alt G

KEY_H_ALT 0x4048 Alt H

KEY_I_ALT 0x4049 Alt I

KEY_J_ALT 0x404A Alt J

KEY_K_ALT 0x404B Alt K

KEY_L_ALT 0x404C Alt L

KEY_M_ALT 0x404D Alt M

KEY_N_ALT 0x404E Alt N

KEY_O_ALT 0x404F Alt O

Chapter: 3 Reference Information

49



Key Code (CitectSCADA
label)

Key Code (Hex
Value)

Key Description

KEY_P_ALT 0x4050 Alt P

KEY_Q_ALT 0x4051 Alt Q

KEY_R_ALT 0x4052 Alt R

KEY_S_ALT 0x4053 Alt S

KEY_T_ALT 0x4054 Alt T

KEY_U_ALT 0x4055 Alt U

KEY_V_ALT 0x4056 Alt V

KEY_W_ALT 0x4057 Alt W

KEY_X_ALT 0x4058 Alt X

KEY_Y_ALT 0x4059 Alt Y

KEY_Z_ALT 0x405A Alt Z

To define a key with:

l The Shift key, add 0x1000 to the value of the key.

l The Ctrl key, add 0x2000 to the value of the key.

l The Alt key, add 0x4000 to the value of the key.

The above key definitions are standard IBM-compatible keys.

Note: Do not modify the Include Project. Changes to the Include project are lost when
you reinstall or upgrade CitectSCADA.

Predefined Labels

This section describes the labels that are predefined in the Include Project.

Labels database

The table below defines the names, expressions predefined in the Include Project.

Chapter: 3 Reference Information

50



Name Expr Comment

__DATE__ $1 Date of com-
pilation

__DB__ $4 Compiler data-
base name

__FIELD__ $6 Compiler field
name

__FILE__ $2 Compiler file
name

__LINE__ $3 Compiler line
number

__RECORD__ $5 Compiler record
number

__TIME__ $0 Time of com-
pilation

_BLANK_ NULL Definition

AlarmFirstCatRec(hCat,nType,hArea=-1) _AlarmQueryFirstRec
(hCat,nType,hArea,0)

Get Alarm Cat
Rec with Area

AlarmFirstPriRec(hPri,nType,hArea=-1) _AlarmQueryFirstRec
(hPri,nType,hArea,1)

Get Alarm Pri Rec
with Area

Alarm-
NextCatRec(hRec,hCat,nType,hArea=-1)

_AlarmQueryNextRec
(hRec,hCat,nType,hArea,0)

Get Alarm Cat
Rec with Area

Alarm-
NextPriRec(hRec,hPri,nType,hArea=-1)

_AlarmQueryNextRec
(hRec,hPri,nType,hArea,1)

Get Alarm Pri Rec
with Area

ANIMATE 2 Display mode 2

ANM_ARRAY 16 Animated sym-
bols in array
mode

ANSI_CHARSET 0 ANSI character
set

Arg1 GetGlbStr(0) keyboard argu-
ment 1

Chapter: 3 Reference Information

51



Arg2 GetGlbStr(1) keyboard argu-
ment 2

Arg3 GetGlbStr(2) keyboard argu-
ment 3

Arg4 GetGlbStr(3) keyboard argu-
ment 4

Arg5 GetGlbStr(4) keyboard argu-
ment 5

Arg6 GetGlbStr(5) keyboard argu-
ment 6

Arg7 GetGlbStr(6) keyboard argu-
ment 7

Arg8 GetGlbStr(7) keyboard argu-
ment 8

ArgValue1 StrToValue(Arg1) Get the value of
argument 1

Assert(arg) IF NOT (arg) THEN _Assert
(#arg, __FILE__, __LINE__);
END

Process an asser-
tion

BAD_HANDLE -1 Bad Handle

BORDER 2 Border Only

BORDER_3D 1 3D Transparent
Button

CreateControlObject
(sCls,sName,x1,y1,x2,y2,sEventCls="")

_CreateControlObject
(sCls,sName,x1,y1,x2,y2,
sEventCls)

Create-
ControlObject
default event
class

DateDay(time) _TimeSub(time,3) Get days from
time

DateDayMonth(time) _TimeSub(time,10) Get the last day
of the month

DateMonth(time) _TimeSub(time,5) Get month from

Chapter: 3 Reference Information

52



time

DateWeekDay(time) _TimeSub(time,4) Get weekday
from time

DELETE_ANM 000 Delete animation

DevFirst(hDev) DevSeek(hDev,0) DevSeek with Off-
set=0

DspBut-
ton(hAn,UK=0,sText,hFont=0,nW=0,
nH=0,DK=0,RK=0,nM=0)

_DspButton(hAn,UK,sText,
hFont,nW,nH,DK,RK,nM)

Display button

DspButtonFn(hAn,UF=0,sText,hFont=0,
nW=0,nH=0,DF=0,RF=0,nM=0)

_DspButtonFn(hAn,UF,sText,
hFont,nW,nH,DF,RF,nM)

Display a button

DspSym(hAn,sSym,mode=0) _DspSym(hAn,sSym,mode) Display symbol

DspSymAnm(hAn,s1,s2=0,s3=0,s4=0,
s5=0,s6=0,s7=0,s8=0)

_DspSymAnm
(hAn,s1,s2,s3,s4,s5,s6,s7,s8,0,-
"")

Display multi
symbols

DspSymAnmEx(hAn,mode,s1,s2=0,
s3=0,s4=0,
s5=0,s6=0,s7=0,s8=0,s9=0)

_DspSymAnm(hAn,s1,s2,s3,s4,
s5,s6,s7,s8,mode,s9)

DspSymAnm
with mode

EVEN_P 2 Even Parity

Exec(sText,mode=1) _Exec(sText,mode) Exec program,
default to normal

FALSE 0 Boolean False

FlashColourState() StrToInt(PageInfo(18)) Flashing Color
State as a bool-
ean

GetBlueValue(PackedRGB) ((PackedRGB / 65536) BITAND
255)

Get the blue com-
ponent of a
packed RGB color

GetGreenValue(PackedRGB) ((PackedRGB / 256) BITAND
255)

Get the green
component of a
packed RGB color

GetRedValue(PackedRGB) (PackedRGB BITAND 255) Get the red com-
ponent of a

Chapter: 3 Reference Information

53



packed RGB color

GetVar(sTag,sField) $7 Get variable field
data

GetVarDef(sTag,sField,sDefault) $10 Get variable field
data if defined

GetVarStr(sTag,sField) $8 Get variable field
data as str

GetVarStrDef(sTag,sField,sDefault) $11 Get variable field
data as a str if
defined

GRAY_ALL 3 Gray the entire
button

GRAY_HIDE 4 Hide object when
grayed

GRAY_PART 2 Sink and gray
the text / symbol

GRAY_SUNK 1 Sink the text /
symbol

IFDEF(sTag,sTrue,sFalse) $9 Inline IF defined
macro

InAnimationCycle() StrToInt(PageInfo(19)) In Animation
Cycle as a bool-
ean

InCommunicationsCycle() StrToInt(PageInfo(20)) In Com-
munications
Cycle as a bool-
ean

KeyDown() KeyMove(4) Move Cursor
down

KeyLeft() KeyMove(1) Move Cursor left

KeyReplay() _KeyReplay(1) Key Replay - last
key

Chapter: 3 Reference Information

54



KeyReplayAll() _KeyReplay(0) Key Replay All

KeyRight() KeyMove(2) Move Cursor
right

KeyUp() KeyMove(3) Move Cursor up

NONE 0 No Parity

NORMAL 0 Normal Button

ODD_P 1 Odd Parity

OVERLAP 1 Display mode 1

PackedRGB(Red,Green,Blue) (Red + Green * 256 + Blue *
65536)

Make a packed
RGB color from
its components

PlotInfo(hPlot,nType,sInput="") _PlotInfo(hPlot,nType,sInput) Get information
about a plot sys-
tem

Print(sText,nMode=0) Dev-
Print(DevCurr(),sText,nMode)

Print output to
device

PrintLn(sText) DevPrint(DevCurr(),sText,1) Print output to
device, newline

Pulse(arg) arg = TRUE; Sleep(2); arg =
FALSE;

Pulse the var-
iable

RAboveUCL 8192

RBelowLCL 16384

ROutsideCL 4096

Shut-
down(sDest="",sProject="",nMode=1)

_Shut-
down(sDest,sProject,nMode)

Shutdown macro

SOFT 0 Display mode 0

TableMath(Table, Size, Command,
mode=0)

_TableMath(Table, Size, Com-
mand,mode)

mathematical
operations on a
tab

Chapter: 3 Reference Information

55



TARGET 3 Screen Target

Tes-
tRandomWave(p=60,lo=0,hi=100,off=0)

_Wave(4,p,lo,hi,off) Test random
wave

TestSawWave(p=60,lo=0,hi=100,off=0) _Wave(3,p,lo,hi,off) Test Saw wave

TestSinWave(p=60,lo=0,hi=100,off=0) _Wave(0,p,lo,hi,off) Test sin wave

TestSquare-
Wave(p=60,lo=0,hi=100,off=0)

_Wave(1,p,lo,hi,off) Test square
wave

Test-
TriangWave(p=60,lo=0,hi=100,off=0)

_Wave(2,p,lo,hi,off) Test Triag wave

TimeHour(time) _TimeSub(time,0) Get hours from
time

TimeMidNight(time) _TimeSub(time, 7) Extract time at
midnight

TimeMin(time) _TimeSub(time,1) Get minutes from
time

TimeSec(time) _TimeSub(time,2) Get seconds
from time

TimeSecond(time) _TimeSub(time, 2) Get seconds
from time

TimeYearDay(time) _TimeSub(time, 8)

Toggle(arg) arg = NOT arg; Toggle the var-
iable

TRN_EVENT 2 Event trend

TRN_PERIODIC 1 Periodic trend

TRN_PERIODIC_EVENT 3 Periodic Event
trend

TRUE 1 Boolean True

UnitControl(IODev,Type,Data) IODe-
viceControl(IODev,Type,Data)

Chapter: 3 Reference Information

56



UnitInfo(IODev,Type) IODeviceInfo(IODev,Type)

UnitStats() IODeviceStats()

UserCreate(s1,s2,s3,s4,s5="",pG="",
p1="",p2="",p3="",p4="",p5="",p6="",
p7="",p8="")

_UserCreate(s1,s2,s3,s4,s5,
pG,p1,p2,p3,p4,p5,p6,p7,p8)

Create a new
user with priv-
ileges

WRITE_ON_DRAG 1 Write mode for
slider

WRITE_ON_DROP 0 Write mode for
slider

XAboveUCL 4

XBelowLCL 8

XDownTrend 64

XErratic 512

XFreak 1

XGradualDown 256

XGradualUp 128

XMixture 2048

XOutsideCL 2

XOutsideWL 16

XStratification 1024

XUpTrend 32

Note: Do not modify the Include Project. Changes to the Include project are lost when
you reinstall or upgrade CitectSCADA.

Chapter: 3 Reference Information

57



ASCII/ANSI Character Code Listings

The code table shows the Latin 1 ANSI character set. Codes 0-31 are control codes. The
standard ASCII codes are from 32-127 (decimal) and are common regardless of the ANSI
set used. The remaining codes from 160-255 (decimal) vary between languages depend-
ing upon the ANSI set used.

Symbol Decimal Hex

{NUL} 0 00

{SOH} 1 01

{STX} 2 02

{ETX} 3 03

{EOT} 4 04

{ENQ} 5 05

{ACK} 6 06

{BEL} 7 07

{BS} 8 08

{HT} 9 09

{LF} 10 0A

{VT} 11 0B

{FF} 12 0C

{CR} 13 0D

{SO} 14 0E

{SI} 15 0F

{DLE} 16 10

Chapter: 3 Reference Information

58



{DC1} 17 11

{DC2} 18 12

{DC3} 19 13

{DC4} 20 14

{NAK} 21 15

{SYN} 22 16

{ETB} 23 17

{CAN} 24 18

{EM} 25 19

{SUB} 26 1A

{ESC} 27 1B

{FS} 28 1C

{GS} 29 1D

{RS} 30 1E

{US} 31 1F

{SPC} 32 20

! 33 21

" 34 22

# 35 23

$ 36 24

% 37 25

& 38 26

Chapter: 3 Reference Information

59



' 39 27

( 40 28

) 41 29

* 42 2A

+ 43 2B

, 44 2C

- 45 2D

. 46 2E

/ 47 2F

0 48 30

1 49 31

2 50 32

3 51 33

4 52 34

5 53 35

6 54 36

7 55 37

8 56 38

9 57 39

: 58 3A

; 59 3B

< 60 3C

Chapter: 3 Reference Information

60



= 61 3D

> 62 3E

? 63 3F

@ 64 40

A 65 41

B 66 42

C 67 43

D 68 44

E 69 45

F 70 46

G 71 47

H 72 48

I 73 49

J 74 4A

K 75 4B

L 76 4C

M 77 4D

N 78 4E

O 79 4F

P 80 50

Q 81 51

R 82 52

Chapter: 3 Reference Information

61



S 83 53

T 84 54

U 85 55

V 86 56

W 87 57

X 88 58

Y 89 59

Z 90 5A

[ 91 5B

\ 92 5C

] 93 5D

^ 94 5E

_ 95 5F

` 96 60

a 97 61

b 98 62

c 99 63

d 100 64

e 101 65

f 102 66

g 103 67

h 104 68

Chapter: 3 Reference Information

62



i 105 69

j 106 6A

k 107 6B

l 108 6C

m 109 6D

n 110 6E

o 111 6F

p 112 70

q 113 71

r 114 72

s 115 73

t 116 74

u 117 75

v 118 76

w 119 77

x 120 78

y 121 79

z 122 7A

{ 123 7B

| 124 7C

} 125 7D

~ 126 7E

Chapter: 3 Reference Information

63



{Delete} 127 7F

128 80

129 81

‚ 130 82

ƒ 131 83

„ 132 84

... 133 85

† 134 86

‡ 135 87

ˆ 136 88

‰ 137 89

Š 138 8A

< 139 8B

Œ 140 8C

141 8D

142 8E

143 8F

144 90

` 145 91

' 146 92

" 147 93

" 148 94

Chapter: 3 Reference Information

64



· 149 95

- 150 96

- 151 97

˜ 152 98

™ 153 99

š 154 9A

> 155 9B

œ 156 9C

157 9D

158 9E

Ÿ 159 9F

{NBSP} 160 A0

¡ 161 A1

¢ 162 A2

£ 163 A3

¤ 164 A4

¥ 165 A5

¦ 166 A6

§ 167 A7

¨ 168 A8

© 169 A9

ª 170 AA

Chapter: 3 Reference Information

65



« 171 AB

172 AC

¯ 173 AD

® 174 AE

¯ 175 AF

° 176 B0

± 177 B1

² 178 B2

³ 179 B3

´ 180 B4

µ 181 B5

182 B6

· 183 B7

¸ 184 B8

¹ 185 B9

º 186 BA

» 187 BB

¼ 188 BC

½ 189 BD

¾ 190 BE

¿ 191 BF

À 192 C0

Chapter: 3 Reference Information

66



Á 193 C1

Â 194 C2

Ã 195 C3

Ä 196 C4

Å 197 C5

Æ 198 C6

Ç 199 C7

È 200 C8

É 201 C9

Ê 202 CA

Ë 203 CB

Ì 204 CC

Í 205 CD

Î 206 CE

Ï 207 CF

Ð 208 D0

Ñ 209 D1

Ò 210 D2

Ó 211 D3

Ô 212 D4

Õ 213 D5

Ö 214 D6

Chapter: 3 Reference Information

67



× 215 D7

Ø 216 D8

Ù 217 D9

Ú 218 DA

Û 219 DB

Ü 220 DC

Ý 221 DD

Þ 222 DE

ß 223 DF

à 224 E0

á 225 E1

â 226 E2

ã 227 E3

ä 228 E4

å 229 E5

æ 230 E6

ç 231 E7

è 232 E8

é 233 E9

ê 234 EA

ë 235 EB

ì 236 EC

Chapter: 3 Reference Information

68



í 237 ED

î 238 EE

ï 239 EF

ð 240 F0

ñ 241 F1

ò 242 F2

ó 243 F3

ô 244 F4

õ 245 F5

ö 246 F6

÷ 247 F7

ø 248 F8

ù 249 F9

ú 250 FA

û 251 FB

ü 252 FC

ý 253 FD

þ 254 FE

ÿ 255 FF

Format Fields

This section describes the following:

Chapter: 3 Reference Information

69



l Alarm Display Fields

l Alarm Summary Fields

l Command Fields

Alarm display fields

You can use any of the fields listed below, or the Alarm Summary Fields, to format an
alarm display (see Alarm Categories) and an alarm log device (see Formatting an Alarm
Display):

Field Name Description

{Tag,n} Alarm Tag

Note: If the Tag field is configured to support long names (up to
79 characters), it might cause overlap in an alarm display. Use a
smaller display font if long names are expected.

{TagEx,n} Alarm Tag with Cluster Name prefix

Note: If the TagEx field is configured to support long names (up
to 79 characters), it might cause overlap in an alarm display.
Use a smaller display font if long names are expected.

{AlarmType,n} Alarm type (string), not localized. Values are: Digital, Analog,
Advanced, Multi-Digital, Argyle Analog, Time Stamped, Time
Stamped Digital, Time Stamped Analog.

{TypeNum,n} Alarm type number (use AlarmType to get string value instead).
Values are:

-1 Invalid
0 Digital
1 Analog
2 Advanced
3 Multi-Digital
4 ArgAna
5 User Event
6 timestamped
7 hardware
8 timestamped digital
9 timestamped analog

{AlmComment,n} The text entered into the Comment field of the alarm properties
dialog.

{Cluster,n} Cluster Name

Chapter: 3 Reference Information

70

../../../../Content/Alarm_Categories.html
../../../../Content/Alarm_Categories.html
../../../../Content/Formatting_an_Alarm_Display.html
../../../../Content/Formatting_an_Alarm_Display.html
../../../../Content/Formatting_an_Alarm_Display.html
../../../../Content/Formatting_an_Alarm_Display.html


Field Name Description

{CUSTOM1,n}
{CUSTOM2,n}
{CUSTOM3,n}
{CUSTOM4,n}
{CUSTOM5,n}
{CUSTOM6,n}
{CUSTOM7,n}
{CUSTOM8,n}

Alarm custom fields as configured.

{Name,n} Alarm Name

Note: If theName field is configured to support long names (up
to 79 characters), it might cause overlap in an alarm display.
Use a smaller display font if long names are expected.

{Native_Name,n} Alarm Name in the expression

Note: If theNative_Name field is configured to support long
names (up to 79 characters), it might cause overlap in an alarm
display. Use a smaller display font if long names are expected.

{Desc,n} Alarm Description

{Native_Desc,n} Alarm Description in the native language

{Category,n} Alarm Category

{Help,n} Help Page

{Area,n} Area

{Priv,n} Privilege

{Priority,n} Alarm category's priority

{Type,n} The type of alarm or condition:
ACKNOWLEDGED
CLEARED
DISABLED
UNACKNOWLEDGED

{LocalTimeDate,n} Alarm date and time in the form: "yyyy-mm-dd hh:mm:ss[.ttt]"

{Time,n} The time at which the alarm changed state (hh:mm:ss). (Set the
[Alarm]SetTimeOnAck parameter to use this field for the time the
alarm is acknowledged.)

Chapter: 3 Reference Information

71



Field Name Description

{Date,n} The date on which the alarm changed state (dd:mm:yyyy). Be
aware that you can change the format used via the parameter
[ALARM]ExtendedDate.

{DateExt,n} The date on which the alarm changed state in extended format.

{State,n} The current state of the alarm. This field may be used for Alarm
Display Only. It is not applicable to Alarm Summary.
ON
OFF

{Millisec,n} Adds milliseconds to the {Time,n} field

{High,n} High Alarm trigger value

{HighHigh,n} High High Alarm trigger value

{Low,n} Low Alarm trigger value

{LowLow,n} Low Low Alarm trigger value

{Rate,n} Rate of change trigger value

{Deviation,n} Deviation Alarm trigger value

{Deadband,n} Deadband

{Format,n} Display format of the Variable Tag

{Value,n} The current value of the analog variable

{State,n} The current state of the alarm. This field may be used for Alarm
Display Only. It is not applicable to Alarm Summary.
DEVIATION
RATE
LOW
LOWLOW
HIGH
HIGHHIGH
CLEARED

{ErrDesc,n} Text string associated with a protocol (communication) error.
This field is only associated with hardware errors and contains
extra information associated with whatever error is detected (for
example if the error is associated with a device, the device name
is returned; if the error is associated with a Cicode function, the

Chapter: 3 Reference Information

72



Field Name Description

function name is returned; if the error is associated with an I/O
Device, the I/O Device's alert message is returned).

{ErrPage,n} The page, device, etc. associated with the alarm.

{LogState,n} The last state that the alarm passed through. (This is useful
when logging alarms to a device.)

{State_desc, n} The configured description (for example healthy or stopped) of a
particular state. This description is entered when configuring
the Multi-Digital Alarm Properties

{Paging,n} Indicates whether the alarm has to be paged. When the value is
TRUE the alarm will be paged. The default value is FALSE. See
Alarm Paging Properties.

{PagingGroup, n} Indicates the paging group to which the alarm belongs. Max-
imum length is 80 characters.

{AcqDesc,n} Textual representation of Alarm Acquisition Error.

{AcqError, n} Numeric representation of Alarm Acquisition Error.

Where n specifies the display field size.

Notes:
• Any of the above fields can be displayed for any type of alarm. Where not applicable for a particular alarm
type, zero or an empty string will be displayed.
• If an alarm value is longer than the field it is to be displayed in (n ), it will be truncated or replaced with the
#OVR ("overflow of format width") alert message.
• For summary pages use {SumState}. To log the state to a device, use {LogState}. State is the current state
of the alarm, SumState is the state of the alarm when it occurred, and Log State is the state of the alarm at the
transition.

See Also
Alarm summary fields

Alarm summary fields

You can use any fields listed below (or a combination) to format an alarm summary dis-
play and an alarm summary device.

Format the alarm summary for an entire category of alarms by specifying field names in
the Summary Format field of the Alarm Category Properties dialog box.

You can also use the [Alarm]DefSumFmt parameter to format the alarm summary, par-
ticularly if your alarm summary formats are to be the same.

Chapter: 3 Reference Information

73

../../../../Content/Alarm_Field_Enhancements.html
../../../../Content/Alarm_Field_Enhancements.html
../../../../Content/Alarm_Field_Enhancements.html


Field Name Description

{UserName,n} The name of the user (User Name) who was logged on
and performed some action on the alarm (for example
acknowledging the alarm or disabling the alarm, etc.).
When the alarm is first activated, the user name is set to
"system" (because the operator did not trip the alarm).

{FullName,n} The full name of the user (Full Name) who was logged on
and performed some action on the alarm (for example
acknowledging the alarm or disabling the alarm, etc.).
When the alarm is first activated, the full name is set to
"system" (because the operator did not trip the alarm).

{UserDesc,n} The text related to the user event

{OnDate,n} The date when alarm was activated

{OnDateExt,n} The date (in extended format) when the alarm was acti-
vated (dd/mm/yyyy)

{OffDate,n} The date when the alarm returned to its normal state

{OffDateExt,n} The date (in extended format) when the alarm returned
to its normal state (dd/mm/yyyy)

{OnTime,n} The time when the alarm was activated

{OffTime,n} The time when the alarm returned to its normal state

{DeltaTime,n} The time difference between OnDate/OnTime and Off-
Date/OffTime, in seconds

{OnMilli,n} Adds milliseconds to the time the alarm was activated.

{OffMilli,n} Adds milliseconds to the time the alarm returned to its
normal state.

{AckTime,n} The time when the alarm was acknowledged

{AckDate,n} The date when the alarm was acknowledged

{AckDateExt,n} The date (in extended format) when the alarm was
acknowledged (dd/mm/yyyy)

{SumState,n} Describes the state of the alarm when it occurred

{SumDesc,n} A description of the alarm summary

Chapter: 3 Reference Information

74



Field Name Description

{SumType,n} Type of alarm summary (similar to alarm "Type"). Values
are ACKNOWLEDGED, CLEARED, DISABLED, UNAC-
KNOWLEDGED

{Native_SumDesc,n} A description of the alarm summary, in the native lan-
guage

{Comment,n} A comment the operator adds to an Alarm Summary
entry during runtime. The comment is specified using
the AlarmComment() function.

{Native_Comment,n} Native language comments the operator adds to an
Alarm Summary entry during runtime.

Where n specifies the display field size.

Note: You can also include in your Alarm Summary any alarm display field other
than State.

See Also
Changing the Order of the Alarm Summary Display

Using Command Fields

You use the following fields (or combination) to format a command logging device:

Field Name Description

{UserName,n} The name of the user (User Name) who was logged on when
the command was issued.

{FullName,n} The full name of the user (Full Name) who was logged on when
the command was issued.

{Time,n} The time (in short format) when the command was issued
(hh:mm).

{TimeLong,n} The time (in long format) when the command was issued
(hh:mm:ss).

{Date,n} The date (in short format) when the command was issued
(dd:mm:yy).

Chapter: 3 Reference Information

75

../../../../Content/Changing_the_Order_of_the_Alarm_Summary_Display.html
../../../../Content/Changing_the_Order_of_the_Alarm_Summary_Display.html
../../../../Content/Changing_the_Order_of_the_Alarm_Summary_Display.html
../../../../Content/Changing_the_Order_of_the_Alarm_Summary_Display.html
../../../../Content/Changing_the_Order_of_the_Alarm_Summary_Display.html
../../../../Content/Changing_the_Order_of_the_Alarm_Summary_Display.html
../../../../Content/Changing_the_Order_of_the_Alarm_Summary_Display.html
../../../../Content/Changing_the_Order_of_the_Alarm_Summary_Display.html


{DateLong,n} The date (in long format) when the command was issued (day
month year).

{DateExt,n} The date (in extended format) when the command was issued
(dd:mm:yyyy).

{Page,n} The page that was displayed when the command was issued.

{MsgLog,n} The message sent as theMessage Log property (of the com-
mand record).

You can use the following fields (in the command field) for Keyboard commands only:

{Arg1,n} The first keyboard command argument (if any).

{Arg2,n} The second keyboard command argument (if any).

. . .

{Arg8,n} The eighth keyboard command argument (if any).

{Native_MsgLog,n} The native language version of the message sent as theMes-
sage Log property (of the command record).

Where n specifies the display field size.

For example, you could have a device configured as follows:

Name KeyLog

Format {Date,9} {MsgLog,27} {Arg1,3} by {FullName,11}

Then a keyboard command (object, page, or system) could be created with the following
configuration:

Log Device KeyLog

Key Sequence ### ENTER

Log Message Density setpoint changed to

Resulting in an output of the following kind: "01/01/99 Density setpoint changed to 123
by Timothy Lee".

Chapter: 3 Reference Information

76



Error Messages

CitectSCADA has two kinds of protocol driver errors:

l generic

l driver-specific

Generic errors are hardware errors 0-31, and are common to every protocol.

Drivers have their own specific errors, which can be unique and therefore cannot be rec-
ognized by the hardware alarm system. The drivers convert their specific errors into
generic errors that can be identified by the I/O Server.

For example, when a driver becomes inoperative, there is often both a driver-specific
error and a corresponding generic error.

Note: For reference information related to the implementation of device drivers,
including driver alert messages, please refer to the Driver Reference Help.

See Also
Generic Driver Errors
Driver Specific Errors
Using the Driver Reference Help

Protocol Generic Errors

CitectSCADA has two kinds of protocol driver errors: generic and Protocol-Specific
Errors. Generic errors are hardware errors 0-31, and are common to every protocol.

Protocol drivers also have their own specific errors, which can be unique and therefore
cannot be recognized by the hardware alarm system. The drivers convert their specific
errors into generic errors that can be identified by the I/O Server. For example, when a
driver has a fault, there is often both a protocol-specific error and a corresponding
generic error.

Generic errors

The table below describes the generic protocol errors.

Error
number

Error title Description

1 Address is
out of range

A request was made to a device address that does not
exist. For example, you tried to read register number
4000 when there are only 200 registers in the I/O

Chapter: 3 Reference Information

77

../../../../Content/Using_Driver_Reference_Help.htm
../../../../Content/Using_Driver_Reference_Help.htm
../../../../Content/Using_Driver_Reference_Help.htm
../../../../Content/Using_Driver_Reference_Help.htm
../../../../Content/Using_Driver_Reference_Help.htm


Error
number

Error title Description

device. Check the Variable Tags database to find the var-
iable in error.

2 Command
canceled

The server canceled the command while it was being
processed by the driver. The driver may have taken too
long to process the command. If a driver does not
respond during the specified time limit, CitectSCADA can-
cels the command. The time limit is the product of the
timeout period and the number of times to retry a com-
mand after each timeout. You can increase these values
in the Timeout and Retry parameters for the protocol.
also check the WatchTime parameter for the frequency
with which the driver checks the link to the I/O device.
Check also for communication errors.

3 Unknown
data type

A request was made that specified a data type not sup-
ported by the protocol. This error will not occur during
normal operation. Restart the computer to reset every
driver and hardware. If the problem persists, contact
Technical Support for this product. If you have written
your own protocol driver, this error is caused by a mis-
match in the compiler specification and the driver's data-
base.

4 Unknown
data format

A write request contains invalid data, for example you
tried to write to a floating-point address with an invalid
floating-point number. Check the CitectSCADA database.

5 Command is
unknown

The server sent a command that the driver did not rec-
ognize. This error will not occur during normal oper-
ation. Try re-booting the computer to reset drivers and
hardware. If the problem persists, contact Technical Sup-
port of this product.

6 Response
bad or gar-
bled

A problem exists with the communication channel, caus-
ing errors in the transmitted data. Inspect the setup for
the communication channel hardware. For example,
there may be a mismatch in parity, baud rate, stop bits,
or data bits between the transmitter and receiver. Check
that the setup of the I/O device and the field data in the
CitectSCADA Ports and Boards forms are the same.

7 I/O device
not respond-
ing

An I/O device is not responding to read or write
requests. The driver sent a command to the I/O device
and the I/O device did not respond within the timeout
period. This is usually the first indication of loss of com-
munications. Check that the I/O device is correctly con-
nected to the server and is switched on. This error can
also occur if the timeout period is too short. Try increas-

Chapter: 3 Reference Information

78



Error
number

Error title Description

ing the timeout period in the Timeout parameter for the
protocol. You could also increase the delay time between
receiving a response and sending the next command, by
increasing the Delay parameter.

8 General error CitectSCADA has established communications with the
I/O device; however, the I/O device has detected an
error in the protocol. This error could be caused by a
fault in the communications link, or an error in the ladder
logic (in the I/O device).

Solution:

1. Check that the I/O device is operating correctly.

2. Check the communication cable is connected correctly
(at both ends).

3. Use the Communications Express Wizard to check that
the configuration of the I/O device (in particular, the
Address and Special Options fields) matches the rec-
ommended settings and the settings on the I/O device.

4. If you are using serial communications, use the Com-
munications Express Wizard to check that the con-
figuration of the Port (in particular the Baud Rate, Data
Bits, Stop Bits, and Parity) matches the recommended
settings and the settings on the I/O device.

5. Display the hardware alarm page, and note the pro-
tocol error that is displayed.

6. Use the documentation that was supplied with your
I/O device, network, and communication board to locate
the error.

7. Check the ladder logic in the I/O device for errors.

8. Run the Computer Setup Wizard.

9. Re-compile the project and start the CitectSCADA run-
time.

9 Write loca-
tion is pro-
tected

A write operation was attempted to a location that is pro-
tected against unauthorized modification. Change the
access rights to this location to permit a write operation.

10 Hardware
error

A problem exists with either the communication channel,
server, or I/O device hardware. Examine hardware com-
ponents. The command or data request has not been
processed. The server's operation may no longer operate

Chapter: 3 Reference Information

79



Error
number

Error title Description

normally.

11 I/O device
warning

The communication link between the server and the I/O
device is functioning correctly, however the I/O device
has some alert condition active, for example the I/O
device is in programmode. Check that the I/O device is
in the correct mode.

12 I/O device
off-line, can-
not talk

The I/O device is in off-line mode, preventing any exter-
nal communication.

Solution:

1. Check that the I/O device is operating correctly.

2. Check the communication cable for breakage.

3. Check the communication cable is connected correctly
(at both ends).

4. If you are using serial communications, check that the
communication cable matches the diagram in the help
system.

5. Use the Communications Express Wizard to check that
the configuration of the I/O device (in particular, the
Address and Special Options fields) matches the rec-
ommended settings and the settings on the I/O device.

6. If you are using serial communications, use the Com-
munications Express Wizard to check that the con-
figuration of the port (in particular the baud rate, data
bits, stop bits, and parity) matches the recommended
settings and the settings on the I/O device.

7. Run the Computer Setup Wizard.

8. Check the Citect.ini file for the following:

[IOSERVER]

Server=1

Name=<name>

where:

<name> is the name of the server configured in the
CitectSCADA project. (Use Custom Setup to check the
server name.)

Chapter: 3 Reference Information

80



Error
number

Error title Description

9. Re-compile the project and start the CitectSCADA run-
time system.

Note : If you have standby I/O devices configured, this
error will cause any standby I/O devices to become
active. The command or data request current when the
I/O device went off-line has not finished.

13 Driver soft-
ware error

An internal software error has occurred in the driver.
This error should not occur during normal operation. Try
re-booting the computer to reset drivers and hardware.
If the problem persists, contact Technical Support of this
product.

14 User access
violation

An attempt has been made by an unauthorized user to
access information. Check the user's access rights.

15 Out of mem-
ory - FATAL

The server is out of memory and cannot continue
execution. Minimize buffer and queue allocation or
expand memory in the server computer. The command
or data request has not been processed.

16 No buffers,
cannot con-
tinue

There are no communication buffers available to be allo-
cated, or the computer is out of memory. The per-
formance of the server may be reduced, however it can
continue to run. Increase the memory.

17 Low buffer
warning

This error may occasionally occur in periods of high tran-
sient loading, with no ill effects. If this error occurs
frequently, increase the number of communication buff-
ers.

18 Too many
commands to
driver

Too many commands have been sent to the driver.

19 Driver is not
responding

The server is not receiving any response from the driver.
This error should not occur during normal operation. Try
re-booting the computer to reset the drivers and hard-
ware. If the problem persists, contact Technical Support
of this product.

20 Too many
channels
opened

Each driver can only support several communication
channels. You have exceeded the limit. This error may
occur if you abnormally terminate from the server and
then restart it. Try re-booting the computer to reset driv-
ers and hardware. If the problem persists, contact Tech-
nical Support of this product. The command or data
request has not finished.

Chapter: 3 Reference Information

81



Error
number

Error title Description

21 Channel off-
line, cannot
talk

A communication channel is currently off-line, disabling
communication. Either the server cannot initialize the
communication channel or the channel went off-line
while running. Check the channel hardware for errors.
When this error occurs, I/O devices connected to this
channel are considered off-line, and standby I/O devices
become active. The command or data request has not fin-
ished.

22 Channel not
yet opened

The server has attempted to communicate with a channel
that is not open. Try re-booting the computer to reset
drivers and hardware. If the problem persists, contact
Technical Support for this product.. The command or
data request has not finished.

23 Channel not
yet initialized

The server is attempting to communicate with a channel
that has not been initialized. This error should not occur
during normal operation. Try re-booting the computer to
reset drivers and hardware. If the problem persists, con-
tact Technical support for this product. The command or
data request has not finished.

24 Too many I/O
devices per
channel

A channel has too many I/O devices attached to it. This
error should not occur during normal operation. The com-
mand or data request has not finished. Try re-booting
the computer to reset drivers and hardware. If the prob-
lem persists, contact Contact Technical Support for this
product..

25 Data not yet
valid

The data requested is still being processed and will be
returned in due course. This error only occurs with driv-
ers that need to establish complex communication to
retrieve data from the I/O device. Ignore this alert.

26 Could not can-
cel command

The server tried to cancel a command, but the driver
could not find the command. This error should not occur
during normal operation. Try re-booting the computer to
reset drivers and hardware. If the problem persists, con-
tact Contact Technical Support for this product..

27 Stand-by I/O
device acti-
vated

Communication has been switched from the primary to
the standby I/O device(s). The server returns this mes-
sage when a "hot" changeover has occurred. Rectify the
error in the primary I/O device(s).

28 Message over-
run

A response was longer than the response buffer. If this
error occurs on serial communication drivers, garbled
characters may be received. Check the communication
link and the baud rate of the driver.

Chapter: 3 Reference Information

82



Error
number

Error title Description

29 Bad user
parameters

There is a configuration error, for example invalid special
options have been set.

30 Stand-by I/O
device error

There is an error in a standby I/O device. Rectify error in
the standby I/O device.

31 Request Time-
out from I/O
Server

One or more requests sent to the I/O Server have not fin-
ished in the timeout period. Either the I/O Server is off
line or the I/O Server is taking too long to finish the
requests. Check the PLC communication link, PLC time-
outs, PLC retries, and network communication. This
error can occur even if you have no network, i.e. if the
I/O Server is the same computer as the Control Client. If
the error persists, increase the [LAN] TimeOut param-
eter. The default timeout is 8000 milliseconds.

32 Cannot talk to
remote unit

The remote I/O device is not connected.

274 Invalid argu-
ment passed

An invalid argument has been passed to a Cicode func-
tion. This is a general error message and is generated
when arguments passed to a function are out of range or
are invalid. Check the value of arguments being passed
to the function. If arguments are input directly from the
operator, check that the correct arguments are being
passed to the function.

281 No server
could be
found

The specified CitectSCADA server cannot be found.
Either the server is not running or there is some com-
munication problem with the network. Check that the net-
work is set up correctly, and you are using the same
Server Name on both the client and server.

418 No server of
type on
cluster

There is no server of the necessary type configured on
the server.

448 Record size
mismatch

An RDB file contains records with the wrong size.

451 Server pre-
vious reload
busy

Unable to start a reload using the ServerReload Cicode
function as a reload is already in progress for the spec-
ified server.

452 Invalid RDB
version

An RDB file was compiled using an incompatible version
of the software.

Chapter: 3 Reference Information

83



Error
number

Error title Description

454 Cicode
library times-
tamp differs

The timestamp of the Cicode library in memory is dif-
ferent from the timestamp of the Cicode library on disk.
The Cicode libraries are potentially different.

519 Remote
Cicode call
Interrupted

Cicode call that triggers an RPC remote call is interrupted
before the expected result is returned.

520 Alarm category
out of range

A category number is out of its valid range (from 0 to 16376
inclusively).

521 Data browse
record is
deleted

A record was deleted during a reload of ART server.

522 Trend
archive prop-
erty mis-
match

A trend record's archive properties have changed during
start-up or reload.

523 Alarm priority
out of range

A category priority is out of its valid range (from 0 to 256
inclusively).

Generic driver errors

The following errors are generic to every CitectSCADA driver. A driver error needs to be
mapped to a generic error before CitectSCADA can interpret it.

Error Description

GENERIC_ADDRESS_RANGE_ERROR

(0x0001 | SEVERITY_ERROR)

A request was made to a device address that
does not exist. For example, an attempt was
made to read register number 4000 when
there are only 200 registers in the device.

GENERIC_CMD_CANCELED

(0x0002 | SEVERITY_ERROR)

The server canceled the command while the
driver was processing it. This can happen if
the driver takes too long to process the com-
mand. Check the timeout and retries for the
driver.

GENERIC_INVALID_DATA_TYPE

(0x0003 | SEVERITY_ERROR)

A request was made specifying a data type not
supported by the protocol. This error will not
occur during normal operation.

Chapter: 3 Reference Information

84



GENERIC_INVALID_DATA_FORMAT

(0x0004 | SEVERITY_ERROR)

A request contains invalid data; for example,
writing to a floating-point address with an
invalid floating-point number. Check the Citect-
SCADA database.

GENERIC_INVALID_COMMAND

(0x0005 | SEVERITY_ERROR)

The server sent a command to the driver that it
did not recognize. This error will not occur dur-
ing normal operation.

GENERIC_INVALID_RESPONSE

(0x0006 | SEVERITY_ERROR)

The communication channel is not performing
normally, and is causing errors in the trans-
mitted data.

GENERIC_UNIT_TIMEOUT

(0x0007 | SEVERITY_ERROR)

A device is not responding to read or write
requests. The driver sent a command to the
device and the device did not respond within
the timeout period.

GENERIC_GENERAL_ERROR

(0x0008 | SEVERITY_ERROR)

Unmapped driver specific errors are normally
reported as a general error. Refer to the pro-
tocol-specific errors listed with the protocol
you are using.

GENERIC_WRITE_PROTECT

(0x0009 | SEVERITY_ERROR)

A write operation was attempted to a location
that is protected against unauthorized mod-
ification. Change the access rights to this loca-
tion to permit a write operation.

GENERIC_HARDWARE_ERROR

(0x000A | SEVERITY_UNRE-
COVERABLE)

The communication channel, server, or device
hardware is not performing normally. Examine
hardware components. The server's operation
needs to also be examined for proper oper-
ation.

GENERIC_UNIT_WARNING

(0x000B | SEVERITY_WARNING)

The communication link between the server
and the device is functioning correctly; how-
ever, the device is experiencing an error or is
in a non-operational state, for example, the
device is in programmode.

GENERIC_UNIT_OFFLINE

(0x000C | SEVERITY_SEVERE)

The device is in offline mode, preventing any
external communication. This error will cause
any stand-by units to become active. Citect-
SCADA will attempt to re-initialize the unit.

GENERIC_SOFTWARE_ERROR

(0x000D | SEVERITY_SEVERE)

An internal software error has occurred in the
driver. This error should not occur during nor-
mal operation.

GENERIC_ACCESS_VIOLATION An attempt has been made by an unauthorized

Chapter: 3 Reference Information

85



(0x000E| SEVERITY_ERROR) user to access information. Check the user's
access rights.

GENERIC_NO_MEMORY

(0x000F | SEVERITY_UNRE-
COVERABLE)

The server or driver has run out of memory and
cannot continue execution. Minimize buffer and
queue allocation or expand the server com-
puter's memory (physical or virtual memory).

GENERIC_NO_BUFFERS

(0x0010 | SEVERITY_ERROR)

There are no communication buffers left to allo-
cate. The performance of the server may be
reduced; however, it can still continue to run.
Increase the number of communication buff-
ers.

GENERIC_LOW_BUFFERS

(0x0011| SEVERITY_WARNING)

This error may occur in periods of high tran-
sient loading with no ill effects. If this error
occurs frequently, increase the number of com-
munication buffers.

GENERIC_TOO_MANY_COMMANDS

(0x0012| SEVERITY_WARNING)

Too many commands have been sent to the
driver.

GENERIC_DRIVER_TIMEOUT

(0x0013 | SEVERITY_ERROR)

The server is not receiving any response from
the driver. This error should not occur during
normal operation.

GENERIC_NO_MORE_CHANNELS

(0x0014 | SEVERITY_SEVERE)

Each driver can only support a fixed number of
communication channels. You have exceeded
the limit. The command or data request has not
been completed.

GENERIC_CHANNEL_OFFLINE

(0x0015 | SEVERITY_SEVERE)

A communication channel is currently offline,
disabling communication. The server cannot ini-
tialize the communication channel or the chan-
nel went offline while running. Every device
(units)connected using this channel will be con-
sidered to be offline so this will cause any
stand-by devices to become active. Citect-
SCADA will attempt to re-initialize the channel.

GENERIC_BAD_CHANNEL

(0x0016| SEVERITY_SEVERE)

The server has attempted to communicate
using a channel that is not open.

GENERIC_CHANNEL_NOT_INIT

(0x0017 | SEVERITY_SEVERE)

The server is attempting to communicate with a
channel that has not been initialized. This error
should not occur during normal operation. The
command or data request has not been com-
pleted. If the condition persists, contact sup-
port.

Chapter: 3 Reference Information

86



GENERIC_TOO_MANY_UNITS

(0x0018 | SEVERITY_SEVERE)

A channel has too many devices attached to it.
This error should not occur during normal oper-
ation.

GENERIC_INVALID_DATA

(0x0019 | SEVERITY_ERROR)

The data requested is not in a valid format or
expected type.

GENERIC_CANNOT_CANCEL

(0x001A | SEVERITY_WARNING)

The server tried to cancel a command, but the
driver could not find the command. This error
should not occur during normal operation.

GENERIC_STANDBY_ACTIVE

(0x001B | SEVERITY_WARNING)

Communication has been switched from the pri-
mary to the stand-by unit(s). The server
returns this message when a hot changeover
has occurred.

GENERIC_MSG_OVERRUN

(0x001C | SEVERITY_ERROR)

A response was longer than the response
buffer. If this error occurs on serial com-
munication drivers, garbled characters may be
received. Check the communication link and
the baud rate of the driver.

GENERIC_BAD_PARAMETER

(0x001D | SEVERITY_ERROR)

There is a configuration error, for example
invalid special options have been set.

GENERIC_STANDBY_ERROR

(0x001E| SEVERITY_WARNING)

There is an error in a stand-by unit.

GENERIC_NO_RESPONSE

(0x001F | SEVERITY_ERROR)

There is no response from the communications
server.

GENERIC_UNIT_REMOTE

(0x0020 | SEVERITY_ERROR)

Cannot talk with remote unit (for example dial-
up I/O Devices). Only used for scheduled I/O
Devices.

GENERIC_GENERAL_WARNING

(0x0024 | SEVERITY_WARNING)

The driver is performing the action requested,
but needs to notify of a potential issue. For
example, some drivers may use this to alert you
to stale data.

Chapter: 3 Reference Information

87



Protocol-Specific Errors

Though each protocol may have multiple unique errors, the first 34 protocol-specific
errors are standard for every protocol. Every protocol-specific error is also reported under
error numbers 1 to 31 above. Although these errors have their own error number (also
given in hexadecimal), it is only used as a notation.

Note: Errors that are protocol-specific are listed in the Protocol-Specific Errors help
topic for each protocol. Refer to the documentation that was supplied with your I/O
Device if you cannot locate an error description.

Error number Error title Description

1 (0x01) Cannot process
received characters
fast enough

Cannot process received characters
fast enough. Lower the baud rate or
use a faster computer. If the error
persists, contact Technical Support
for this product..

2 (0x02) Parity error The received message has a parity
error. Check that the correct baud
rate, parity, stop bits, and data bits
are specified in the Citect Ports form.
This error may be caused by a dis-
connected cable to the I/O Device or
by excessive noise on the com-
munication link.

3 (0x03) Break detected in
receive line

A break has been detected in the
receive line. This error may be
caused by a disconnected cable to an
I/O Device or by excessive noise on
the communication link.

4 (0x04) Framing error The wrong baud rate may have been
specified. Check that the correct
baud rate is specified in the Citect
Ports form.

5 (0x05) Message too long The message received from the I/O
Device is too long. This error may be
caused by a disconnected cable to an
I/O Device or by excessive noise on
the communication link. Contact Tech-
nical Support for this product. if the
error continues.

Chapter: 3 Reference Information

88



6 (0x06) Invalid checksum The checksum in the received mes-
sage does not match the calculated
value. Check that the correct baud
rate, parity, stop bits, and data bits
are specified in the Citect Ports form.
This error may be caused by a dis-
connected cable to the I/O Device or
by excessive noise on the com-
munication link. You can also try
increasing the number of retries in
the Retry parameter for the protocol.

7 (0x07) Start of text missing A start of text (STX) character is not
present in the received message.
Check that the correct baud rate, par-
ity, stop bits, and data bits are spec-
ified in the Citect Ports form. This
error may be caused by a dis-
connected cable to the I/O Device or
by excessive noise on the com-
munication link.

8 (0x08) End of text missing An end of text (ETX) character is not
present in the received message.
Check that the correct baud rate, par-
ity, stop bits, and data bits are spec-
ified in the Citect Ports form. This
error may be caused by a dis-
connected cable to the I/O Device or
by excessive noise on the com-
munication link.

10 (0x0A) Cannot transmit mes-
sage

CitectSCADA cannot transmit the mes-
sage. This error may be caused by a
disconnected cable to an I/O Device
or by excessive noise on the com-
munication link.

11 (0x0B) Cannot reset serial
driver

An error has occurred with the serial
(COMxI, PCXI, or COMx) driver. Try
re-booting the computer to reset driv-
ers and hardware.

12 (0x0C) Length of request
inconsistent

The length of a request is not con-
sistent with the driver's require-
ments.

15 (0x0F) Command from server
invalid

The command from the server is
invalid. Contact Technical Support for
this product.

Chapter: 3 Reference Information

89



16 (0x10) Cannot allocate timer
resource for driver

Driver timer resources cannot be allo-
cated. Contact Technical Support for
this product.

17 (0x11) Too many channels
specified for driver

Too many channels have been spec-
ified for the device. Contact Technical
Support for this product.

18 (0x12) Channel number from
server not opened

The channel number from the server
is not open. Contact Technical Sup-
port for this product.

19 (0x13) Command cannot be
cancelled

A driver command cannot be can-
celled. Contact Technical Support for
this product.

20 (0x14) Channel not on-line The channel is not on-line. This error
can occur if timeouts are occurring,
and may be caused by a dis-
connected cable to an I/O Device or
by excessive noise on the com-
munication link.

21 (0x15) Timeout error No response was received from the
I/O Device within the specified time-
out period. This error may be caused
by a disconnected cable to the I/O
Device or by excessive noise on the
communication link. You can try
increasing the number of retries in
the Retry parameter for the protocol.

22 (0x16) I/O Device number
from server not active
or out of range

The I/O Device number from the
server is not active or is out of range.
Contact Technical Support for this
product.

23 (0x17) I/O Device not on-line Check that the I/O Device Address
specified in the Citect I/O Devices
form is the same as that configured
on the I/O Device.

24 (0x18) Data type from server
unknown to driver

The data type from the server is
unknown to the driver. Contact Tech-
nical Support for this product.

25 (0x19) I/O Device type from
server unknown to
driver

The I/O Device type from the server
is unknown to the driver. Contact
Technical Support for this product.

Chapter: 3 Reference Information

90



26 (0x1A) Too many I/O Devices
specified for channel

Too many I/O Devices have been spec-
ified for the channel. Contact Tech-
nical Support for this product.

27 (0x1B) Too many commands
issued to driver

Too many commands have been
issued to the driver. Contact Tech-
nical Support for this product.

28 (0x1C) Data read invalid The data read is not valid. Contact
Technical Support for this product.

29 (0x1D) Command is cancelled A driver command has been can-
celled. Contact Technical Support for
this product.

30 (0x1E) Address invalid or out
of range

The address you tried to access has
an invalid data type or is out of range.
Check that you are using data types
and ranges of addresses that are
valid for the I/O Device.

31 (0x1F) Data length from
server incorrect

The data length from the server is
wrong. Contact Technical Support for
this product.

32 (0x20) Cannot read data from
device

CitectSCADA cannot read the data
from the I/O Device. Contact Tech-
nical Support for this product.

33 (0x21) Device specified does
not exist

The device specified does not exist.
Contact Technical Support for this
product.

34 (0x22) Device specified does
not support interrupt

The I/O Device specified does not sup-
port interrupt handling. You have
specified an interrupt, either on the
Boards form or by setting the Poll-
Time parameter to 0, for a hardware
device that does not support inter-
rupts. Check the interrupt set for the
board and set the PollTime parameter
for the protocol.

Standard driver errors

The following errors are low-level errors which are generic to evry driver. These errors
are mapped to Generic errors so that CitectSCADA can recognize them. Most drivers
also have a set of driver specific errors in addition to these errors.

Chapter: 3 Reference Information

91



Error Description

0 (0x00000000)

NO_ERROR

No error condition exists.

1 (0x00000001)

DRIVER_CHAR_OVERRUN

Transmitted characters could not be received fast
enough. This error mapped to Generic Error
GENERIC_INVALID_RESPONSE.

2 (0x00000002)

DRIVER_CHAR_PARITY

Parity error in received characters. This error
mapped to Generic Error GENERIC_INVALID_
RESPONSE.

3 (0x00000003)

DRIVER_CHAR_BREAK

A break was detected in the receive line. This error
mapped to Generic Error GENERIC_INVALID_
RESPONSE.

4 (0x00000004)

DRIVER_CHAR_FRAMING

Framing error. Check the baud rate. This error
mapped to Generic Error GENERIC_INVALID_
RESPONSE.

5 (0x00000005)

DRIVER_MSG_OVERRUN

The message received from the device was too
long. This error mapped to Generic Error
GENERIC_INVALID_RESPONSE.

6 (0x00000006)

DRIVER_BAD_CRC

Checksum in received message does not match the
calculated value. Error mapped to Generic Error
GENERIC_INVALID_RESPONSE.

7 (0x00000007)

DRIVER_NO_STX

Start of text character not present. Error is
mapped to Generic Error GENERIC_INVALID_
RESPONSE.

8 (0x00000008)

DRIVER_NO_ETX

End of text character not present. Error is mapped
to Generic Error GENERIC_INVALID_RESPONSE.

9 (0x00000009)

DRIVER_NOT_INIT

Driver has not been initialized. This error is
mapped to Generic Error GENERIC_UNIT_OFF-
LINE.

10 (0x0000000A)

DRIVER_BAD_TRANSMIT

Cannot transmit message. This error is mapped to
Generic Error GENERIC_UNIT_OFFLINE.

11 (0X0000000B)

DRIVER_CANNOT_RESET

Cannot reset serial driver. This error is mapped to
Generic Error GENERIC_CHANNEL_OFFLINE.

Chapter: 3 Reference Information

92



12 (0X0000000C)

DRIVER_BAD_LENGTH

Response length is incorrect. This error is mapped
to Generic Error GENERIC_GENERAL_ERROR.

13 (0X0000000D)

DRIVER_MSG_UNDERRUN

Message length too short. This error is mapped to
Generic Error GENERIC_INVALID_RESPONSE.

15 (0X0000000F)

DRIVER_INVALID_COMMAND

The command from the server is invalid. This error
is mapped to Generic Error GENERIC_INVALID_
COMMAND.

16 (0X00000010)

DRIVER_NO_TIMER

Cannot allocate timer resource for the driver. This
error is mapped to Generic Error GENERIC_HARD-
WARE_ERROR.

17 (0x00000011)

DRIVER_NO_MORE_CHANNELS

Toomany channels specified for device. This error
is mapped to Generic Error GENERIC_NO_MORE_
CHANNELS.

18 (0x00000012)

DRIVER_BAD_CHANNEL

The channel number from the server is not
opened. This error is mapped to Generic Error
GENERIC_BAD_CHANNEL.

19 (0x00000013)

DRIVER_CANNOT_CANCEL

Command cannot be cancelled. This error is
mapped to Generic Error GENERIC_CANNOT_CAN-
CEL.

20 (0x00000014)

DRIVER_CHANNEL_OFFLINE

The channel is not online. This error is mapped to
Generic Error GENERIC_CHANNEL_OFFLINE.

21 (0x00000015)

DRIVER_TIMEOUT

No response have been received within the user
configure time. This error is mapped to Generic
Error GENERIC_UNIT_TIMEOUT.

22 (0x00000016)

DRIVER_BAD_UNIT

The unit number from the server is not active or is
out of range. This error is mapped to Generic Error
GENERIC_UNIT_OFFLINE.

23 (0x00000017)

DRIVER_UNIT_OFFLINE

The unit is not online. This error is mapped to
Generic Error GENERIC_UNIT_OFFLINE.

24 (0x00000018)

DRIVER_BAD_DATA_TYPE

The data type from the server is unknown to the
driver. This error is mapped to Generic Error
GENERIC_INVALID_DATA_TYPE.

25 (0x00000019) The unit type from the server is unknown to the

Chapter: 3 Reference Information

93



DRIVER_BAD_UNIT_TYPE driver. This error is mapped to Generic Error
GENERIC_INVALID_DATA_TYPE.

26 (0x0000001A)

DRIVER_TOO_MANY_UNITS

Toomany units specified for channel. This error is
mapped to Generic Error GENERIC_TOO_MANY_
UNITS.

27 (0x0000001B)

DRIVER_TOO_MANY_COMMANDS

Toomany commands have been issued to the
driver. This error code can also occur if you are
running a restricted version of a driver (i.e. one
that will run for a limited time) for every issued
read and write. This error is mapped to Generic
Error GENERIC_TOO_MANY_COMMANDS.

29 (0x0000001D)

DRIVER_CMD_CANCELED

Command is cancelled. This error is mapped to
Generic Error GENERIC_COMMAND_CANCELLED.

30 (0x0000001E)

DRIVER_ADDRESS_RANGE_
ERROR

The address/length is out of range. This error is
mapped to Generic Error GENERIC_ADDRESS_
RANGE_ERROR.

31 (0x0000001F)

DRIVER_DATA_LENGTH_ERROR

The data length from the server is wrong. This
error is mapped to Generic Error GENERIC_
INVALID_RESPONSE.

32 (0x00000020)

DRIVER_BAD_DATA

Cannot read the data from the device. This error is
mapped to Generic Error GENERIC_INVALID_
DATA.

33 (0x00000021)

DRIVER_DEVICE_NOT_EXIST

Device specified does not exists. This error is
mapped to Generic Error GENERIC_HARDWARE_
ERROR.

34 (0x00000022)

DRIVER_DEVICE_NO_INTERRUPT

Device specified does not support interrupt. This
error is mapped to Generic Error GENERIC_HARD-
WARE_ERROR.

35 (0x00000023)

DRIVER_BAD_SPECIAL

Invalid special options in port database. This error
is mapped to Generic Error GENERIC_BAD_PARAM-
ETER.

36 (0x00000024)

DRIVER_CANNOT_WRITE

Cannot write to variable. This error is mapped to
Generic Error GENERIC_GENERAL_ERROR.

37 (0x00000025)

DRIVER_NO_MEMORY

The driver has run out of memory and cannot con-
tinue execution. Minimize buffer and queue allo-
cation or expand the computer's memory (physical

Chapter: 3 Reference Information

94



or virtual memory). This error is mapped to
Generic Error GENERIC_NO_MEMORY.

Chapter: 3 Reference Information

95



Chapter: 3 Reference Information

96



Chapter: 4 CtAPI Functions

CitectSCADAAPI

The CTAPI allows access to CitectSCADA I/O variable tags via a DLL interface. This
allows 3rd party developers to create applications in C ( or other languages) to read and
write to the I/O Devices.

The files necessary are ctapi.dll ctapi.lib and ctapi.h, and are located in the [bin] direc-
tory.

Using the CTAPI on a remote computer

To use the CTAPI on a remote computer without installing CitectSCADA, you will need
to copy the following files from the [bin] directory to your remote computer: ctapi.dll, ct_
ipc.dll, cteng32.dll, ctres32.dll, ctutil32.dll, and CiDebugHelp.dll. A project needs to have
users defined before you can connect to the CTAPI from a remote computer.

Using CTAPI on Windows 2000

When running an application on Windows 2000 that uses CTAPI, you will need to copy
the following files from the [bin] directory to the same directory as your application: ct_
ipc.dll, cidebughlp.dll, dbghelp.dll, and ctutil32.dll.

Backward compatibility issues

A non-documented API was provided in the 16 bit version of CitectSCADA. As the 16-
bit API is not compatible with the 32 bit environment, this new API has been imple-
mented to replace it. The CTAPI is not compatible with the previous CT_VAR and
CTUSER APIs. The CTAPI cannot be made compatible due to changes necessary for 32-
bit environment. The changes necessary to port an application from the older API to the
new CTAPI are small.

See Also
I/O Point Count
CtAPI Synchronous Operation
Reading Data Using the CTAPI Functions
CTAPI from CitectSCADA or CitectSCADA Driver
Error Codes
Debug Tracing
Function Reference

97



I/O Point Count

Physical I/O Device tags read, or written to, using the CTAPI are counted as dynamic
CitectSCADA points. If the point limit is exceeded by making calls to this interface, then
that call will not succeed, and CitectSCADA will not be allocated any more dynamic
points.

Note:CitectSCADA's licensing works on the basis of how many points you use.
Every tag in your system has the potential to add to your point count. It is important
to remember this, and plan your system properly, otherwise you may exceed your
point limit.

The point limit is the maximum number of I/O Device addresses (variable tags) that can
be read, and is specified by your CitectSCADA license. CitectSCADA counts I/O Device
addresses dynamically at runtime. This includes tags used by alarms, trends, reports,
events, pages, in Super Genies, use of the TagRead() and TagWrite() Cicode functions, or
read or write using DDE, ODBC, or the CTAPI.

It does not count any points statically at compile time.

When your system is running, any new use of tags through Super Genies, DDE, ODBC,
or CTAPI can potentially add to your dynamic point count.

See Also
CitectSCADA API Synchronous Operation

CtAPI Synchronous Operation

The CitectSCADA CTAPI supports both synchronous and asynchronous (or overlapped)
operations. The ctCicode(), ctListRead(), and ctListWrite() functions can be performed
either synchronously or asynchronously. The ctTagRead() and ctTagWrite() functions
can be performed synchronously only.

When a function is executed synchronously, it does not return until the operation has
been completed. This means that the execution of the calling thread can be blocked for
an indefinite period while it waits for a time-consuming operation to finish. A function
called for an overlapped operation can return immediately, even though the operation
has not been completed. This enables a time-consuming I/O operation to be executed in
the background while the calling thread is free to perform other tasks. For example, a sin-
gle thread can perform simultaneous operations on different handles, or even simul-
taneous read and write operations on the same handle. To synchronize its execution
with the completion of the overlapped operation, the calling thread uses the

Chapter: 4 CtAPI Functions

98



ctGetOverlappedResult() function or one of the wait functions to determine when the
overlapped operation has been completed. You can also use the ctHas-
OverlappedIoCompleted() macro to poll for completion.

To call a function to perform an overlapped operation, the calling thread needs to spec-
ify a pointer to a CTOVERLAPPED structure. If this pointer is NULL, the function
return value may incorrectly indicate that the operation completed. The CTO-
VERLAPPED structure needs to contain a handle to a manual-reset, not an auto-reset
event object. The system sets the state of the event object to non-signaled when a call to
the I/O function returns before the operation has been completed. The system sets the
state of the event object to signaled when the operation has been completed.

When a function is called to perform an overlapped operation, it is possible that the oper-
ation will be completed before the function returns. When this happens, the results are
handled as if the operation had been performed synchronously. If the operation was not
completed, however, the function's return value is FALSE, and the GetLastError() func-
tion returns ERROR_IO_PENDING.

A thread can manage overlapped operations by either of two methods:

l Use the ctGetOverlappedResult() function to wait for the overlapped operation to be
completed.

l Specify a handle to the CTOVERLAPPED structure's manual-reset event object in
one of the wait functions and then call ctGetOverlappedResult() after the wait func-
tion returns. The ctGetOverlappedResult() function returns the results of the com-
pleted overlapped operation, and for functions in which such information is
appropriate, it reports the actual number of bytes that were transferred.

When performing multiple simultaneous overlapped operations, the calling thread
needs to specify a CTOVERLAPPED structure with a different manual-reset event object
for each operation. To wait for any one of the overlapped operations to be completed, the
thread specifies the manual-reset event handles as wait criteria in one of the multiple-
object wait functions. The return value of the multiple-object wait function indicates
which manual-reset event object was signaled, so the thread can determine which over-
lapped operation caused the wait operation to be completed.

You can cancel a pending asynchronous operation using the ctCancelIO() function. Pend-
ing asynchronous operations are canceled when you call ctClose().

Reading Data Using the CTAPI Functions

Reading Data Using the CTAPI Functions
l I/O tags interface

l The Tag functions

Chapter: 4 CtAPI Functions

99



l List functions

l Array support

l Bit shifting when reading digital arrays

See Also
Function Reference

I/O tags interface

The CitectSCADA I/O Server is designed on a client read on demand basis. The Citect-
SCADA I/O Server will read I/O tags from the I/O Devices when requested to by a Client.
This reduces the load on the I/O Devices and increases the overall system performance.

The client interface to the real time data is more complex as the client needs to wait for a
physical I/O cycle to complete before the data can be used. The client needs to request the
data it requires from the I/O Server and then wait up to several seconds while the I/O
Server reads the requested data. This design is reflected in the operation of the CTAPI
interface. Using CTAPI to read a tag can take several seconds to complete. It is up the
caller to allow for this in their design in calling this interface.

If you need to use a polling type of service, use the ctList functions.

See Also
The Tag functions

The Tag functions

The simplest way to read data is via the ctTagRead() function. This function reads the
value of a single variable, and the result is returned as a formatted engineering string.

List functions

The List functions provide a higher level of performance for reading data than the tag
based interface, The List functions also provide support for overlapped operations.

The List functions allow a group of tags to be defined and then read as a single request.
They provide a simple tag based interface to data which is provided in formatted engi-
neering data. You may create several lists and control each individually.

Tags can be added to, or deleted from lists dynamically, even if a read operation is pend-
ing on the list.

See Also
Array support

Chapter: 4 CtAPI Functions

100



Array support

Arrays are supported in the tag functions ctTagWrite(), and ctTagRead(). These functions
can take the singular tag name as "PV123", or use the array syntax as "Recipe[10]".
When the array syntax is used in the "Recipe[10]" example, the single value can be read
or written to, not the entire array.

See Also
Bit shifting when reading digital arrays

Bit shifting when reading digital arrays

When digital types are read, CitectSCADA may adjust the starting position of the first
point. This is done to improve the performance of the digital read. For example, if you
start reading an array of digital values, CitectSCADA may read several digitals before
the start of the array, and the data will be offset. When CitectSCADA shifts the bits, extra
data will be read from the I/O Device. CitectSCADA may shift the data up to 15 bits,
resulting in an extra 2 bytes of buffer space necessary for reads. Therefore, always use
digital buffers which contain 2 bytes extra.

CTAPI from CitectSCADA or CitectSCADA Driver

The CTAPI has been designed to be called from external applications. This API has not
been designed to be called from the CitectSCADA Cicode DLL functions or from a Citect-
SCADA protocol driver. Calling the CTAPI from Cicode DLL functions or a CitectSCADA
protocol driver may cause a deadlock condition to occur. This will result in Citect-
SCADA and the protocol driver hanging. If you need to call the CTAPI from a protocol
driver, you need to create a new Win32 thread to call the API. You cannot call the CTAPI
from the Cicode DLL interface.

See Also
Function Reference

Error Codes

Error Codes

The error codes returns from the CTAPI functions are the Microsoft WIN 32 error codes.
These error codes are documented in the Microsoft SDKs. Where the error code is a
CitectSCADA special error code, the error code is added to the value -ERROR_USER_
DEFINED_BASE.

Chapter: 4 CtAPI Functions

101



Note: If a CTAPI function returns the error 233, it typically means the connection to
the client is not established. However, it may also mean the client has not logged in
correctly. confirm both scenarios.

Example

int bRet = ctTagWrite(hCTAPI, "SP123", "12.34");

if (bRet == 0) {

dwStatus = GetLastError();

if (dwStatus < ERROR_USER_DEFINED_BASE) {

// Microsoft error codes see ERROR.H

} else {

short status;

// status is theCitectSCADA error codes, see CitectSCADA help

status = dwStatus - ERROR_USER_DEFINE_BASE;

}

}

The following defines have been declared to make this checking easier:

IsCitectError(dwStatus) // test if CitectSCADA

error

WIN32_TO_CT_ERROR(dwStatus) // Convert to CitectSCADA

status

For example:

if (IsCitectError(dwStatus)) {

short status;

// status is the CitectSCADA error codes, see CitectSCADA help

status = WIN32_TO_CT_ERROR(dwStatus);

}

If the connection is lost between your application and CitectSCADA, you need to close
the connection and reopen. An inoperative connection will be shown by the returning of
a Microsoft error code. If a CitectSCADA status error is returned, the connection has not
been lost. The command requested is invalid and the connection does not have to be
closed and reopened.

int bRet = ctTagWrite(hCTAPI, "SP123", "12.34");

if (bRet == 0) {

dwStatus = GetLastError();

if (dwStatus < ERROR_USER_DEFINED_BASE) {

ctClose(hCTAPI);

hCTAPI = ctOpen(NULL, NULL, NULL, 0);

while (hCTAPI == NULL) {

Sleep(2000); // wait a while

Chapter: 4 CtAPI Functions

102



hCTAPI = ctOpen(NULL, NULL, NULL, 0);

}

}

}

When the connection between your application and CitectSCADA is lost, any pending
overlapped commands will time out and be canceled by CTAPI. You need to destroy
handles which are associated with the connection.

In Version 5.10, the CT_OPEN_RECONNECT mode was added to ctOpen(). When this
mode is enabled, CTAPI will attempt to re-establish the connection to CitectSCADA if a
communication interruption occurs. Handles created with the connection will remain
valid when the connection is re-created. While the connection is down, functions will be
ineffective and will report errors.

See Also
Debug Tracing

Debug Tracing

Debug tracing of the CTAPI has been added to the kernel. You may enable the debug
trace with the command CTAPI 1 in the main kernel window. CTAPI 0 will disable the
debug tracing. You may also enable the debug tracking by setting the CITECT.INI param-
eter:

[CTAPI]

Debug=1

The debug tracing will display each client CTAPI traffic to CitectSCADA. This tracing
may slow down the performance of CitectSCADA and the CTAPI client if a large amount
of communication is occurring.

The debug trace is displayed in the main CitectSCADA kernel window and is logged to
the syslog.dat file.

Function Reference

The CTAPI functions allow access to CitectSCADA I/O variable tags via a DLL interface.
This allows third-party developers to create applications in C or other languages to read
and write to the I/O Devices.

Function Argument(s) Type Description

Chapter: 4 CtAPI Functions

103



ctCancelIO hCTAPI, pctO-
verlapped

Boolean Cancels a pending
overlapped I/O oper-
ation.

ctCiCode hCTAPI, sCmd,
hWin, nMode,
sResult,
dwLength, pctO-
verlapped

DWORD Executes a Cicode
function.

ctClientCreate () n/a Initializes the resources
for a new CtAPI client
instance

ctClientDestroy hCTAPI Boolean The handle to the CTAPI
as returned from
ctOpen().

ctClose hCTAPI Boolean Closes a connection to
the CitectSCADA API.

ctCloseEx hCTAPI,bDestroy Handle The handle to the CTAPI
as returned from
ctOpen().

ctEngToRaw pResult, dValue,
pScale, dwMode

Boolean Converts the engi-
neering scale variable
into raw I/O Device
scale.

ctFindClose hnd Boolean Closes a search ini-
tiated by ctFindFirst().

ctFindFirst hCTAPI, szTa-
bleName,
szFilter,
pObjHnd,
dwFlags

Handle Searches for the first
object in the specified
database which sat-
isfies the filter string.

ctFindFirstEx hCTAPI, szTa-
bleName,
szFilter,
szCluster,
pObjHnd,
dwFlags

Handle Searches for the first
object in the specified
database which sat-
isfies the filter string
specified by cluster.

ctFindNext hnd, pObjHnd Boolean Retrieves the next
object in a search ini-
tiated by ctFindFirst().

ctFindPrev hnd, pObjHnd Boolean Retrieves the previous
object in a search ini-

Chapter: 4 CtAPI Functions

104



tiated by ctFindFirst().

ctFindScroll hnd, dwMode,
dwOffset,
pObjHnd

Handle Scrolls to the nec-
essary object in a
search initiated by
ctFindFirst().

ctGetOverlappedResult hCTAPI, lpctO-
verlapped,
pBytes, bWait

Boolean Returns the results of
an overlapped oper-
ation.

ctGetProperty hnd, szName,
pData, dwBuf-
ferLength, dwRe-
sultLength,
dwType

Boolean Retrieves an object
property.

ctHas-
OverlappedIoCompleted

lpctOverlapped Boolean Checks for the com-
pletion of an out-
standing I/O
operation.

ctListAdd hList, sTag Handle Adds a tag to the list.

ctListAddEx hList, sTag,
bRaw, nPoll-
PeriodMS,
dDeadband

Handle Adds a tag to the list
with a specified poll
period.

ctListData hTag, pBuffer,
dwLength,
dwMode

Boolean Gets the value of a tag
on the list.

ctListDelete hTag Boolean Frees a tag created
with ctListAdd().

ctListEvent hCTAPI,
dwMode

Handle Returns the elements
in the list which have
changed state since
they were last read
using the ctListRead()
function.

ctListFree hList Boolean Frees a list created
with ctListNew().

ctListItem hTag, dwitem,
pBuffer,
dwLength,
dwMode

Boolean Gets the tag element item
data.

Chapter: 4 CtAPI Functions

105

../../../../Content/ctListData.html
../../../../Content/ctListItem.html


ctListNew hCTAPI,
dwMode

Handle Creates a new list.

ctListRead hList, pctO-
verlapped

Boolean Reads every tag on the
list.

ctListWrite hTag, sValue,
pctOverlapped

Boolean Writes to a single tag
on the list.

ctOpen sComputer,
sUser, sPass-
word, nMode

Handle Opens a connection to
the CitectSCADA API.

ctOpenEx sComputer,
sUser, sPass-
word, nMode,
hCTAPI

Handle Establishes the con-
nection to the CtAPI
server using the given
client instance.

ctRawToEng pResult, dValue,
pScale, dwMode

Boolean Converts the raw I/O
Device scale variable
into engineering scale.

ctTagGetProperty hCTAPI, szTag-
Name,
szProperty,
pData, dwBuf-
ferLength,
dwType

Boolean Gets the given prop-
erty of the given tag.

ctTagRead hCTAPI, sTag,
sValue,
dwLength

Boolean Reads the current
value from the given
I/O Device variable
tag.

ctTagReadEx hCTAPI, sTag, sVa-
lue, dwLength,
pctTagvalueItems

Boolean Performs the same as
ctTagRead, but with an
additional new argument

ctTagWrite hCTAPI, sTag,
sValue

Boolean Writes the given value
to the I/O Device var-
iable tag.

ctTagWriteEx hCTAPI, sTag,
sValue, pctO-
verlapped

Boolean Performs the same as
ctTagWrite, but with
an additional new argu-
ment.

ctCancelIO

Chapter: 4 CtAPI Functions

106

../../../../Content/ctListNew.html
../../../../Content/ctListWrite.html
../../../../Content/ctTagReadEx.html


Cancels a pending overlapped I/O operation. When the I/O command is canceled, the
event will be signaled to show that the command has completed. The status will be set
to the CitectSCADA error CT_ERROR_CANCELED. If the command completes before
you can cancel it, ctCancelIO() will return FALSE, and GetLastError() will return
GENERIC_CANNOT_CANCEL. The status of the overlapped operation will be the com-
pletion status of the command.

The CTAPI interface will automatically cancel any pending I/O commands when you
call ctClose().

Syntax

ctCancelIO(hCTAPI, pctOverlapped)

hCTAPI

Type: Handle
Input/output: Input
Description: The handle to the CTAPI as returned from ctOpen().

pctOverlapped

Type: CTOVERLAPPED*
Input/output: Input
Description: Pointer to the overlapped I/O operation to cancel. If you specify NULL, any pending
overlapped I/O operations on the interface will be canceled.

Return Value

If the function succeeds, the return value is TRUE. If the function does not succeed, the
return value is FALSE. To get extended error information, call GetLastError.

Related Functions

ctOpen, ctClose

Example

char sVersion[128];

CTOVERLAPPED ctOverlapped;

ctOverlapped.hEvent = CreateEvent(NULL, TRUE, TRUE, NULL);

ctCicode(hCTAPI, "Version(0)", 0, 0, sVersion, sizeof(sVersion),

&ctOverlapped);

ctCancelIO(hCTAPI, &ctOverlapped);

ctCiCode

Chapter: 4 CtAPI Functions

107



Executes a Cicode function on the connected CitectSCADA computer. This allows you to
control CitectSCADA or to get information returned from Cicode functions. You may call
either built in or user defined Cicode functions. Cancels a pending overlapped I/O oper-
ation.

The function name and arguments to that function are passed as a single string. Stand-
ard CitectSCADA conversion is applied to convert the data from string type into the type
expected by the function. When passing strings put the strings between the CitectSCADA
string delimiters.

Functions which expect pointers or arrays are not supported. Functions which expect
pointers are functions which update the arguments. This includes functions DspGet-
Mouse(), DspAnGetPos(), StrWord(), and so on. Functions which expect arrays to be
passed or returned are not supported, for example TableMath(), TrnSetTable(), TrnGet-
Table(). You may work around these limitations by calling a Cicode wrapper function
which in turn calls the function you require.

If the Cicode function you are calling takes a long time to execute, is pre-empt or blocks,
then the result of the function cannot be returned in the sResult argument. The Cicode
function will, however, execute correctly.

Syntax

ctCiCode(hCTAPI, sCmd, hWin, nMode, sResult, dwLength, pctOverlapped)

hCTAPI

Type: Handle
Input/output: Input
Description: The handle to the CTAPI as returned from ctOpen().

sCmd

Type: String
Input/output: Input
Description: The command to execute.

vhWin

Type: Dword
Input/output: Input
Description: The CitectSCADA window to execute the function. This is a logical CitectSCADA win-
dow (0, 1, 2, 3 etc.) not a Windows Handle.

nMode

Type: Dword
Input/output: Input
Description: The mode of the Cicode call. Set this to 0 (zero).

sResult

Chapter: 4 CtAPI Functions

108



Type: LPSTR
Input/output: Output
Description: The buffer to put the result of the function call, which is returned as a string. This may
be NULL if you do not need the result of the function.

dwLength

Type: Dword
Input/output: Input
Description: The length of the sResult buffer. If the result of the Cicode function is longer than the
this number, then the result is not returned and the function call does not succeed, however the
Cicode function is still executed. If the sResult is NULL then this length needs to be 0.

pctOverlapped

Type: CTOVERLAPPED*
Input/output: Input
Description: CTOVERLAPPED structure. This structure is used to control the overlapped noti-
fication. Set to NULL if you want a synchronous function call.

Return Value

Type: Dword. TRUE if successful, otherwise FALSE. Use GetLastError() to get extended
error information.

Related Functions

ctOpen

Example

char sName[32];

ctCicode(hCTAPI, "AlarmAck(0,)", 0, 0, NULL, 0, NULL);

ctCicode(hCTAPI, "PageInfo(0)", 0, 0, sName, sizeof(sName), NULL);

/* to call the Prompt function with the string "Hello Citect", the

C code would be:

*/

ctCicode(hCTAPI, "Prompt(\"Hello Citect\")", 0, 0, NULL, 0, NULL);

/* If the string does not contain any delimiters (for example spaces or commas) you

may omit the string delimiters. For example to display a page called "Menu" the C

code would be:

*/

ctCicode(hCTAPI, "PageDisplay(Menu)", 0, 0, NULL, 0, NULL);

ctClientCreate

Chapter: 4 CtAPI Functions

109



ctClientCreate initializes the resources for a new CtAPI client instance. Once you have
called ctClientCreate, you can pass the handle returned to ctOpenEx to establish com-
munication with the CtAPI server.

Consider a situation where you try to communicate to the CtAPI server and the server
takes a long time to respond (or doesn't respond at all). If you just call ctOpen, you have-
n't been given a handle to the CtAPI instance, so you can't cancel the ctOpen by calling
ctCancelIO. But if you use ctClientCreate and then call ctOpenEx, you can use the handle
returned by ctClientCreate to cancel the ctOpenEx.

Syntax

ctClientCreate()

Return Value

If the function succeeds, the return value specifies a handle. If the function does not suc-
ceed, the return value is NULL. Use GetLastError() to get extended error information.

Related Functions

ctOpen, ctOpenEx, ctClose, ctCloseEx, ctClientDestroy

Example

DWORD dwStatus = 0;

HANDLE hCtapi = ctClientCreate();

if (hCtapi == NULL) {

dwStatus = GetLastError(); // An error has occurred, trap it.

} else {

if (TRUE == ctOpenEx(NULL, NULL, NULL, 0, hCtapi)) {

ctTagWrite(hCtapi, "Fred", "1.5");

if (FALSE == ctCloseEx(hCtapi, FALSE)) {

dwStatus = GetLastError(); // An error has occurred, trap it.

}

} else {

dwStatus = GetLastError(); // An error has occurred, trap it.

}

if (FALSE == ctClientDestroy(hCtapi)) {

dwStatus = GetLastError(); // An error has occurred, trap it

}

}

ctClientDestroy
Cleans up the resources of the given CtAPI instance. Unlike ctClose, ctClientDestroy does
not close the connection to the CtAPI server.

You need to call ctCloseEx with bDestroy equal to FALSE before calling ctClientDestroy.

Chapter: 4 CtAPI Functions

110



Syntax

ctClientDestroy(hCTAPI)

hCTAPI

Type: Handle
Input/output: Input
Description: The handle to the CTAPI as returned from ctOpen().

Return Value

TRUE if successful, otherwise FALSE. Use GetLastError() to get extended error infor-
mation.

Related Functions

ctCloseEx, ctClose, ctClientCreate, ctOpen, ctOpenEx

Example

See ctClientCreate for an example.

ctClose
Closes the connection between the application and the CtAPI. When called, any pending
commands will be canceled. You need to free any handles allocated before calling
ctClose(). These handles are not freed when ctClose() is called. Call this function from an
application on shutdown or when a major error occurs on the connection.

Syntax

ctClose(hCTAPI)

hCTAPI

Type: Handle
Input/output: Input
Description: The handle to the CTAPI as returned from ctOpen().

Return Value

TRUE if successful, otherwise FALSE. Use GetLastError() to get extended error infor-
mation.

Related Functions

ctOpen

Chapter: 4 CtAPI Functions

111



Example

See the example for ctOpen().

ctCloseEx
Closes the connection to the CtAPI server for the given CtAPI instance. It closes the con-
nection the same way as does the ctClose method, but provides an option for whether or
not to destroy the CtAPI instance within the ctCloseEx function call. ctClose always
destroys the CtAPI instance within its function call.

For example, consider a situation where when we try to close the connection to the
CtAPI server and it takes a long time to respond (or doesn't at all). If you call ctClose,
you can't cancel the ctClose by calling ctCancelIO because you can't guarentee that the
CtAPI instance is not in the process of being destroyed. But if you call ctCloseEx with the
option of not destroying the CtAPI instance, you can call ctCancelIO to cancel the ctClo-
seEx.

When you call ctCloseEx with bDestroy equal to FALSE, you need to then call ctClient-
Destroy afterwards to free the CtAPI client instance.

Syntax

ctCloseEx(hCTAPI,bDestroy);

hCTAPI

Type: Handle
Input/output: Input
Description: The handle to the CTAPI as returned from ctOpen().

bDestroy

Type: boolean
Input/output: Input
Description: If TRUE will destroy the CtAPI instance within the ctCloseEx function call. Default is
FALSE.

Return Value

TRUE if successful, otherwise FALSE. Use GetLastError() to get extended error infor-
mation.

Related Functions

ctClientDestroy, ctClose, ctClientCreate, ctOpen, ctOpenEx

Chapter: 4 CtAPI Functions

112



Example

See ctClientCreate for an example.

ctEngToRaw
Converts the engineering scale variable into raw I/O Device scale. This is not necessary
for the Tag functions as CitectSCADA will do the scaling. Scaling is not necessary for dig-
itals, strings or if no scaling occurs between the values in the I/O Device and the Engi-
neering values. You need to know the scaling for each variables as specified in the
CitectSCADA Variable Tags table.

Syntax

ctEngToRaw(pResult, dValue, pScale, dwMode)

pResult

Type: Double
Input/output: Output
Description: The resulting raw scaled variable.

dValue

Type: Double
Input/output: Input
Description: The engineering value to scale.

pScale

Type: CTSCALE*
Input/output: Input
Description: The scaling properties of the variable.

dwMode

Type: Dword
Input/output: Input
Description: The mode of the scaling:

CT_SCALE_RANGE_CHECK: Range check the result. If the variable is out of
range then generate an error. The pResult still contains the raw scaled
value.

CT_SCALE_CLAMP_LIMIT: Clamp limit to maximum or minimum scales. If
the result is out of scale then set result to minimum or maximum scale
(which ever is closest). No error is generated if the scale is clamped. Can-
not be used with CT_SCALE_RANGE_CHECK or CT_SCALE_NOISE_
FACTOR options.

Chapter: 4 CtAPI Functions

113



CT_SCALE_NOISE_FACTOR: Allow noise factor for range check on limits. If
the variable is our of range by less than 0.1 % then a range error is not
generated.

Return Value

TRUE if successful, otherwise FALSE. Use GetLastError() to get extended error infor-
mation.

Related Functions

ctOpen, ctRawToEng, ctTagRead

Example

CTSCALE Scale = { 0.0, 32000.0, 0.0, 100.0};

double dSetPoint = 42.23;

double dRawValue;

ctEngToRaw(&dRawValue, dSetPoint, &Scale, CT_SCALE_RANGE_CHECK);

ctFindClose
Closes a search initiated by ctFindFirst.

Syntax

ctFindClose(hnd)

hnd

Type: Handle
Input/output: Input
Description: Handle to the search, as returned by ctFindFirst().

Return Value

If the function succeeds, the return value is non-zero. If the function does not succeed,
the return value is zero. To get extended error information, call GetLastError().

Related Functions

ctOpen, ctFindNext, ctFindPrev, ctFindScroll, ctGetProperty

Example

See ctFindFirst

Chapter: 4 CtAPI Functions

114



ctFindFirst
Searches for the first object in the specified table, device, trend, or alarm data which sat-
isfies the filter string. A handle to the found object is returned via pObjHnd. The object
handle is used to retrieve the object properties. To find the next object, call the ctFind-
Next function with the returned search handle.

If you experience server performance problems when using ctFindFirst() refer to CPU-
LoadCount and CpuLoadSleepMS.

Syntax

ctFindFirst(hCTAPI, szTableName, szFilter, pObjHnd,dwFlags)

hCTAPI

Type: Handle
Input/output: Input
Description: The handle to the CTAPI as returned from ctOpen().

szTableName

Type: LPCTSTR
Input/output: Input
Description: The table, device, trend, or alarm data to be searched. The following tables and fields
can be searched:

l Trend - Trend Tags
CLUSTER, NAME/TAG, RAW_ZERO, RAW_FULL, ENG_ZERO, ENG_FULL, ENG_
UNITS, COMMENT, SAMPLEPER, TYPE

l DigAlm - Digital Alarm Tags
CLUSTER, TAG, NAME, DESC, HELP, CATEGORY, STATE, TIME, DATE, AREA,
ALMCOMMENT

l AnaAlm - Analog Alarm Tags
CLUSTER, TAG, NAME, DESC, HELP, CATEGORY, STATE, TIME, DATE, AREA,
VALUE, HIGH, LOW, HIGHHIGH, LOWLOW, DEADBAND, RATE, DEVIATION,
ALMCOMMENT

l AdvAlm - Advanced Alarm Tags
CLUSTER, TAG, NAME, DESC, HELP, CATEGORY, STATE, TIME, DATE, AREA,
ALMCOMMENT

l HResAlm - Time-Stamped Alarm Tags
CLUSTER, TAG, NAME, DESC, HELP, CATEGORY, STATE, TIME, MILLISEC, DATE,
AREA, ALMCOMMENT

l ArgDigAlm - Argyle Digital Alarm Tags
CLUSTER, TAG, NAME, DESC, HELP, CATEGORY, STATE, TIME, DATE, AREA,
ALMCOMMENT, PRIORITY, STATE_DESC, OLD_DESC

Chapter: 4 CtAPI Functions

115



l ArgAnaAlm - Argyle Analog Alarm Tags
CLUSTER, TAG, NAME, HELP, ALMCOMMENT, CATEGORY, STATE, TIME,
DATE, AREA, VALUE, PRIORITY, HIGH, LOW, HIGHHIGH, LOWLOW, DEAD-
BAND, RATE, DEVIATION

l TsDigAlm - Time-Stamped Digital Alarm Tags
CLUSTER, TAG, NAME, DESC, CATEGORY, AREA, ALMCOMMENT

l TsAnaAlm - Time-Stamped Analog Alarm Tags
CLUSTER, TAG, NAME, DESC, CATEGORY, AREA, ALMCOMMENT

l ArgDigAlmStateDesc - Argyle Digital Alarm Tag State Descriptions
CLUSTER, TAG, STATE_DESC0, STATE_DESC1, STATE_DESC2, STATE_DESC3,
STATE_DESC4, STATE_DESC5, STATE_DESC6, STATE_DESC7

l Alarm - Alarm Tags
CLUSTER, TAG, NAME, DESC, HELP, CATEGORY, STATE, TIME, DATE, AREA,
ALMCOMMENT, VALUE, HIGH, LOW, HIGHHIGH, LOWLOW, DEADBAND,
RATE, DEVIATION, PRIORITY, STATE_DESC, OLD_DESC, ALARMTYPE

l AlarmSummary - Alarm Summary
CLUSTER, TAG, NAME, DESC, HELP, CATEGORY, TIME, DATE, AREA, VALUE,
HIGH, LOW, HIGHHIGH, LOWLOW, DEADBAND, RATE, DEVIATION, PRIORITY,
STATE_DESC, OLD_DESC, ALARMTYPE, ONDATE, ONDATEEXT, ONTIME,
ONMILLI, OFFDATE, OFFDATEEXT, OFFTIME, OFFMILLI, DELTATIME, ACKDATE,
ACKDATEEXT, ACKTIME, ALMCOMMENT, USERNAME, FULLNAME, USER-
DESC, SUMSTATE, SUMDESC, NATIVE_SUMDESC, COMMENT, NATIVE_COM-
MENT

l Accum - Accumulators
PRIV, AREA, CLUSTER, NAME, TRIGGER, VALUE, RUNNING, STARTS, TOTA-
LISER

l Tag - Variable Tags

l LocalTag - Local Tags

l Cluster - Clusters

For information on fields, see the Browse Function Field Reference in the Cicode Ref-
erence Guide.

Note: The migration tool in CitectSCADAv7.20 converts memory PLC variables to
local variable tags which are in a separate table to the variable tags. Calling ctFind-
First with szTableName "Tag" will not return the local variable tags. In order to return
the local variable tags you need to call ctFindFirst with the szTableName of "Local-
Tag". Local variables do not have clusters and have only one pair of zero/full scales
(as opposed to raw and engineering scales for variable tags).

The field names for local variable tags are:

Chapter: 4 CtAPI Functions

116



NAME, TYPE, ASIZE (array size), ZERO, FULL, UNITS, COMMENT.

The array size field is available only for local tags.

szFilter

Type: LPCTSTR
Input/output: Input
Description: Filter criteria. This is a string based on the following format:

"PropertyName1=FilterCriteria1;PropertyName2=FilterCriteria2"
The wildcard * may be used as part of the filter criteria to match multiple

entries. Use an empty string, or "*" as the filter string to match every
entry.

pObjHnd

Type: HANDLE
Input/output: Output
Description: The pointer to the found object handle. This is used to retrieve the properties.

dwFlags

This argument is no longer used, pass in a value of 0 for this argument.

To search a table:

In szTableName specify the name of the table.

To search a device:

In szTableName specify the name as defined in the CitectSCADA Devices form, for exam-
ple "RECIPES" for the Example project.

To search trend data:

In szTableName specify the trend using the following format (including the quotation
marks):

`TRNQUERY,Endtime,EndtimeMs,Period,NumSamples,Tagname,Displaymode,Datamode'

See TrnQuery for syntax details.

To search alarm data:

In szTableName specifythe alarm data using the following format (including the quotation
marks):

`ALMQUERY,Database,TagName,Starttime,StarttimeMs,Endtime,EndtimeMs,Period'

See AlmQuery for syntax details.

Chapter: 4 CtAPI Functions

117



Return Value

If the function succeeds, the return value is a search handle used in a subsequent call to
ctFindNext() or ctFindClose(). If the function does not succeed, the return value is NULL.
To get extended error information, call GetLastError()

Related Functions

ctOpen, ctFindNext, ctFindClose, ctGetProperty, ctFindFirstEx

Example

HANDLE hSearch;

HANDLE hObject;

HANDLE hFind;

// Search the Tag table

hSearch = ctFindFirst(hCTAPI, "Tag", NULL, &hObject, 0);

if (hSearch == NULL) {

// no tags found

} else {

do {

char sName[32];

// Get the tag name

ctGetProperty(hObject, "Tag", sName, sizeof(sName), NULL,

DBTYPE_STR);

} while (ctFindNext(hSearch, &hObject));

ctFindClose(hSearch);

}

// Get Historical Trend data via CTAPI

// Get 100 samples of the CPU trend at 2 second

hFind = ctFindFirst(hCTAPI, "CTAPITrend(\"10:15:00 \", \"11/8/1998\", 2, 100, 0,

\"CPU\")", &hObject, 0);

while (hFind) {

char sTime[32], sDate[32], sValue[32];

ctGetProperty(hObject, "TIME", sTime, sizeof(sTime), NULL, DBTYPE_STR);

ctGetProperty(hObject, "DATE", sDate, sizeof(sDate), NULL, DBTYPE_STR);

ctGetProperty(hObject, "CPU", sValue, sizeof(sValue), NULL, DBTYPE_STR);

// do something with the trend data.

if (!ctFindNext(hFind, &hObject)) {

ctFindClose(hFind);

hFind = NULL;

break;

}

}

ctFindFirstEx

Chapter: 4 CtAPI Functions

118



Performs the same as ctFindFirst, but with an additional new argument. Searches for the
first object in the specified table, device, trend, or alarm data which satisfies the filter
string. A handle to the found object is returned via pObjHnd. The object handle is used
to retrieve the object properties. To find the next object, call the ctFindNext function with
the returned search handle.

If you experience server performance problems when using ctFindFirst() refer to CPU-
LoadCount and CpuLoadSleepMS.

If ctFindFirst is called instead of ctFindFirstEx, the szCluster defaults to NULL.

Syntax

ctFindFirstEx(hCTAPI, szTableName, szFilter, szCluster, pObjHnd, dwFlags)

hCTAPI

Type: Handle
Input/output: Input
Description: The handle to the CTAPI as returned from ctOpen().

szTableName

Type: LPCTSTR
Input/output: Input
Description: The table, device, trend, or alarm data to be searched. The following tables and fields
can be searched:

l Trend - Trend Tags
CLUSTER, NAME/TAG, RAW_ZERO, RAW_FULL, ENG_ZERO, ENG_FULL, ENG_
UNITS, COMMENT, SAMPLEPER, TYPE

l DigAlm - Digital Alarm Tags
CLUSTER, TAG, NAME, DESC, HELP, CATEGORY, STATE, TIME, DATE, AREA,
ALMCOMMENT

l AnaAlm - Analog Alarm Tags
CLUSTER, TAG, NAME, DESC, HELP, CATEGORY, STATE, TIME, DATE, AREA,
VALUE, HIGH, LOW, HIGHHIGH, LOWLOW, DEADBAND, RATE, DEVIATION,
ALMCOMMENT

l AdvAlm - Advanced Alarm Tags
CLUSTER, TAG, NAME, DESC, HELP, CATEGORY, STATE, TIME, DATE, AREA,
ALMCOMMENT

l HResAlm - Time-Stamped Alarm Tags
CLUSTER, TAG, NAME, DESC, HELP, CATEGORY, STATE, TIME, MILLISEC, DATE,
AREA, ALMCOMMENT

l ArgDigAlm - Argyle Digital Alarm Tags

Chapter: 4 CtAPI Functions

119



CLUSTER, TAG, NAME, DESC, HELP, CATEGORY, STATE, TIME, DATE, AREA,
ALMCOMMENT, PRIORITY, STATE_DESC, OLD_DESC

l ArgAnaAlm - Argyle Analog Alarm Tags
CLUSTER, TAG, NAME, HELP, ALMCOMMENT, CATEGORY, STATE, TIME,
DATE, AREA, VALUE, PRIORITY, HIGH, LOW, HIGHHIGH, LOWLOW, DEAD-
BAND, RATE, DEVIATION

l TsDigAlm - Time-Stamped Digital Alarm Tags
CLUSTER, TAG, NAME, DESC, CATEGORY, AREA, ALMCOMMENT

l TsAnaAlm - Time-Stamped Analog Alarm Tags
CLUSTER, TAG, NAME, DESC, CATEGORY, AREA, ALMCOMMENT

l ArgDigAlmStateDesc - Argyle Digital Alarm Tag State Descriptions
CLUSTER, TAG, STATE_DESC0, STATE_DESC1, STATE_DESC2, STATE_DESC3,
STATE_DESC4, STATE_DESC5, STATE_DESC6, STATE_DESC7

l Alarm - Alarm Tags
CLUSTER, TAG, NAME, DESC, HELP, CATEGORY, STATE, TIME, DATE, AREA,
ALMCOMMENT, VALUE, HIGH, LOW, HIGHHIGH, LOWLOW, DEADBAND,
RATE, DEVIATION, PRIORITY, STATE_DESC, OLD_DESC, ALARMTYPE

l AlarmSummary - Alarm Summary
CLUSTER, TAG, NAME, DESC, HELP, CATEGORY, TIME, DATE, AREA, VALUE,
HIGH, LOW, HIGHHIGH, LOWLOW, DEADBAND, RATE, DEVIATION, PRIORITY,
STATE_DESC, OLD_DESC, ALARMTYPE, ONDATE, ONDATEEXT, ONTIME,
ONMILLI, OFFDATE, OFFDATEEXT, OFFTIME, OFFMILLI, DELTATIME, ACKDATE,
ACKDATEEXT, ACKTIME, ALMCOMMENT, USERNAME, FULLNAME, USER-
DESC, SUMSTATE, SUMDESC, NATIVE_SUMDESC, COMMENT, NATIVE_COM-
MENT

l Accum - Accumulators
PRIV, AREA, CLUSTER, NAME, TRIGGER, VALUE, RUNNING, STARTS, TOTA-
LISER

l Tag - Variable Tags

l LocalTag - Local Tags

l Cluster - Clusters

For information on fields, see the Browse Function Field Reference in the Cicode Ref-
erence Guide.

szFilter

Type: LPCTSTR
Input/output: Input
Description: Filter criteria. This is a string based on the following format:

"PropertyName1=FilterCriteria1;PropertyName2=FilterCriteria2"\.
"*" as the filter to achieve the same result.

Chapter: 4 CtAPI Functions

120



szCluster

Type: LPCTSTR
Input/output: Input
Description: Specifies on which cluster the ctFindFirst function will be performed. If left NULL or
empty string then the ctFindFirst will be performed on the active cluster if there is only one.

pObjHnd

Type: HANDLE
Input/output: Output
Description: The pointer to the found object handle. This is used to retrieve the properties.

dwFlags

This argument is no longer used, pass in a value of 0 for this argument.

To search a table:

In szTableName specify the name of the table.

To search a device:

In szTableName specify the name as defined in the CitectSCADA Devices form, for exam-
ple "RECIPES" for the Example project.

To search trend data:

In szTableName specify the trend using the following format (including the quotation
marks):

`TRNQUERY,Endtime,EndtimeMs,Period,NumSamples,Tagname,Displaymode,Datamode'

See TrnQuery for syntax details.

To search alarm data:

In szTableName specifythe alarm data using the following format (including the quotation
marks):

`ALMQUERY,Database,TagName,Starttime,StarttimeMs,Endtime,EndtimeMs,Period'

See AlmQuery for syntax details.

Return Value

If the function succeeds, the return value is a search handle used in a subsequent call to
ctFindNext() or ctFindClose(). If the function does not succeed, the return value is NULL.
To get extended error information, call GetLastError()

Related Functions

ctOpen, ctFindNext, ctFindClose, ctGetProperty, ctFindFirst

ctFindNext

Chapter: 4 CtAPI Functions

121



Retrieves the next object in the search initiated by ctFindFirst.

Syntax

ctFindNext(hnd, pObjHnd)

hnd

Type: Handle
Input/output: Input
Description: Handle to the search, as returned by ctFindFirst().

pObjHnd

Type: HANDLE
Input/output: Output
Description: The pointer to the found object handle. This is used to retrieve the properties.

Return Value

If the function succeeds, the return value is TRUE (1). If the function does not succeed,
the return value is FALSE (0). To get extended error information, call GetLastError(). If
you reach the end of the search, GetLastError() returns CT_ERROR_NOT_FOUND. Once
past the end of the search, you cannot scroll the search using ctFindNext() or ctFind-
Prev() commands. You need to reset the search pointer by creating a new search using
ctFindFirst(), or by using the ctFindScroll() function to move the pointer to a valid posi-
tion.

Related Functions

ctOpen, ctFindFirst, ctFindPrev, ctFindClose, ctGetProperty

Example

See ctFindFirst.

ctFindPrev
Retrieves the previous object in the search initiated by ctFindFirst.

Syntax

ctFindPrev(hnd, pObjHnd)

hnd

Type: Handle
Input/output: Input
Description: Handle to the search, as returned by ctFindFirst().

Chapter: 4 CtAPI Functions

122



pObjHnd

Type: HANDLE
Input/output: Output
Description: The pointer to the found object handle. This is used to retrieve the properties.

Return Value

If the function succeeds, the return value is TRUE (1). If the function does not succeed,
the return value is FALSE (0). To get extended error information, call GetLastError(). If
you reach the end of the search, GetLastError() returns CT_ERROR_NOT_FOUND. Once
past the end of the search, you cannot scroll the search using ctFindNext() or ctFind-
Prev() commands. You need to reset the search pointer by creating a new search using
ctFindFirst(), or by using the ctFindScroll() function to move the pointer to a valid posi-
tion.

Related Functions

ctOpen, ctFindFirst, ctFindNext, ctFindClose, ctGetProperty

Example

See ctFindFirst

ctFindScroll
Scrolls to the necessary object in the search initiated by ctFindFirst.

To find the current scroll pointer, you can scroll relative (dwMode = CT_FIND_SCROLL_
RELATIVE) with an offset of 0. To find the number of records returned in a search, scroll
to the end of the search.

Syntax

ctFindScroll(hnd, dwMode, dwOffset, pObjHnd)

hnd

Type: Handle
Input/output: Input
Description: Handle to the search, as returned by ctFindFirst().

dwMode

Type: DWORD
Input/output:
Description: Mode of the scroll. The following modes are supported:

Chapter: 4 CtAPI Functions

123



CT_FIND_SCROLL_NEXT: Scroll to the next record. The dwOffset parameter
is ignored.

CT_FIND_SCROLL_PREV: Scroll to the previous record. The dwOffset param-
eter is ignored.

CT_FIND_SCROLL_FIRST: Scroll to the first record. The dwOffset parameter
is ignored.

CT_FIND_SCROLL_LAST: Scroll to the last record. The dwOffset parameter is
ignored.

CT_FIND_SCROLL_ABSOLUTE: Scroll to absolute record number. The record
number is specified in the dwOffset parameter. The record number is
from 1 to the maximum number of records returned in the search.

CT_FIND_SCROLL_RELATIVE: Scroll relative records. The number of rec-
ords to scroll is specified by the dwOffset parameter. If the offset is pos-
itive, this function will scroll to the next record, if negative, it will scroll
to the previous record. If 0 (zero), no scrolling occurs.

dwOffset

Type: LONG
Input/output: Input
Description: Offset of the scroll. The meaning of this parameter depends on the dwMode of the
scrolling operation.

pObjHnd

Type: HANDLE
Input/output: Output
Description: The pointer to the found object handle. This is used to retrieve the properties.

pObjHnd

Type: HANDLE
Input/output: Output
Description: The pointer to the found object handle. This is used to retrieve the properties.

Return Value

If the function succeeds, the return value is non-zero. If the function does not succeed,
the return value is zero. To get extended error information, call GetLastError(). If no
matching objects can be found, the GetLastError() function returns CT_ERROR_NOT_
FOUND. The return value is the current record number in the search. Record numbers
start at 1 (for the first record) and increment until the end of the search has been reached.
Remember, 0 (zero) is not a valid record number - it signifies that the function was not
successful.

Chapter: 4 CtAPI Functions

124



Related Functions

ctOpen, ctFindFirst, ctFindNext, ctFindPrev, ctFindClose, ctGetProperty

Example

HANDLE hSearch;

HANDLE hObject;

DWORD dwNoRecords;

// Search the Tag table

hSearch = ctFindFirst(hCTAPI, "Tag", NULL, &hObject, 0);

// Count number of records

dwNoRecords = ctFindScroll(hSearch, CT_FIND_SCROLL_LAST, 0, &hObject);

// scroll back to beginning

ctFindScroll(hSearch, CT_FIND_SCROLL_FIRST, 0, &hObject);

do {

char sName[32];

// Get the tag name

ctGetProperty(hObject, "Tag", sName, sizeof(sName), NULL, DBTYPE_STR);

} while (ctFindScroll(hSearch, CT_FIND_SCROLL_NEXT, 0, &hObject));

ctFindClose(hSearch);

ctGetOverlappedResult
Returns the results of an overlapped operation. The results reported by the ctGet-
OverlappedResult() function are those of the specified handle's last CTOVERLAPPED
operation to which the specified CTOVERLAPPED structure was provided, and for
which the operation's results were pending. A pending operation is indicated when the
function that started the operation returns FALSE, and the GetLastError function returns
ERROR_IO_PENDING. When an I/O operation is pending, the function that started the
operation resets the hEvent member of the CTOVERLAPPED structure to the non-sig-
naled state. Then when the pending operation has been completed, the system sets the
event object to the signaled state.

If the bWait parameter is TRUE, ctGetOverlappedResult() determines whether the pend-
ing operation has been completed by waiting for the event object to be in the signaled
state.

Specify a manual-reset event object in the CTOVERLAPPED structure. If an auto-reset
event object is used, the event handle needs to not be specified in any other wait oper-
ation in the interval between starting the CTOVERLAPPED operation and the call to
ctGetOverlappedResult(). For example, the event object is sometimes specified in one of
the wait functions to wait for the operation's completion. When the wait function
returns, the system sets an auto-reset event's state to non-signaled, and a subsequent call
to ctGetOverlappedResult() with the bWait parameter set to TRUE causes the function
to be blocked indefinitely.

Chapter: 4 CtAPI Functions

125



Syntax

ctGetOverlappedResult(hCTAPI, lpctOverlapped, pBytes, bWait)

hCTAPI

Type: Handle
Input/output: Input
Description: The handle to the CTAPI as returned from ctOpen().

lpctOverlapped

Type: CTOVERLAPPED*
Input/output: Input
Description: Address of the CTOVERLAPPED structure which was used when an overlapped oper-
ation was started.

pBytes

Type: DWORD*
Input/output: Input
Description: Address of actual bytes transferred. For the CTAPI this value is undefined.

bWait

Type: BOOL
Input/output: Input
Description: Specifies whether the function waits for the pending overlapped operation to be com-
pleted. If TRUE, the function does not return until the operation has been completed. If FALSE and
the operation is still pending, the function returns FALSE and the GetLastError function returns
ERROR_IO_INCOMPLETE.

Return Value

If the function succeeds, the return value is TRUE. If the function does not succeed, the
return value is FALSE. Use GetLastError() to get extended error information.

Related Functions

ctOpen, ctHasOverlappedIoCompleted

Example

DWORD Bytes;

char sVersion[128];

CTOVERLAPPED ctOverlapped;

ctOverlapped.hEvent = CreateEvent(NULL, TRUE, TRUE, NULL);

ctCicode(hCTAPI, "Version(0)", 0, 0, sVersion, sizeof(sVersion), &ctOverlapped);

//..

// do something else.

Chapter: 4 CtAPI Functions

126



//..

// wait for the ctCicode to complete

ctGetOverlappedResult(hCTAPI, &ctOverlapped, &Bytes, TRUE);

ctGetProperty
Retrieves an object property or meta data for an object. Use this function in conjunction
with the ctFindFirst() and ctFindNext() functions. i.e. First, you find an object, then you
retrieve its properties.

To retrieve property meta data such as type, size and so on, use the following syntax for
the szName argument:

l object.fields.count - the number of fields in the record

l object.fields(n).name - the name of the nth field of the record

l object.fields(n).type - the type of the nth field of the record

l object.fields(n).actualsize - the actual size of the nth field of the record

Syntax

ctGetProperty(hnd, szName, pData, dwBufferLength, dwResultLength, dwType)

hnd

Type: Handle
Input/output: Input
Description: Handle to the search, as returned by ctFindFirst().

szName

Type: LPCTSTR*
Input/output: Input
Description: The name of the property to be retrieved. The following properties are supported:

Name - The name of the tag.
FullName - The full name of the tag in the form cluster.tagname.
Network - The unique I/O Device Number.
BitWidth - Width of the data type in bits. for example digital will be 1, integer

16, long 32, etc.
UnitType - The protocol specific unit type.
UnitAddress - The protocol specific unit address.
UnitCount - The protocol specific unit count.
RawType - The raw data type of the point. The following types are returned: 0

(Digital), 1 (Integer), 2 (Real), 3 (BCD), 4 (Long), 5 (Long BCD), 6 (Long
Real), 7 (String), 8 (Byte), 9 (Void), 10 (Unsigned integer).

Chapter: 4 CtAPI Functions

127



Raw_Zero - Raw zero scale.
Raw_Full - Raw full scale.
Eng_Zero - Engineering zero scale.
Eng_Full - Engineering full scale.

pData

Type: VOID*
Input/output: Output
Description: The result buffer to store the read data. The data is raw binary data, no data con-
version or scaling is performed. If this buffer is not large enough to receive the data, the data will
be truncated, and the function will return false.

dwBufferLength

Type: DWORD
Input/output: Input
Description: Length of result buffer. If the result buffer is not large enough to receive the data, the
data will be truncated, and the function will return false.

dwResultLength

Type: DWORD*
Input/output: Output
Description: Length of returned result. You can pass NULL if you want to ignore this parameter

dwType

Type: DWORD
Input/output: Input
Description: The desired return type as follows:

Value Meaning

DBTYPE_UI1 UCHAR

DBTYPE _I1 1 byte INT

DBTYPE _I2 2 byte INT

DBTYPE _I4 4 byte INT

DBTYPE _R4 4 byte REAL

DBTYPE _R8 8 byte REAL

DBTYPE _BOOL BOOLEAN

DBTYPE_BYTES Byte stream

Chapter: 4 CtAPI Functions

128



DBTYPE _STR NULL Terminated STRING

Return Value

If the function succeeds, the return value is non-zero. If the function does not succeed,
the return value is zero. To get extended error information, call GetLastError().

Related Functions

ctOpen, ctFindFirst, ctFindNext, ctFindPrev, ctFindClose

Example

Also see ctFindFirst().

// get the property of the TAG field

ctGetProperty(hObject, "TAG", sName, sizeof(sName), NULL, DBTYPE_STR);

// Use the meta property fields to enumerate the entire row of data

// first get number of fields in the row

ctGetProperty(hObject, "object.fields.count", &dwFields, sizeof(dwFields),

NULL, DBTYPE_I4);

for (i = 0; i < dwFields; i++) {

sprintf(sObject, "object.fields(%d).name", i + 1);

// get name of field

if (ctGetProperty(hObject, sObject, sName, sizeof(sName), NULL, DBTYPE_STR)) {

// get value of field

if (ctGetProperty(hObject, sName, sData, sizeof(sData),

NULL, DBTYPE_STR)) {

printf("%8.8s ", sData);

}

}

}

ctHasOverlappedIoCompleted
Provides a high performance test operation that can be used to poll for the completion of
an outstanding I/O operation.

Syntax

ctHasOverlappedIoCompleted(lpctOverlapped)

lpctOverlapped

Type: CTOVERLAPPED*
Input/output: Input
Description: Address of the CTOVERLAPPED structure which was used when an overlapped oper-
ation was started.

Chapter: 4 CtAPI Functions

129



Return Value

TRUE if the I/O operation has completed, and FALSE otherwise.

Return Value

ctOpen, ctGetOverlappedResult

ctListAdd
Adds a tag or tag element to the list. Once the tag has been added to the list, it may be
read using ctListRead() and written to using ctListWrite(). If a read is already pending,
the tag will not be read until the next time ctListRead() is called. ctListWrite() may be
called immediately after the ctListAdd() function has completed.

Syntax

ctListAdd(hList, sTag)

hList

Type: HANDLE
Input/output: Input
Description: The handle to the list, as returned from ctListNew().

sTag

Type: LPCSTR
Input/output: Input
Description: The tag or tag name and element name, separated by a dot to be added to the list. If the
element name is not specified, it will be resolved at runtime as for an unqualified tag reference.

Return Value

If the function succeeds, the return value specifies a handle. If the function does not suc-
ceed, the return value is NULL. To get extended error information, call GetLastError()

If a tag not currently defined in your system is specified using this function then the
return value will specify a valid handle. Calling ctListRead will allow identification of
the true state of the tag. Passing an empty tag to this function will result in the function
exiting immediately and returning NULL.

Related Functions

ctOpen, ctListNew, ctListFree, ctListRead, ctListWrite, ctListData, ctListAddEx

Chapter: 4 CtAPI Functions

130

../../../../Content/ctListNew.html
../../../../Content/ctListWrite.html
../../../../Content/ctListData.html


Example

HANDLE hCTAPI;

HANDLE hList;

HANDLE hTagOne;

HANDLE hTagOneField;

HANDLE hTagOneControlMode;

HANDLE hTagOneStatus;

char sProcessValue[20];

char sProcessValueField[20];

char sProcessValueControlMode[20];

char sProcessValueStatus[20];

hCTAPI = ctOpen(NULL, NULL, NULL, 0);

hList = ctListNew(hCTAPI, 0);

hTagOne = ctListAdd(hList, "TagOne");

hTagOneField = ctListAdd(hList, "TagOne.Field");

hTagOneControlMode = ctListAdd(hList, "TagOne.ControlMode");

hTagOneStatus = ctListAdd(hList, "TagOne.Status");

ctListRead(hList, NULL);

ctListData(hTagOne, sProcessValue, sizeof(sProcessValue), 0);

ctListData(hTagOneField, sProcessValueField, sizeof(sProcessValueField) , 0);

ctListData(hTagOneControlMode, sProcessValueControlMode, size-

of(sProcessValueControlMode) , 0);

ctListData(hTagOneStatus, sProcessValueStatus, sizeof(sProcessValueStatus) , 0);

ctListFree(hList);

ctListAddEx
Performs the same as ctListAdd, but with 2 additional new arguments. Adds a tag, or
tag element, to the list. Once the tag has been added to the list, it may be read using ctLis-
tRead() and written to using ctListWrite(). If a read is already pending, the tag will not be
read until the next time ctListRead() is called. ctListWrite() may be called immediately
after the ctListAdd() function has completed.

If ctListAdd is called instead of ctListAddEx, The poll period of the subscription for the
tag defaults to 500 milliseconds, and the bRaw flag defaults to the engineering value of
FALSE.

Syntax

ctListAddEx(hList, sTag, bRaw, nPollPeriodMS, dDeadband)

hList

Type: HANDLE
Input/output: Input
Description: The handle to the list, as returned from ctListNew().

sTag

Chapter: 4 CtAPI Functions

131



Type: LPCSTR
Input/output: Input
Description: The tag or tag name and element name, separated by a dot to be added to the list. If the
element name is not specified, it will be resolved at runtime as for an unqualified tag reference.

bRaw

Type: BOOL
Input/output: Input
Description: Specifies whether to subscribe to the given tag in the list using raw mode if TRUE or
engineering mode if FALSE.

nPollPeriodMS

Type: INTEGER
Input/output: Input
Description: Dictates the poll period used in the subscription made for the tag (in milliseconds).

dDeadband

Type: DOUBLE
Input/output: Input
Description: Percentage of the variable tag's engineering range that a tag needs to change by in order
for an update to be sent through the system. A value of -1.0 indicates that the default deadband
specified by the tag definition is to be used.

Return Value

If the function succeeds, the return value specifies a handle. If the function does not suc-
ceed, the return value is NULL. To get extended error information, call GetLastError()

If a tag not currently defined in your system is specified using this function then the
return value will specify a valid handle. Calling ctListRead will allow identification of
the true state of the tag. Passing an empty tag to this function will result in the function
exiting immediately and returning NULL.

Related Functions

ctOpen, ctListNew, ctListFree, ctListRead, ctListWrite, ctListData, ctListItem

Example

See ctListNew

ctListDelete
Frees a tag created with ctListAdd. Your program is permitted to call ctListDelete() while
a read or write is pending on another thread. The ctListWrite() and ctListRead() will
return once the tag has been deleted.

Chapter: 4 CtAPI Functions

132

../../../../Content/ctListNew.html
../../../../Content/ctListWrite.html
../../../../Content/ctListData.html
../../../../Content/ctListItem.html


Syntax

ctListDelete(hTag)

hTag

Type: HANDLE
Input/output: Input
Description: The handle to the tag, as returned from ctListAdd().

Return Value

If the function succeeds, the return value is TRUE. If the function does not succeed, the
return value is FALSE. To get extended error information, call GetLastError().

Related Functions

ctOpen, ctListNew, ctListFree, ctListAdd, ctListRead, ctListWrite, ctListData, ctListItem

Example

HANDLE hList;

HANDLE hTagOne;

HANDLE hTagTwo;

hList = ctListNew(hCTAPI, 0);

hTagOne = ctListAdd(hList, "TagOne");

hTagTwo = ctListAdd(hList, "TagTwo");

ctListRead(hList, NULL); // read TagOne and TagTwo

ctListData(hList, hTagOne, sBufOne, sizeof(sBufOne), 0);

ctListData(hList, hTagTwo, sBufTwo, sizeof(sBufTwo) , 0);

ctListDelete(hTagOne); // delete TagOne;

ctListRead(hList, NULL); // read TagTwo only

ctListData(hList, hTagTwo, sBufTwo, sizeof(sBufTwo) , 0);

ctListEvent
Returns the elements in the list which have changed state since they were last read
using the ctListRead() function. You need to have created the list with CT_LIST_EVENT
mode in the ctListNew() function.

Syntax

ctListEvent(hCTAPI, dwMode)

hCTAPI

Type: Handle
Input/output: Input
Description: The handle to the CTAPI as returned from ctListNew().

Chapter: 4 CtAPI Functions

133

../../../../Content/ctListNew.html
../../../../Content/ctListWrite.html
../../../../Content/ctListData.html
../../../../Content/ctListItem.html


dwMode

Type: Dword
Input/output: Input
Description: The mode of the list event. You need to use the same mode for each call to ctLis-
tEvent() until NULL is returned before changing mode. The following modes are supported:

CT_LIST_EVENT_NEW - Gets notifications when tags are added to the list.
When this mode is used, you will get an event message when new tags
added to the list.

CT_LIST_EVENT_STATUS - Gets notifications for status changes. Tags will
change status when the I/O Device goes offline. When this mode is used,
you will get a notification when the tag goes into #COM and another one
when it goes out of #COM. You can verify that the tag is in #COM when
an error is returned from ctListData() for that tag.

Return Value

If the function succeeds, the return value specifies a handle to a tag which has changed
state since the last time ctListRead was called. If the function does not succeed or there
are no changes, the return value is NULL. To get extended error information, call Get-
LastError().

Related Functions

ctListAdd, ctListDelete, ctListRead, ctListWrite, ctListData, ctListItem

Example

HANDLE hList; HANDLE hTag[100];

hList = ctListNew(hCTAPI, CT_LIST_EVENT);

hTagArray[0] = ctListAdd(hList, "TagOne");

hTagArry[1] = ctListAdd(hList, "TagTwo");

and so on...

while (TRUE) {

ctListRead(hList, NULL);

hTag = ctListEvent(hList, 0);

while (hTag != NULL) {

// hTag has changed state, do whatever you need

hTag = ctListEvent(hList, 0);

}

}

ctListFree

Chapter: 4 CtAPI Functions

134

../../../../Content/ctListWrite.html
../../../../Content/ctListData.html
../../../../Content/ctListItem.html


Frees a list created with ctListNew. Every tag added to the list is freed, you do not have
to call ctListDelete() for each tag. not call ctListFree() while a read operation is pending.
Wait for the read to complete before freeing the list.

Syntax

ctListFree(hList)

hList

Type: HANDLE
Input/output: Input
Description: The handle to the list, as returned from ctListNew().

Return Value

If the function succeeds, the return value is TRUE. If the function does not succeed, the
return value is FALSE. To get extended error information, call GetLastError().

Related Functions

ctOpen, ctListNew, ctListAdd, ctListDelete, ctListRead, ctListWrite, ctListData ,

Example

See ctListNew

ctListRead
Reads the tags on the list. This function will read tags which are attached to the list.
Once the data has been read from the I/O Devices, you may call ctListData()to get the
values of the tags. If the read does not succeed, ctListData() will return an error for the
tags that cannot be read.

While ctListRead() is pending you are allowed to add and delete tags from the list. If you
delete a tag from the list while ctListRead() is pending, it may still be read one more
time. The next time ctListRead() is called, the tag will not be read. If you add a tag to the
list while ctListRead() is pending, the tag will not be read until the next time ctListRead()
is called. You may call ctListData() for this tag as soon as you have added it. In this case
ctListData() will not succeed, and GetLastError() will return GENERIC_INVALID_DATA.

You can only have 1 pending read command on each list. If you call ctListRead() again
for the same list, the function will not succeed.

Before freeing the list, check that there are no reads still pending. wait for the any current
ctListRead() to return and then delete the list.

Chapter: 4 CtAPI Functions

135

../../../../Content/ctListNew.html
../../../../Content/ctListWrite.html
../../../../Content/ctListData.html


Syntax

ctListRead(hList, pctOverlapped)

hList

Type: HANDLE
Input/output: Input
Description: The handle to the list, as returned from ctListNew().

pctOverlapped

Type: CTOVERLAPPED*
Input/output: Input
Description: CTOVERLAPPED structure. This structure is used to control the overlapped noti-
fication. Set to NULL if you want a synchronous function call.

Return Value

If the function succeeds, the return value is TRUE. If the function does not succeed, the
return value is FALSE. To get extended error information, call GetLastError().

If an error occurred when reading any of the list data from the I/O Device, the return
value will be FALSE and GetLastError() will return the associated CitectSCADA error
code. As a list can contain tags from many data sources, some tags may be read cor-
rectly while other tags may not. If any tag read does not succeed, ctListRead() will return
FALSE, however, the other tags will contain valid data. You can call ctListData() to
retrieve the value of each tag and the individual error status for each tag on the list.

Related Functions

ctOpen, ctListNew, ctListFree, ctListAdd, ctListWrite, ctListData, ctListItem

Example

See ctListNew

To read the Paging Alarm property using ctListRead:

HANDLE hList;

HANDLE hAlarmOne;

HANDLE hAlarmTwo;

hList = ctListNew(hCTAPI, 0);

hTagOne = ctListAdd(hList, "AlarmOne.Paging");

hTagTwo = ctListAdd(hList, "AlarmTwo.Paging");

while (you want the data) {

ctListRead(hList, NULL);

ctListData(hAlarmOne, sBufOne, sizeof(sBufOne), 0);

ctListData(hAlarmTwo, sBufTwo, sizeof(sBufTwo) , 0);

}

Chapter: 4 CtAPI Functions

136

../../../../Content/ctListNew.html
../../../../Content/ctListWrite.html
../../../../Content/ctListData.html
../../../../Content/ctListItem.html


ctListFree(hList);

ctOpen
Opens a connection to the CitectSCADA API. The CTAPI.DLL is initialized and a con-
nection is made to CitectSCADA. If CitectSCADA is not running when this function is
called, the function will exit and report an error. This function needs to be called before
any other CTAPI function to initialize the connection to CitectSCADA.

If you use the CT_OPEN_RECONNECT mode, and the connection is lost, the CTAPI will
attempt to reconnect to CitectSCADA. When the connection has been re-established, you
can continue to use the CTAPI. However, while the connection is down, every function
will return errors. If a connection cannot be created the first time ctOpen() is called, a
valid handle is still returned; however GetLastError() will indicate an error.

If you do not use the CT_OPEN_RECONNECT mode, and the connection to Citect-
SCADA is lost, you need to free handles returned from the CTAPI and call ctClose() to
free the connection. You need to then call ctOpen() to re-establish the connection and re-
create any handles.

Note: To use the CTAPI on a remote computer without installing CitectSCADA, you
will need to copy the following files from the [bin] directory to your remote com-
puter: CTAPI.DLL, CT_IPC.DLL, CTENG32.DLL, CTRES32.DLL, CTUTIL32.DLL, and
CIDEBUGHELP.DLL.

If calling this function from a remote computer, a valid username and a non-blank pass-
word needs to be used.

Syntax

ctOpen(sComputer, sUser, sPassword, nMode)

sComputer

Type: LPCSTR
Input/output: Input
Description: The computer you want to communicate with via CTAPI. For a local connection, spec-
ify NULL as the computer name. The Windows Computer Name is the name as specified in the
Identification tab, under the Network section of the Windows Control Panel.

sUser

Chapter: 4 CtAPI Functions

137



Type: LPCSTR
Input/output: Input
Description: Your username as defined in the CitectSCADA project running on the computer you
want to connect to. This argument is only necessary if you are calling this function from a remote
computer. On a local computer, it is optional.

sPassword

Type: LPCSTR
Input/output: Input
Description: Your password as defined in the CitectSCADA project running on the computer you
want to connect to. This argument is only necessary if you are calling this function from a remote
computer. You need to use a non-blank password. On a local computer, it is optional.

nMode

Type: DWORD
Input/output: Input
Description: The mode of the Cicode call. Set this to 0 (zero). The following modes are supported:

CT_OPEN_RECONNECT - Reopen connection on error or communication
interruption. If the connection to CitectSCADA is lost CTAPI will con-
tinue to retry to connect to CitectSCADA.

CT_OPEN_READ_ONLY - Open the CTAPI in read only mode. This allows
read only access to data - you cannot write to any variable in Citect-
SCADA or call any Cicode function.

CT_OPEN_BATCH - Disables the display of message boxes when an error
occurs.

Return Value

If the function succeeds, the return value specifies a handle. If the function does not suc-
ceed, the return value is NULL. Use GetLastError() to get extended error information.

Related Functions

ctCiCode, ctClose, ctEngToRaw, ctGetOverlappedResult, ctHasOverlappedIoCompleted,
ctRawToEng, ctTagRead, ctTagWrite, ctTagWrite

Example

HANDLE hCTAPI;

hCTAPI = ctOpen(NULL, NULL, NULL, 0);

if (hCTAPI == NULL) {

dwStatus = GetLastError(); // get error

} else {

ctTagWrite(hCTAPI, "SP123", "1.23");

ctClose(hCTAPI);

Chapter: 4 CtAPI Functions

138



}

// example of open for remote TCP/IP connection.

hCTAPI = ctOpen("203.19.130.2", "ENGINEER", "CITECT", 0);

ctOpenEx
Establishes the connection to the CtAPI server using the given client instance. Create the
client instance prior to calling ctOpenEx, using the function ctClientCreate.

ctOpenEx provides exactly the same connection functionality as ctOpen, the only dif-
ference being that ctOpen also creates the CtAPI client instance. See ctOpen for details on
the connection mechanism and the parameters involved.

Syntax

ctOpenEx(sComputer, sUser, sPassword, nMode, hCTAPI);

sComputer

Type: LPCSTR
Input/output: Input
Description: The computer you want to communicate with via CTAPI. For a local connection, spec-
ify NULL as the computer name. The Windows Computer Name is the name as specified in the
Identification tab, under the Network section of the Windows Control Panel.

sUser

Type: LPCSTR
Input/output: Input
Description: Your username as defined in the CitectSCADA project running on the computer you
want to connect to. This argument is only necessary if you are calling this function from a remote
computer. On a local computer, it is optional.

sPassword

Type: LPCSTR
Input/output: Input
Description: Your password as defined in the CitectSCADA project running on the computer you
want to connect to. This argument is only necessary if you are calling this function from a remote
computer. You need to use a non-blank password. On a local computer, it is optional.

nMode

Type: Dword
Input/output: Input
Description:The mode of the Cicode call. Set this to 0 (zero).

hCTAPI

Chapter: 4 CtAPI Functions

139



Type: Handle
Input/output: Input
Description: The handle to the CTAPI as returned from ctOpen().

Return Value

TRUE if successful, otherwise FALSE. Use GetLastError() to get extended error infor-
mation.

Related Functions

ctClientCreate, ctOpen, ctClose, ctCloseEx, ctClientDestroy

Example

See ctClientCreate

ctRawToEng
Converts the raw I/O Device scale variable into Engineering scale. This is not necessary
for the Tag functions as CitectSCADA will do the scaling. Scaling is not necessary for dig-
itals, strings or if no scaling occurs between the values in the I/O Device and the Engi-
neering values. You need to know the scaling for each variables as specified in the
CitectSCADA Variable Tags table.

Syntax

ctRawToEng(pResult, dValue, pScale, dwMode)

pResult

Type: Double
Input/output: Output
Description: The resulting raw scaled variable.

dValue

Type: Double
Input/output: Input
Description: The engineering value to scale.

pScale

Type: CTSCALE*
Input/output: Input
Description: The scaling properties of the variable.

dwMode

Chapter: 4 CtAPI Functions

140



Type: Dword
Input/output: Input
Description: The mode of the scaling. The following modes are supported:

CT_SCALE_RANGE_CHECK - Range check the result. If the variable is out of
range then generate an error. The pResult still contains the raw scaled
value.

CT_SCALE_CLAMP_LIMIT - Clamp limit to max or minimum scales. If the
result is out of scale then set result to minimum or maximum scale
(which ever is closest). No error is generated if the scale is clamped. Can-
not be used with CT_SCALE_RANGE_CHECK or CT_SCALE_NOISE_
FACTOR options.

CT_SCALE_NOISE_FACTOR - Allow noise factor for range check on limits. If
the variable is our of range by less than 0.1 % then a range error is not
generated.

Return Value

TRUE if successful, otherwise FALSE. Use GetLastError() to get extended error infor-
mation.

Related Functions

ctOpen, ctEngToRaw

Example

// SP123 is type INTEGER and has raw scale 0 to 32000 and Eng scale

0 to 100

HANDLE hList = ctListNew(s_hCTAPI, 0);

HANDLE hTag = ctListAddEx(hList, "SP123", TRUE, 500, -1);

CTSCALE Scale = { 0.0, 32000.0, 0.0, 100.0};

CHAR valueBuf[256] = {0};

double dRawValue = 0.0;

double dSetPoint = 0.0;

ctListRead(hList, NULL);

ctListData(hTag, valueBuf, sizeof(valueBuf), 0);

dRawValue = strtod(valueBuf, NULL);

ctEngToRaw(&dSetPoint, dRawValue, &Scale, CT_SCALE_RANGE_CHECK);

// dSetPoint now contains the Engineering scaled setpoint.

ctTagGetProperty
Gets the given property of the given tag.

Chapter: 4 CtAPI Functions

141



Syntax

ctTagGetProperty(hCTAPI, szTagName, szProperty, pData, dwBufferLength, dwType)

hCTAPI

Type: Handle
Input/output: Input
Description: The handle to the CTAPI as returned from ctOpen().

szTagName

Type: LPCSTR
Input/output: Input
Description: The name of the tag. To specify cluster add "ClusterName." in front of the tag. For
example Cluster1.Tag1 (note the period at the end of the cluster name).

szProperty

Type: LPCSTR
Input/output: Input
Description: The property to read. Property names are case sensitive. Supported properties are:

ArraySize: Array size of the associated tag. Returns 1 for non-array types.
DataBitWidth: Number of bits used to store the value.
Description: Tag description.
EngUnitsHigh:Maximum scaled value.
EngUnitsLow:Minimum scaled value.
Format: Format bit string. The format information is stored in the integer as fol-

lows:
l Bits 0-7 - format width
l Bits 8-15 - number of decimal places
l Bits 16 - zero-padded
l Bit 17- left-justified
l Bit 18 - display engineering units
l Bit 20 - exponential (scientific) notation

FormatDecPlaces: Number of decimal places for default format.
FormatWidth: Number of characters used in default format.
RangeHigh:Maximum unscaled value.
RangeLow:Minimum unscaled value.
Type: Type of tag as a number:

l 0 = Digital
l 1 = Byte
l 2 = Integer16
l 3 = UInteger16
l 4 = Long

Chapter: 4 CtAPI Functions

142



l 5 = Real
l 6 = String
l 7 = ULong
l 8 = Undefined

Units: Engineering Units for example %, mm, Volts.

pData

Type: VOID*
Input/output: Output
Description: The output data buffer for the property value retrieved.

dwBufferLength

Type: DWORD
Input/output: Input
Description: The length of the output data buffer in bytes.

dwType

Type: DWORD
Input/output: Input
Description: The type of data to return.

Value Meaning

DBTYPE_U11 UCHAR

DBTYPE_I1 1 byte INT

DBTYPE_I2 2 byte INT

DBTYPE_I4 4 byte INT

DBTYPE_R4 4 byte REAL

DBTYPE_R8 8 byte REAL

DBTYPE_BOOL BOOLEAN

DBTYPE_BYTES Byte Stream

DBTYPE_STR NULL terminated STRING

Return Value

If the function succeeds, the return value is non-zero. If the function does not succeed,
the return value is zero. To get extended error information, call GetLastError().

Chapter: 4 CtAPI Functions

143



ctTagRead
Reads the value, quality and timestamp, not only a value. The data will be returned in
string format and scaled using the CitectSCADA scales.

The function will request the given tag from the CitectSCADA I/O Server. If the tag is in
the I/O Servers device cache the data will be returned from the cache. If the tag is not in
the device cache then the tag will be read from the I/O Device. The time taken to com-
plete this function will be dependent on the performance of the I/O Device. The calling
thread is blocked until the read is completed.

Syntax

ctTagRead(hCTAPI, sTag, sValue, dwLength)

hCTAPI

Type: Handle
Input/output: Input
Description: The handle to the CTAPI as returned from ctOpen().

sTag

Type: LPCSTR
Input/output: Input
Description: The tag name or tag name and element name, separated by a dot. If the element name is
not specified, it will be resolved at runtime as for an unqualified tag reference. You may use the
array syntax [] to select an element of an array.

sValue

Type: LPCSTR
Input/output: Output
Description: The buffer to store the read data. The data is returned in string format.

dwLength

Type: Dword
Input/output: Input
Description: The length of the read buffer. If the data is bigger than the dwLength, the function will
not succeed.

Return Value

TRUE if successful, otherwise FALSE. Use GetLastError() to get extended error infor-
mation.

Related Functions

ctOpen, ctTagWrite, ctTagWriteEx

Chapter: 4 CtAPI Functions

144



Example

HANDLE hCTAPI = ctOpen(NULL, NULL, NULL, 0);

char sProcessValue[20];

char sProcessValueField[20];

char sProcessValueControlMode[20];

char sProcessValueStatus[20];

ctTagRead(hCTAPI,"PV123", sProcessValue, sizeof(sProcessValue));

ctTagRead(hCTAPI,"PV123.Field", sProcessValueField, sizeof(sProcessValueField));

ctTagRead(hCTAPI,"PV123.Field.V", sProcessValueField, sizeof(sProcessValueField));

ctTagRead(hCTAPI,"PV123.ControlMode",sProcessValueControlMode, size-

of(sProcessValueControlMode));

ctTagRead(hCTAPI, "PV123.Status", sProcessValueStatus, sizeof(sProcessValueStatus));

ctTagWrite
Writes to the given CitectSCADA I/O Device variable tag. The value, quality and times-
tamp, not only a value, is converted into the correct data type, then scaled and then
written to the tag. If writing to an array element only a single element of the array is
written to. This function will generate a write request to the I/O Server. The time taken to
complete this function will be dependent on the performance of the I/O Device. The call-
ing thread is blocked until the write is completed. Writing operation will succeed only
for those tag elements which have read/write access.

Syntax

ctTagWrite(hCTAPI, sTag, sValue)

hCTAPI

Type: Handle
Input/output: Input
Description: The handle to the CTAPI as returned from ctOpen().

sTag

Type: LPCSTR
Input/output: Input
Description: The tag name or tag name and element name, separated by a dot. If the element name is
not specified, it will be resolved at runtime as for an unqualified tag reference. You may use the
array syntax [] to select an element of an array.

sValue

Type: LPCSTR
Input/output: Input
Description: The value to write to the tag as a string.

Chapter: 4 CtAPI Functions

145



Return Value

TRUE if successful, otherwise FALSE. Use GetLastError() to get extended error infor-
mation.

Related Functions

ctOpen, ctTagWrite, ctTagRead

Example

HANDLE hCTAPI = ctOpen(NULL, NULL, NULL, 0);

ctTagWrite (hCTAPI,"PV123", "123.12");

ctTagWrite (hCTAPI,"PV123.Field", "123.12");

ctTagWrite (hCTAPI,"PV123.Field.V", "123.12");

ctTagWrite (hCTAPI,"PV123.ControlMode", "1");

ctTagWrite (hCTAPI,"PV123.Status", "0");

ctTagWriteEx
Performs the same as ctTagWrite, but with an additional new argument. Writes to the
given CitectSCADA I/O Device variable tag. The value, quality and timestamp, not only
a value, is converted into the correct data type, then scaled and then written to the tag. If
writing to an array element only a single element of the array is written to. This function
will generate a write request to the I/O Server. The time taken to complete this function
will be dependent on the performance of the I/O Device.

If the value of pctOverlapped is NULL, the function behaves the same as ctTagWrite,
and the calling thread is blocked until the write is completed. If the value of pctO-
verlapped is not NULL, the write is completed asynchronously and the calling thread is
not blocked.

Syntax

ctTagWriteEx(hCTAPI, sTag, sValue, pctOverlapped)

hCTAPI

Type: Handle
Input/output: Input
Description: The handle to the CTAPI as returned from ctOpen().

sTag

Chapter: 4 CtAPI Functions

146



Type: LPCSTR
Input/output: Input
Description: The tag name or tag name and element name, separated by a dot to write to. If the ele-
ment name is not specified, it will be resolved at runtime as for an unqualified tag reference. You
may use the array syntax [] to select an element of an array.

sValue

Type: LPSTR
Input/output: Input
Description: The value to write to the tag as a string.

pctOverlapped

Type: CTOVERLAPPED*
Input/output: Input
Description: Passes in an overlapped structure so ctTagWriteEx can complete asynchronously. If
the pctOverlapped structure is NULL, the function will block, completing synchronously.

Return Value

TRUE if successful, otherwise FALSE. Use GetLastError() to get extended error infor-
mation.

Related Functions

ctOpen, ctTagRead

AlmQuery
Provides an interface into the alarm summary archive from external applications, replac-
ing the old CtAPIAlarm query. AlmQuery performs significantly better than CtAPIAlarm.

AlmQuery is performed through the same mechanism as CtAPIAlarm. To establish the
query and return the first record, you call ctFindFirst. Then, to browse the remaining rec-
ords, you call ctFindNext. To access the data of the current record, ctGetProperty is called
for each field of the record.

ctFindFirst is called with the following parameters:

l hCtapi: Handle to a valid CtAPI client instance.

l szTableName: Command string for the almquery, see below.

l szFilter: Not used for Almquery. Just pass in NULL.

l hObject: Handle to the first record retrieved for the query.

l dwFlags: Not used for Almquery. Just pass in 0.

The szTableName is the command string for the query and contains the parameters for
the query.

Chapter: 4 CtAPI Functions

147



Syntax

`ALMQUERY,Database,TagName,Starttime,StarttimeMs,Endtime,EndtimeMs,Period'

Note: Arguments need to be comma-separated. Spaces between arguments are sup-
ported but not necessary. We recommend no spaces between arguments as they
require more processing and take up more space in the query string.

Database:

The Alarm database that the alarm is in (alarm type). The following databases are supported:
DigAlm (Digital), AnaAlm (Analog), AdvAlm (Advanced), HResAlm (Time Stamped), ArgDigAlm
(Multi-Digital), ArgAnaAlm (Argyle Analog), TsDigAlm (Time Stamped Digital), TsAnaAlm
(Timestamped Analog).

TagName:

The Alarm tag as a string. This query only supports the retrieval of alarm data for one alarm at a
time. Although it is supported by CitectSCADA, do not declare two different alarms with the same
tag and of the same type. You will not be able to retrieve the alarm data for both as this query
expects the combination of alarm type (database) and tag to be unique.

Starttime:

The start time of the alarm query in seconds since 1970 as an integer in UTC time.

StarttimeMs:

The millisecond portion of the start time as an integer. It is expected to be a number between 0 and
999.

Endtime:

The end time of the alarm query in seconds since 1970 as an integer in UTC time.

EndtimeMs:

Millisecond portion of the end time as an integer. It is expected to be a number between 0 and 999.

Period:

Time period in seconds between the samples returned as a floating point value. The only decimal
separator supported is the `.'.

Return Value

The maximum number of samples returned is the time range divided by the period, plus
3 (one for the sample exactly on the end time, and two for the previous and next sam-
ples).

Chapter: 4 CtAPI Functions

148



Note: Divide the period evenly into the time range, otherwise one extra sample may
be returned.

The AlmQuery does not return interpolated samples in periods where there were no
alarm samples. However, to stay within the allowable number of samples, the raw
alarm samples will be compressed when more than one sample occurs in one period.

When this compression occurs, the returned sample is flagged as a multiple sample. The
timestamp is then an average of the samples within the period. The value and comment
returned reflects that of the last sample in the period.

The following properties are returned for each data record of the query.

l DateTime: The time of the alarm sample in seconds since 1970 as an integer. This
Time is in UTC (Universal Time Coordinates).

l MSeconds: The millisecond component of the time of the trend sample as an integer.
This value is in between 0 and 999.

l Comment: The comment associated with the alarm sample as a string.

l Value: The alarm value of the sample as an unsigned integer. See below for a detailed
description of the alarm value. The alarm value contains information describing the
state of the alarm at the time of the sample:

bGood (Bit 0)- Future use only, intended to show when the quality of the alarm
data goes bad. At the moment every sample has this bit set to 1 to say
the sample is good.

bDisabled (Bit 1)- 1 if the alarm is disabled at the sample's time, 0 otherwise.
bMultiple (Bit 2)- 1 if the alarm sample is based on multiple raw samples, 0 if

it is based on only 1 raw sample.
bOn (Bit 3)- 1 if the alarm is on at the sample's time, 0 otherwise.
bAck (Bit 4)- 1 if the alarm is acknowledged at the sample's time, 0 otherwise.
state (Bits 5 - 7)- Contains the state information of the alarm at the sample's

time.
The alarm state represents the different states of the different alarm types. The

state only contains relevant information if the alarm is on.
For analog, Argyle analog, and time-stamped analog alarms the state can be as

follows:

l Expired (0)- The alarm state information has expired. We no longer know
what state the alarm was, we just know the alarm was on at this time. This
occurs if you set the Citect.ini parameter [Alarm]SumStateFix = 0.

l Deviation High (1)- The alarm has deviated above the Setpoint by more
than the specified threshold.

Chapter: 4 CtAPI Functions

149



l Deviation Low (2)- The alarm has deviated below the Setpoint by more
than the specified threshold.

l Rate of Change (3)- The alarm has changed at a faster rate than expected.

l Low (4)- The alarm has entered the low alarm range of values.

l High (5)- The alarm has entered the high alarm range of values.

l Low Low (6)- The alarm has entered the low low alarm range of values.

l High High (7)- The alarm has entered the high high alarm range of values.
For Multi-Digital Alarms the state can be as follows:

l 000 (0)- Digital tags for the alarm are off.

l 00A (1)- Tag A is on, B and C are off.

l 0B0 (2)- Tag B is on, A and C are off.

l 0BA (3)- Tags B and A are on, C is off.

l C00 (4)- Tag C is on, B and C are off.

l C0A (5)- Tag C and A are on, B is off.

l CB0 (6)- Tag C and B are on, A is off.

l CBA (7)-Digital tags for the alarm are on.
For the rest of the alarm types ignore the state information.

TrnQuery
Provides a powerful interface into the trend achive from external applications, replacing
the old CtAPITrend query. TrnQuery performs significantly better than CtAPITrend.

TrnQuery is performed through the same mechanism as CtAPITrend. To establish the
query and return the first record, you call ctFindFirst. Then, to browse the remaining rec-
ords, you call ctFindNext. To access the data of the current record, ctGetProperty is called
for each field of the record.

ctFindFirst is called with the following parameters:

l hCtapi: handle to a valid Ctapi client instance.

l szTableName: command string for the Trnquery, see below.

l szFilter: Not used for Trnquery. Just pass in NULL.

l hObject: handle to the first record retrieved for the query.

l dwFlags: Not used for Trnquery. Just pass in 0.

The szTableName is the command string for the query. It contains the parameters for the
query.

Chapter: 4 CtAPI Functions

150



Syntax

TRNQUERY,Endtime,EndtimeMs,Period,NumSamples,Tagname,Displaymode,Datamode,Instant-
Trend,SamplePeriod'

Note: Arguments needs to be comma-separated. Spaces between arguments are sup-
ported but not necessary. We recommend no spaces between arguments as they
require more processing and take up more space in the query string.

Endtime:

End time of the trend query in seconds since 1970 as an integer. This time is expected to be a UTC
time (Universal Time Coordinates).

EndtimeMs:

Millisecond portion of the end time as an integer, expected to be a number between 0 and 999.

Period:

Time period in seconds between the samples returned as a floating point value. The only decimal
separator supported is the `.'.

NumSamples:

Number of samples requested as an integer. The start time of the request is calculated by mul-
tiplying the Period by NumSamples - 1, then subtracting this from the EndTime.

The actual maximum amount of samples returned is actually NumSamples + 2. This is because we
return the previous and next samples before and after the requested range. This is useful as it tells
you where the next data is before and after where you requested it.

TagName:

The name of the trend tag as a string. This query only supports the retrieval of trend data for one
trend at a time.

DisplayMode:

Specifies the different options for formatting and calculating the samples of the query as an
unsigned integer. See Display Mode for information.

DataMode:

Mode of this request as an integer. 1 if you want the timestamps to be returned with their full pre-
cision and accuracy. Mode 1 does not interpolate samples where there were no values. 0 if you
want the timestamps to be calculated, one per period. Mode 0 does interpolate samples, where there
was no values.

InstantTrend:

An integer specifying whether the query is for an instant trend. 1 if for an instant trend. 0 if not.

Chapter: 4 CtAPI Functions

151



SamplePeriod:

An integer specifying the requested sample period in milliseconds for the instant trend's tag value.

Return Value

See Returned Data for return values.

Display Mode

The data returned can vary drastically depending on the display mode of the TrnQuery.
The display mode is split into the following mutually exclusive options:

Ordering Trend sample options

l 0 - Order returned samples from oldest to newest

l 1 - Order returned samples from newest to oldest. This mode is not supported when
the Raw data option has been specified.

Condense method options

l 0 - Set the condense method to use the mean of the samples.

l 4 - Set the condense method to use the minimum of the samples.

l 8 - Set the condense method to use the maximum of the samples.

l 12 - Set the condense method to use the newest of the samples.

Stretch method options

l 0 - Set the stretch method to step.

l 128 - Set the stretch method to use a ratio.

l 256 - Set the stretch method to use raw samples (no interpolation).

Gap Fill Constant option

l n - the number of missed samples that the user wants to gap fill) x 4096.

Last valid value option

l 0 - If we are leaving the value given with a bad quality sample as 0.

l 2097152 - If we are to set the value of a bad quality sample to the last valid value
(zero if there is no last valid value).

Raw data option

l 0 - If we are not returning raw data, that is we are using the condense and stretch
modes to compress and interpolate the data.

l 4194304 - If we are to return totally raw data, that is no compression or interpolation.
This mode is only supported if we have specified the DataMode of the query = 1.

Chapter: 4 CtAPI Functions

152



When using this mode, more samples than the maximum specified above will be
returned if there are more raw samples than the maximum in the time range.

Returned Data

The following properties are returned for each data record of the query.

l DateTime: Time of the trend sample in seconds since 1970 as an integer in UTC (Uni-
versal Time Coordinates).

l MSeconds: Millisecond component of the time of the trend sample as an integer. This
value is inbetween 0 and 999.

l Value: Trend value of the sample as a double.

l Quality: The quality information associated with the trend sample as an unsigned
integer. The Quality property contains different information in different bits of the
unsigned integer as follows:
Value Type (Bits 0 - 3)
l ValueType_None (0): There is no value in the given sample. Ignore the sample
value, time and quality.

l ValueType_Interpolated (1): The value has been interpolated from data around it.
l ValueType_SingleRaw (2): The value is based on one raw sample.
l ValueType_MultipleRaw (3): The value has been calculated from multiple raw
samples.

Value Quality (Bits 4 - 7)
l ValueQuality_Bad (0): Ignore the value of the sample as there was no raw data to
base it on.

l ValueQuality_Good (1): The value of the sample is valid, and is based on some
raw data.

Last Value Quality (Bits 8 - 11)
l LastValueQuality_Bad (0: The value of the sample should be ignored as there was
no raw data to base it on.

l LastValueQuality_Good (1): The value quality of the last raw sample in the period
was good.

l LastValueQuality_NotAvailable (2): The value quality of the last raw sample in
the period was Not Available.

l LastValueQuality_Gated (3): The value quality of the last raw sample in the
period was Gated.

Partial Flag (Bit 12)
When the Partial Flag is set to 1 it indicates that the sample may change the next
time it is read. This occurs when you get samples right at the current time, and a sam-
ple returned is not necessarily complete because more samples may be acquired in
this period.

Chapter: 4 CtAPI Functions

153



CtAPIAlarm
Provides an interface into the alarm summary archive from external applications. For
performance improvements, use the AlmQuery function instead.

To establish the query and return the first record, you call ctFindFirst. Then, to browse
the remaining records, you call ctFindNext. To access the data of the current record,
ctGetProperty is called for each field of the record.

ctFindFirst is called with the following parameters:

l hCtapi: Handle to a valid CtAPI client instance.

l szTableName: Command string for the almquery, see below.

l szFilter: Not used for Almquery. Just pass in NULL.

l hObject: Handle to the first record retrieved for the query.

l dwFlags: Not used for Almquery. Just pass in 0.

The szTableName is the command string for the query and contains the parameters for
the query.

Syntax

CTAPIAlarm(Category,Type,Area)

Note:Arguments needs to be comma-separated. Spaces between arguments are sup-
ported but not necessary. We recommend no spaces between arguments as they
require more processing and take up more space in the query string.

Category:

The alarm category or group number to match. Set Category to 0 (zero) to match every alarm cat-
egorie.

Type:

The type of alarms to find:

Non-hardware alarms

l 1. Unacknowledged alarms, ON and OFF.
l 2. Acknowledged ON alarms.
l 3. Disabled alarms.
l 4. Configured alarms, i.e. Types 0 to 3, plus acknowledged OFF alarms.

If you do not specify a Type, the default is 0.

Area:

Chapter: 4 CtAPI Functions

154



The area in which to search for alarms. If you do not specify an area, or if you set Area to -1, only
the current area will be searched.

To simplify the passing of this argument, you could first pass the CTAPIAlarm() func-
tion as a string, then use the string as the szTableName argument (without quotation
marks).

CtAPITrend
Provides an interface into the trend archive from external applications, replacing the old
CtAPITrend query. For performance improvements, use the TrnQuery function instead.

To establish the query and return the first record, you call ctFindFirst. Then, to browse
the remaining records, you call ctFindNext. To access the data of the current record,
ctGetProperty is called for each field of the record.

ctFindFirst is called with the following parameters:

l hCtapi: handle to a valid Ctapi client instance.

l szTableName: command string for the Trnquery, see below.

l szFilter: Not used for Trnquery. Just pass in NULL.

l hObject: handle to the first record retrieved for the query.

l dwFlags: Not used for Trnquery. Just pass in 0.

The szTableName is the command string for the query. It contains the parameters for the
query.

Syntax

CTAPITrend(sTime,sDate,Period,Length,Mode,Tag)

Note: Arguments needs to be comma-separated. Spaces between arguments are sup-
ported but not necessary. We recommend no spaces between arguments as they
require more processing and take up more space in the query string.

sTime:

The starting time for the trend. Set the time to an empty string to search the latest trend samples.

sDate:

The date of the trend.

Period:

The period (in seconds) that you want to search (this period can differ from the actual trend
period).

Chapter: 4 CtAPI Functions

155



The Period argument used in the CTAPITrend() function needs to be 0 (zero) when this function is
used as an argument to ctFindFirst() for an EVENT trend query.

Length:

The length of the data table, i.e. the number of rows of samples to be searched.

Mode:

The format mode to be used:

Periodic trends

l 1 - Search the Date and Time, followed by the tags.
l 2 - Search the Time only, followed by the tags.
l 3 - Ignore any invalid or gated values. (This mode is only supported for peri-
odic trends.)

Event trends

l 1 - Search the Time, Date, and Event Number, followed by the tags.
l 2 - Search the Time and Event Number, followed by the tags.

Tag:

The trend tag name for the data to be searched.

To simplify the passing of this argument, you could first pass the CTAPITrend() function
as a string, then use the string as the szTableName argument (without quotation marks).

Chapter: 4 CtAPI Functions

156



Chapter: 5 CSV_Include Reference

This section provides information on:

CSV_Include Cicode functions

CSV_Include Parameters

There are a number of Citect.ini files that can be used specifically for the CSV_Include
project. For information on these parameters refer to the Parameters topic of the Citect-
SCADA on line help in the section "CSV_Include Parameters".

CSV_Include Functions

The table below contains the CSV_Include categories of functions:

Function Category Functions

CSV_Include Alarms CSV_Alarms_Ack
CSV_Alarms_AckHardware
CSV_Alarms_AckPage
CSV_Alarms_AckRec
CSV_Alarms_AdvFilter
CSV_Alarms_AdvFilterConfig
CSV_Alarms_AdvFilterQuery
CSV_Alarms_AdvFilterSetDateTime
CSV_Alarms_CheckSound
CSV_Alarms_ClearGroupFilter
CSV_Alarms_Disable
CSV_Alarms_DisableRec
CSV_Alarms_DspGroupFilter
CSV_Alarms_DspGroupList
CSV_Alarms_DspInfo
CSV_Alarms_DspInfoRec
CSV_Alarms_DspLast
CSV_Alarms_Enable
CSV_Alarms_EnableRec
CSV_Alarms_GetAckPrivilege()
CSV_Alarms_GetDisablePrivilege()
CSV_Alarms_GetGroupFilter
CSV_Alarms_GetGroupFilterID
CSV_Alarms_GetUniqueGroupName
CSV_Alarms_GroupAdd
CSV_Alarms_GroupConfig()
CSV_Alarms_GroupRemove

157



Function Category Functions
CSV_Alarms_GroupEdit
CSV_Alarms_GroupFilter
CSV_Alarms_GroupSelect
CSV_Alarms_GroupsInit()
CSV_Alarms_Help
CSV_Alarms_HelpRec
CSV_Alarms_ListHeading
CSV_Alarms_ListHeadingFont()
CSV_Alarms_PopupMenu
CSV_Alarms_Sound()
CSV_Alarms_SoundActive()
CSV_Alarms_Silence()

CSV_Include Database CSV_DB_BOF
CSV_DB_Close
CSV_DB_EOF()
CSV_DB_Execute
CSV_DB_GetExecuteError
CSV_DB_GetFieldCount
CSV_DB_GetFieldIndex
CSV_DB_GetFieldName
CSV_DB_GetFieldText
CSV_DB_GetRowCount
CSV_DB_GetRowCurrent
CSV_DB_GetRowFieldText
CSV_DB_MoveFirst
CSV_DB_MoveLast
CSV_DB_MoveNext
CSV_DB_MoveOffset
CSV_DB_MovePrev
CSV_DB_StandbyConnectionActive
CSV_DB_StrToSQL

CSV_Include Display CSV_Display_Display_Logo
CSV_Display_Display_ServicePack()
CSV_Display_Title()
CSV_Display_Version()

CSV_Include File CSV_File_Display
CSV_File_Print
CSV_File_Save

CSV_Include Form CSV_Form_Centre
CSV_Form_Login()
CSV_Form_NumPad
CSV_Form_Position
CSV_Form_Shutdown()
CSV_Form_UserCreate()
CSV_Form_UserEdit()
CSV_Form_UserPassword()

CSV_Include ListBox CSV_ListBox_AddItem
CSV_ListBox_Clear
CSV_ListBox_Create()
CSV_ListBox_Destroy
CSV_ListBox_GetCategory
CSV_ListBox_GetItem
CSV_ListBox_GetItemID
CSV_ListBox_GetSelectedItem

Chapter: 5 CSV_Include Reference

158



Function Category Functions
CSV_ListBox_GetSelectedItemCategory
CSV_ListBox_GetSelectedItemID
CSV_ListBox_GetTagComment
CSV_ListBox_GetTagDescFromTag
CSV_ListBox_GetTagName
CSV_ListBox_GetTrendDescFromTag()
CSV_ListBox_Hide
CSV_ListBox_RemoveItem
CSV_ListBox_SelectCategories
CSV_ListBox_SelectTags()
CSV_ListBox_SelectTrends()
CSV_ListBox_SetText
CSV_ListBox_Show
CSV_ListBox_TagFormat
CSV_ListBox_Visible

CSV_Include Math CSV_Math_RoundDown
CSV_Math_Truncate

CSV_Include MenuConfig CSV_MenuConfig_Close()
CSV_MenuConfig_Display()
CSV_MenuConfig_LoadDflt()
CSV_MenuConfig_UserPages()

CSV_Include MessageBox CSV_MessageBox

CSV_Include Misc CSV_Misc_CheckNumPadValue
CSV_Misc_IntRange
CSV_Misc_MouseOver

CSV_Include MultiMonitors CSV_MM_BackEmpty()
CSV_MM_ConfigInit()
CSV_MM_FwdEmpty()
CSV_MM_GetMonitor()
CSV_MM_GetMonitors()
CSV_MM_GetMouseX
CSV_MM_GetMouseY
CSV_MM_GetOffset
CSV_MM_GetScreenWidth()
CSV_MM_ListLastPages
CSV_MM_MonitorFromPoint
CSV_MM_MonitorFromWindow
CSV_MM_MonitorGoto
CSV_MM_NextEmpty()
CSV_MM_PageDisplay
CSV_MM_PageLast
CSV_MM_PageNext()
CSV_MM_PagePrev()
CSV_MM_PagesInit()
CSV_MM_PreviousEmpty()
CSV_MM_StoreLastPage
CSV_MM_WinDrag()
CSV_MM_WinDragEnd()
CSV_MM_WinFree()
CSV_MM_WinNewAt
CSV_MM_WinPopup
CSV_MM_WinTitle

Chapter: 5 CSV_Include Reference

159



Function Category Functions

CSV_Include Navigation CSV_Nav_Alarms()
CSV_Nav_AlarmsDisabled()
CSV_Nav_AlarmsHardware()
CSV_Nav_AlarmsSummary()
CSV_Nav_CloseWindow()
CSV_Nav_DisableMenuItem
CSV_Nav_DisplayMenuBar
CSV_Nav_DisplayPopupMenu
CSV_Nav_File
CSV_Nav_GetEngToolsPrivilege()
CSV_Nav_Home()
CSV_Nav_Login()
CSV_Nav_LoginMenu()
CSV_Nav_MenuBar_MenuClick
CSV_Nav_Network()
CSV_Nav_NetworkBtnEnabled()
CSV_Nav_PageExists
CSV_Nav_PagePrint()
CSV_Nav_Parent()
CSV_Nav_ParentBtnEnabled()
CSV_Nav_Report()
CSV_Nav_ReportBtnEnabled()
CSV_Nav_ReportMenu
CSV_Nav_Tools()
CSV_Nav_ToolsBtnEnabled()
CSV_Nav_ToolsMenu()
CSV_Nav_Trend()
CSV_Nav_TrendBtnEnabled()
CSV_Nav_TrendMenu()
CSV_Nav_TrendX()
CSV_Nav_TickMenuItem

CSV_Include Security CSV_Sec_ShowLoginMenu

CSV_Include Strings CSV_String_GetField
CSV_String_GetLines
CSV_String_Replace

CSV_Include Tags CSV_Tag_Debug

CSV_Include Tag CSV_Trend_AutoScale
CSV_Trend_DspGroup
CSV_Trend_DspGroupList
CSV_Trend_DspPopupMenu
CSV_Trend_DspScaleRange
CSV_Trend_DspTrendText
CSV_Trend_GetCursorPos
CSV_Trend_GetCursorTypeStr
CSV_Trend_GetCursorValueStr
CSV_Trend_GetDate
CSV_Trend_GetMode
CSV_Trend_GetPen
CSV_Trend_GetPenFocus
CSV_Trend_GetSettings
CSV_Trend_GetSettings
CSV_Trend_GetSpan

Chapter: 5 CSV_Include Reference

160



Function Category Functions
CSV_Trend_GetTime
CSV_Trend_GroupConfig()
CSV_Trend_Page
CSV_Trend_Popup
CSV_Trend_ScaleDigital
CSV_Trend_SelectGroup
CSV_Trend_SelectPen
CSV_Trend_SetCursor
CSV_Trend_SetDate
CSV_Trend_SetDateTime
CSV_Trend_SetPens
CSV_Trend_SetRange
CSV_Trend_SetScale
CSV_Trend_SetSpan
CSV_Trend_SetTime
CSV_Trend_SetTimebase
CSV_Trend_UpdatePens
CSV_Trend_Win

CSV_Include TrendX CSV_TrendX_AddVariable
CSV_TrendX_AgeTrends()
CSV_TrendX_ClearTrend
CSV_TrendX_Close
CSV_TrendX_DeletePen()
CSV_TrendX_Display()
CSV_TrendX_DspPopupMenu
CSV_TrendX_GenericToTag
CSV_TrendX_GenericToTagStr
CSV_TrendX_GetComment
CSV_TrendX_GetCursor
CSV_TrendX_GetDuration()
CSV_TrendX_GetSamplePeriod
CSV_TrendX_GetScale
CSV_TrendX_GetTrendName
CSV_TrendX_GetTrigger
CSV_TrendX_GetVal
CSV_TrendX_InitClient()
CSV_TrendX_InitSrvr()
CSV_TrendX_MapTrendTags()
CSV_TrendX_RefreshTrendPage
CSV_TrendX_SetDuration
CSV_TrendX_SetDuration
CSV_TrendX_SetPen()
CSV_TrendX_SetSamplePeriod
CSV_TrendX_SetScale
CSV_TrendX_TagSelect
CSV_TrendX_TagSelectFrmCursor()
CSV_TrendX_TagToGeneric
CSV_TrendX_TrendTimeout

CSV_Include WinUtilities CSV_WinUtl_DestroyCursor()
CSV_WinUtl_GetColourRes()
CSV_WinUtl_GetCpuUsage
CSV_WinUtl_GetSystemDir()
CSV_WinUtl_GetTotalCpuUsage()
CSV_WinUtl_GetWindowsDir()
CSV_WinUtl_GetWinMode()

Chapter: 5 CSV_Include Reference

161



Function Category Functions
CSV_WinUtl_LoadCursor
CSV_WinUtl_LockWindowUpdate
CSV_WinUtl_NormalCursor
CSV_WinUtl_ShellExec
CSV_WinUtl_UpdateTotalCpuUsage()
CSV_WinUtl_WaitCursor

CSV_Alarms_Ack
Acknowledges an alarm at a specified animation point in an alarm list.

Syntax

CSV_Alarms_Ack(iAN)

iAN:

Animation point number of alarm to acknowledge.

Return Value

0 if successful, otherwise -1.

CSV_Alarms_AckHardware
Acknowledges a hardware alarm at a specified animation point in an alarm list.

Syntax

CSV_Alarms_AckHardware(iAN)

iAN:

Animation point number of alarm to acknowledge.

Note: Hardware alarms are not stored in the same way as standard alarms. There-
fore, AlarmGetDsp() does not return any information for a hardware alarm. Thus,
CSV_Alarms_Ack will not function correctly for hardware alarms.

Return Value

0 if successful, otherwise -1.

CSV_Alarms_AckPage
Acknowledges a page of alarms, starting at a specified animation point. Silences the
alarm sound.

Chapter: 5 CSV_Include Reference

162



Syntax

CSV_Alarms_AckPage(iAN)

iAN:

Starting animation point number of page of alarms to acknowledge.

CSV_Alarms_AckRec
Acknowledges an alarm by record number, and silences the alarm sound.

Syntax

CSV_Alarms_AckRec(iRecNo)

iRecNo:

Record number of alarm to acknowledge.

Return Value

0 if successful, otherwise -1.

CSV_Alarms_AdvFilter
Applies an advanced filter to the alarm list displayed at a specified AN. The advanced
filter allows alarms to be filtered based on Date, Time, Tag, Name, Description, Area, Cat-
egory, Priority, State and Type (or any combination of these).

Syntax

CSV_Alarms_AdvFilter(iAN,iAlarmType,iMonitor)

iAN:

Animation point where the alarm list is displayed.

iAlarmType:

Type of alarm list associated with filter:

l 0 = Last alarms list.
l 1 = Active alarms list.
l 2 = Alarm summary list.
l 3 = Hardware alarms list.
l 4 = Disabled alarms list.

iMonitor:

Chapter: 5 CSV_Include Reference

163



The number of the monitor to associate the filter with (each monitor can display and store a dif-
ferent filter).

Return Value

0

CSV_Alarms_AdvFilterConfig
Displays a popup window allowing the user to configure advance alarm filtering.

Syntax

CSV_Alarms_AdvFilterConfig(iAlarmType,iMonitor)

iAlarmType:

Type of alarm list associated with filter:

l 0 = Last alarms list.
l 1 = Active alarms list.
l 2 = Alarm summary list.
l 3 = Hardware alarms list.
l 4 = Disabled alarms list.

iMonitor:

The number of the monitor to associate the filter with (each monitor can display and store a dif-
ferent filter).

Return Value

0 if Advanced filter applied, otherwise -1.

CSV_Alarms_AdvFilterQuery
Called for each alarm to determine which alarm is displayed when a user defined
advanced filter has been applied.

Syntax

CSV_Alarms_
AdvFilterQuery(iRecNo,nVer,sFromDate,sFromTime,sToDate,sToTime,sTag,sName,sArea,sCate-
gory,sPriority,sState,sType)

iRecNo:

Record number of the alarm.

nVer:

Chapter: 5 CSV_Include Reference

164



Version (not used).

sFromDate:

Alarms prior to this date won't be displayed ("" sets FromDate to earliest possible).

sFromTime:

Alarms prior to this time won't be displayed ("" sets FromTime to 12:00 Midnight).

sToDate:

Alarms subsequent to this date won't be displayed ("" sets ToDate to current date).

sToTime:

Alarms subsequent to this time won't be displayed ("" sets ToDate to current time).

sTag:

Alarm Tag needs to be 'Like' sTag i.e. = *sTag*.

sName:

Alarm Name needs to be 'Like' sName i.e. = *sName*.

sArea:

Area of alarm (or group of areas).

sCategory:

Alarm category (or group of categories).

sPriority:

Alarm priority (or group of priorities).

sState:

Alarm state.

sType):

Alarm type.

Note: Setting any filter argument to "" will result in that filter criteria being ignored.

Return Value

1 if alarm is to be displayed (i.e., matches criteria), otherwise 0.

CSV_Alarms_AdvFilterSetDateTime

Chapter: 5 CSV_Include Reference

165



Writes the date and time entered via a keypad form to specified Text boxes. (Used in the
Advanced Alarm Filter form).

Syntax

CSV_Alarms_AdvFilterSetDateTime(iDateAN, iTime)

iDateAN:

AN number of Date Text Box.

iTime:

AN number of Time Text Box.

Return Value

0 if successful, otherwise -1.

CSV_Alarms_CheckSound
Checks alarm summary records between a specified index and the current index until an
unacknowledged alarm is found (for given area/s) with a priority higher than a specified
priority.

Note: Only call this function on an Alarm Server.

Syntax

CSV_Alarms_CheckSound(iAlarmIndexPrevious,iPriorityPrevious,sArea)

iAlarmIndexPrevious:

Index in alarm summary to begin checking from (i.e., the index of the last alarm checked).

iPriorityPrevious:

Priority to compare with.

sArea:

Current logged in areas (i.e., only check alarms within these areas).

Return Value

This function returns a string containing three values separated by a single space:

l Alarm Priority: Priority of higher priority alarm if one is found, otherwise iPrior-
ityPrevious as originally passed to function.

l Alarm Index: Index of most recent alarm checked.

Chapter: 5 CSV_Include Reference

166



l Alarm Acknowledged: 1 if an alarm has been acknowledged and no further alarms
have since been triggered, otherwise 0.

CSV_Alarms_ClearGroupFilter
Clears the filter applied to the specified alarm list.

Syntax

CSV_Alarms_ClearGroupFilter(iAN,iAlarmType, iMonitor)

iAN:

Animation point number of start of alarm list.

iAlarmType:

Type of alarm list associated with filter:

l 0 = Last alarms list.
l 1 = Active alarms list.
l 2 = Alarm summary list.
l 3 = Hardware alarms list.
l 4 = Disabled alarms list.

iMonitor:

Number of monitor displaying alarm list (-1 = active monitor).

CSV_Alarms_Disable
Disables an alarm at a specified animation point in an alarm list.

Syntax

CSV_Alarms_Disable(iAN)

iAN:

Animation point number of alarm to disable.

Return Value

0 if successful, otherwise -1.

CSV_Alarms_DisableRec
Disables an alarm by record number.

Chapter: 5 CSV_Include Reference

167



Syntax

CSV_Alarms_DisableRec(iRecNo)

iRecNo:

Record number of alarm to disable.

Return Value

0 if successful, otherwise -1.

CSV_Alarms_DspGroupFilter
Displays the Alarm Group listbox, and stores the selected filter for the specified alarm
page and the specified monitor.

Syntax

CSV_Alarms_DspGroupFilter(iAlarmType,iMonitor)

iAlarmType:

Type of alarm list associated with filter:

l 0 = Last alarms list.
l 1 = Active alarms list.
l 2 = Alarm summary list.
l 3 = Hardware alarms list.
l 4 = Disabled alarms list.

iMonitor:

Number of monitor displaying alarm list (-1 = active monitor).

Return Value

Name of Alarm Group selected, or "" if selection canceled.

CSV_Alarms_DspGroupList
Displays the Alarm Group listbox.

Syntax

CSV_Alarms_DspGroupList

sSelectedGroup:

Name of group to preselect in the list.

Chapter: 5 CSV_Include Reference

168



sAreas:

Areas to enable in the list; i.e., only alarm groups belonging to these areas are displayed.

Return Value

Alarm group (description) selected from the list, or "" if cancel is pressed.

CSV_Alarms_DspInfo
Displays information popup for alarm at specified animation point in alarm list.

Syntax

CSV_Alarms_DspInfo(iAN)

iAN:

Animation point number of alarm to display information for.

CSV_Alarms_DspInfoRec
Displays information popup for alarm at the specified record number.

Syntax

CSV_Alarms_DspInfoRec(iRecNo)

iRecNo:

Record number of alarm to display information for.

Return Value

0 if successful, otherwise -1.

CSV_Alarms_DspLast
Displays specified number of most recent alarms, starting at a specified animation point.

Syntax

CSV_Alarms_DspLast(iAN,iAlarmCount,iType)

iAN:

Animation point number of start of alarm list.

iAlarmCount:

Number of alarms to display.

Chapter: 5 CSV_Include Reference

169



iType:

The type of alarms to display.

Non-hardware alarms
l -1 = Alarms specified by [Alarm]LastAlarmType parameter
l 0 = Active alarms, i.e. Types 1 and 2.
l 1 = Unacknowledged alarms, ON and OFF.
l 2 = Acknowledged ON alarms.
l 3 = Disabled alarms.
l 4 = Configured (non-hardware) alarms, i.e. Types 0 to 3, plus acknowledged
OFF alarms.

Hardware alarms
l 5 = Active alarms; i.e., types 6 and 7.
l 6 = Unacknowledged alarms, ON and OFF.
l 7 = Acknowledged ON alarms.
l 8 = Disabled alarms.
l 9 = Configured alarms; i.e., types 5 to 8.

Alarm Summary
l 10 = Summary alarms.

Alarm General
l 11 = ON alarms.
l 12 = OFF alarms.
l 13 = ON hardware alarms.
l 14 = OFF hardware alarms.

CSV_Alarms_Enable
Enables an alarm at a specified animation point in an alarm list.

Syntax

CSV_Alarms_Enable(iAN)

iAN:

Animation point number of alarm to enable.

Return Value

0 if successful, otherwise -1.

CSV_Alarms_EnableRec

Chapter: 5 CSV_Include Reference

170



Enables an alarm by record number.

Syntax

CSV_Alarms_EnableRec(iRecNo)

iRecNo:

Record number of alarm to enable.

Return Value

0 if successful, otherwise -1.

CSV_Alarms_GetAckPrivilege()
Checks that the user has privilege level necessary for acknowledging alarms.

Return Value

1 if user has necessary privilege level, otherwise 0.

CSV_Alarms_GetDisablePrivilege()
Checks that the user has privilege level necessary for disabling alarms.

Return Value

1 if user has necessary privilege level, otherwise 0.

CSV_Alarms_GetGroupFilter
Returns the description of the filter currently applied to the alarm list.

Syntax

CSV_Alarms_GetGroupFilter(iAlarmType,iMonitor,iChars)

iAlarmType:

Type of alarm list associated with filter:

l 0 = Last alarms list.
l 1 = Active alarms list.
l 2 = Alarm summary list.
l 3 = Hardware alarms list.
l 4 = Disabled alarms list.

iMonitor:

Number of monitor displaying alarm list (-1 = active monitor).

Chapter: 5 CSV_Include Reference

171



iChars:

Number of characters per line (-1 = single line).

Return Value

Description of the filter currently applied to a specified alarm list, returned as lines if a
maximum number of characters per line is specified.

CSV_Alarms_GetGroupFilterID
Returns the name of the group associated with the filter currently applied to a specified
alarm list.

Syntax

CSV_Alarms_GetGroupFilterID(iAlarmType,iMonitor)

iAlarmType:

Type of alarm list associated with filter:

l 0 = Last alarms list.
l 1 = Active alarms list.
l 2 = Alarm summary list.
l 3 = Hardware alarms list.
l 4 = Disabled alarms list.

iMonitor:

Number of monitor displaying alarm list (-1 = active monitor).

Return Value

Name of alarm group, or "_AdvFilter_" if advanced filter applied, "" if no filter applied.

CSV_Alarms_GetUniqueGroupName
Checks if a group of a specified name exists. If a group already exists with the specified
name then a new name is found by appending a number to the original name.

Syntax

CSV_Alarms_GetUniqueGroupName(sGroupName)

sGroupName:

Name of a group to check.

Chapter: 5 CSV_Include Reference

172



Note: Call this function to verify a new group can be created with a specified name,
before attempting to create the group.

Return Value

Name of a group not yet assigned (= sGroupName, or modified version of sGroup-
Name).

CSV_Alarms_GroupAdd
Adds an alarm group to the Alarm Group Listbox, and creates a group to store the asso-
ciated alarm categories. The alarm group is also added to AlarmGrp.dbf. The name of
the group is stored in the second field of the listbox (non-visible field), as well as in the
"Name" field of the AlarmGrp.dbf.

Note: Alarm groups are used to filter alarms on an alarm page. When a group is
selected from the list only alarms having the associated categories are displayed on
the alarm page.

Syntax

CSV_Alarms_GroupAdd(sGroupName, sDesc, sCategories, sArea)

sGroupName:

Name/ID of alarm group (needs to be unique).

sDesc:

Text describing alarm group that will appear in listbox.

sCategories:

String listing categories represented by alarm group. To have the same format as a standard Citect-
SCADA group; for example, "1,5,7..9" = categories 1,5,7,8,9.

sArea:

Area the group applies to. Empty string = every area.

Return Value

Name of the group created, or "" if unsuccessful.

CSV_Alarms_GroupConfig()

Chapter: 5 CSV_Include Reference

173



Displays a popup window allowing the user to browse/edit/add/delete records in the
AlarmGrp.dbf at runtime.

Note:Modifications can be made to alarm groups at run-time, that will be reflected
in the list box displaying available alarm groups for filtering.

CSV_Alarms_GroupRemove
Removes an alarm group from the Alarm Group Listbox, and deletes the CitectSCADA
group of the same name. The alarm group is also removed from the AlarmGrp.dbf.

Note: Alarm groups are used to filter alarms on an alarm page. When a group is
selected from the list, only alarms having the associated categories are displayed on
the alarm page.

Syntax

CSV_Alarms_GroupRemove(sGroupName)

sGroupName:

Unique Name/ID of alarm group (= second field (non-visible) of Alarm Group listbox, which can
be retrieved by calling CSV_ListBox_GetSelectedItemID.)

Return Value

0 if successful, otherwise -1.

CSV_Alarms_GroupEdit
Edits an existing alarm group in the Alarm Group Listbox, and updates the
AlarmGrp.dbf.

Note: Alarm groups are used to filter alarms on an alarm page. When a group is
selected from the list, only alarms having the associated categories are displayed on
the alarm page.

Syntax

CSV_Alarms_GroupEdit(sGroupName,sDesc,sCategories,sArea)

sGroupName:

Name/ID of alarm group (needs to be unique).

sDesc:

Chapter: 5 CSV_Include Reference

174



Text describing alarm group that will appear in listbox.

sCategories:

String listing categories represented by alarm group. To have the same format as a standard Citect-
SCADA group; for example, "1,5,7..9" = categories 1,5,7,8,9.

sArea:

Area the group applies to. Empty string = every area.

Return Value

0 if successful, otherwise -1.

CSV_Alarms_GroupFilter
Filters the alarm list starting at a specified animation point for a group of categories.

Note: If the group name = "_AllAlarms_", the "all alarms' is displayed; i.e., the filter
is cleared. If the group name = "_AdvFilter_", the selected advanced filter is applied
to the alarm list.

Syntax

CSV_Alarms_GroupFilter(iAN,sGroupName,iAlarmType,iMonitor)

iAN:

Animation point number of start of alarm list.

sGroupName:

Name/ID of alarm group to filter for.

iAlarmType:

Type of alarm list associated with filter.

l 0 = Last alarms list.
l 1 = Active alarms list.
l 2 = Alarm summary list.
l 3 = Hardware alarms list.
l 4 = Disabled alarms list.

iMonitor:

Number of monitor displaying alarm list (-1 = active monitor).

Chapter: 5 CSV_Include Reference

175



Return Value

Handle to group, otherwise -1.

CSV_Alarms_GroupSelect
Filters the alarm list starting at a specified animation point for a group of categories. The
alarm group may be specified by either the group name or the group description (as
found in the AlarmGrp.dbf). Stores the applied filter for a specified monitor and spec-
ified alarm page type.

Syntax

CSV_Alarms_GroupSelect(iAN,sGroupID,sGroupIDType,iAlarmType, iMonitor)

iAN:

Animation point number of start of alarm list.

sGroupID:

Name/Desc of alarm group to filter for. If sGroupID = "", the filter is cleared.

sGroupIDType:
l 0 = sGroupID specifies the alarm group Name.
l 1 = sGroupID specifies the alarm group description.

iAlarmType:

Type of alarm list associated with filter:

l 0 = Last alarms list.
l 1 = Active alarms list.
l 2 = Alarm summary list.
l 3 = Hardware alarms list.
l 4 = Disabled alarms list.

iMonitor:

Number of monitor displaying alarm list (-1 = active monitor).

CSV_Alarms_GroupsInit()
Initializes Alarm Group Listbox with groups specified in AlarmGrp.dbf. For each alarm
group listed in AlarmGrp.dbf, a group is created to store the alarm categories assigned to
the alarm group. Groups are used to filter alarm list. When a group is selected from the
list, only alarms having those categories are displayed on the alarm page.

Chapter: 5 CSV_Include Reference

176



Return Value

0 if successful, otherwise -1.

CSV_Alarms_Help
For alarm at specified animation point in alarm list: Displays page specified in help
field of alarm dbf, or if help field begins with "?", calls the function named in the field
(i.e., the text following "?").

Return Value

CSV_Alarms_Help(iAN)

iAN:

Animation point number of alarm to display help for.

Return Value

0 if successful, otherwise -1.

CSV_Alarms_HelpRec
For alarm at specified record number: displays the page specified in the help field of
alarm dbf, or if the help field begins with "?", calls the function named in the field (i.e.,
the text following "?").

Syntax

CSV_Alarms_HelpRec(iAN)

iAN:

Animation point number of alarm to display help for.

Return Value

0 if successful, otherwise -1.

CSV_Alarms_ListHeading
Returns a formatted heading for the specified alarm list type. The heading format is spec-
ified by the ini parameters [Alarm]ActiveHeading, [Alarm]SummaryHeading, [Alarm]Di-
sabledHeading, and [Alarm]HardwareHeading.

Syntax

CSV_Alarms_ListHeading(iAlarmType)

Chapter: 5 CSV_Include Reference

177



iAlarmType:

Type of alarm list associated with filter.

l 0 = Last alarms list.
l 1 = Active alarms list.
l 2 = Alarm summary list.
l 3 = Hardware alarms list.
l 4 = Disabled alarms list.

Return Value

Alarm list heading. Returns "" if no heading has been specified.

Example
[Alarm]

ActiveHeading = {DATE,12}^t{TIME,14}^t{NAME,15}^t{DESC,40}^t{STATE,10}

CSV_Alarms_ListHeadingFont()
Returns the font to use for alarm list headings. The font is specified by the ini parameter
[Alarm]HeadingFont. If no font is specified the default, (Tahoma, bold, 9 blue) is used.

Return Value

Alarm list heading font.

CSV_Alarms_PopupMenu
Displays popup menu for alarm at specified animation point in alarm list. Available
menu items:

l Alarm information

l Acknowledge

l Disable

l Enable

l Help

Note: The Disable/Enable options are available only to user with privilege level spec-
ified by [Privilege] DisableAlarms parameter. Acknowledge option available only to
user with privilege level specified by [Privilege] AckAlarms parameter.

Syntax

CSV_Alarms_PopupMenu(iAN,iAlarmType,iPreserveWinNo)

Chapter: 5 CSV_Include Reference

178



iAN:

Animation point number of alarm to display menu for.

iAlarmType:

Type of alarm list:

l 0 = Last alarms list.
l 1 = Active alarms list.
l 2 = Alarm summary list.
l 3 = Hardware alarms list.
l 4 = Disabled alarms list.

iPreserveWinNo:

An optional argument which restores the original window selected upon exiting the func-
tion if set to 1.

Allowable Values:

0 = Preserves the original behavior (default).

1 = Restores the original window selected.

Return Value

0 if successful, otherwise -1.

CSV_Alarms_Sound()
Checks if there are unacknowledged alarms in the system, and if there are it sounds the
relevant alarm.

CSV_Alarms_SoundActive()
Checks if an alarm is being sounded. This function is used to animate siren in tem-
plates, and so on.

Return Value

1 if sound is active, otherwise 0.

CSV_Alarms_Silence()
Silences alarm by setting miResetAlarmSound.

CSV_DB_BOF
Checks for the beginning of file flag for a recordset.

Chapter: 5 CSV_Include Reference

179



Syntax

CSV_DB_BOF(hRecordSet)

hRecordSet:

Handle to recordset (as returned from CSV_DB_Execute() )

Return Value

0 if not at beginning of file.

CSV_DB_Close
Closes a specified recordset.

Syntax

CSV_DB_Close(hRecordSet)

hRecordSet:

Handle to recordset (as returned from CSV_DB_Execute() )

Return Value

0 if successful, otherwise -1.

CSV_DB_EOF()
Checks for the end of file flag for a recordset.

Return Value

0 if not at end of file.

CSV_DB_Execute
Executes a command on a specified database. A connection string is used to specify how
to connect to the database. If a standby connection string is specified then the standby
path is used if the primary path is offline. Make the command an SQL type command,
for example:

"SELECT * FROM MyTable WHERE TimeValue(Time) > #10:00:00#" etc.

Example connection strings:

SQL Server:

Chapter: 5 CSV_Include Reference

180



"Provider=sqloledb;Data Source=MySQLServerName;Initial

Catalog=MyDatabase;User Id=MyUserID;Password=MyPassword;"

Access:

"Provider=Microsoft.Jet.OLEDB.4.0;Data

Source=\somepath\mydb.mdb;User Id=MyUserID;Password=MyPassword;"

Oracle:

"Provider=OraOLEDB.Oracle;Data Source=MyOracleDB;User

Id=MyUserID;Password=MyPassword;"

Excel:

"Provider=Microsoft.Jet.OLEDB.4.0;Data

Source=C:\somepath\MyExcel.xls; Extended Properties=Excel

8.0;HDR=Yes;IMEX=1"

where:

HDR=Yes; indicates that the first row contains columnnames, not data

IMEX=1; tells the driver to always read "intermixed" data columns as text

Text:

"Provider=Microsoft.Jet.OLEDB.4.0;Data

Source=c:\somepath\MyTxtFilesFolder\;Extended

Properties=text;HDR=Yes;FMT=Delimited"

where:

"HDR=Yes;" indicates that the first row contains column names, not data

DBF:

"Provider=Microsoft.Jet.OLEDB.4.0;Data

Source=c:\somepath\MyDbfFolder;Extended Properties=dBASE IV;User

ID=Admin;Password="

DSN:

"DSN=MyDsn;Uid=MyUserID;Pwd=MyPassword;"

UDL:

"File Name=c:\somepath\myDataLink.udl;"

Chapter: 5 CSV_Include Reference

181



Syntax

CSV_DB_Execute(sCommand,sPrimaryConnection,sStandbyConnection)

#sCommand:

Command to execute

#sPrimaryConnection:

Connection string for primary connection path.

#sStandbyConnection:

Connection string for standby connection path.

Return Value

Handle to the resulting recordset if successful, otherwise -1.

CSV_DB_GetExecuteError
Returns a description of the error that occurred for the last CSV_DB_Execute command
call.

Syntax

CSV_DB_GetExecuteError(nMode)

#nMode

Return Value

Error description.

CSV_DB_GetFieldCount
Returns the number of fields contained in a specified recordset.

Syntax

CSV_DB_GetFieldCount(hRecordSet)

Return Value

Number of fields if successful, otherwise -1.

CSV_DB_GetFieldIndex
Returns the index of a specified field in a specified recordset.

Chapter: 5 CSV_Include Reference

182



Syntax

CSV_DB_GetFieldIndex(hRecordSet,sField)

#sField:

Name of field.

Return Value

Index of fields if successful, otherwise -1.

CSV_DB_GetFieldName
Returns the name of a field contained in a specified recordset. The field is identified by a
field index.

Syntax

CSV_DB_GetFieldName(hRecordSet,nFieldIndex)

#nFieldIndex:

Index of field (first field has nFieldIndex = 0).

Return Value

Name of fields if successful, otherwise "".

CSV_DB_GetFieldText
Returns the value of a field (as a string) contained in a specified recordset. The field is
identified by a field index.

Syntax

CSV_DB_GetFieldText(hRecordSet,sField,nFieldIndex,sNullValue)

#sField:

Name of field. (Leave blank "" if nFieldIndex is to be used instead.)

#nFieldIndex:

Index of field.The first field has nFieldIndex = 0. (Used only if sField = "")

#sNullValue:

Value to return if the field value is Null

Chapter: 5 CSV_Include Reference

183



Note: If the value of the field is Null then this function will return the string spec-
ified by the argument sNullValue.

Return Value

Value of fields if successful, otherwise sNullValue.

CSV_DB_GetRowCount
Returns the number of rows contained in a specified recordset.

Syntax

CSV_DB_GetRowCount(hRecordSet)

Return Value

Number of rows if successful, otherwise -1.

CSV_DB_GetRowCurrent
Returns the row number of the current record in a specified recordset.

Syntax

CSV_DB_GetRowCurrent(hRecordSet)

Return Value

Current row number if successful, otherwise -1.

CSV_DB_GetRowFieldText
Get the value of a specified field in a specified row of a specified recordset.

Syntax

CSV_DB_GetRowFieldText(hRecordSet,nRowOffset,sField,nFieldIndex, sNullValue)

#nRowOffset:

Offset of row (from current position)

CSV_DB_MoveFirst
Finds the first record in a specified recordset.

Chapter: 5 CSV_Include Reference

184



Syntax

CSV_DB_MoveFirst(hRecordSet)

Return Value

First record if successful, otherwise -1.

CSV_DB_MoveLast
Finds the last record in a specified recordset.

Syntax

CSV_DB_MoveLast(hRecordSet)

Return Value

Last record if successful, otherwise -1.

CSV_DB_MoveNext
Finds the next record in a specified recordset.

Syntax

CSV_DB_MoveNext(hRecordSet)

Return Value

Next record if successful, otherwise -1.

CSV_DB_MoveOffset
Finds the record at a specified offset from the current record in a specified recordset.

Syntax

CSV_DB_MoveOffset(hRecordSet)

Return Value

Record at specified offset if successful, otherwise -1.

CSV_DB_MovePrev
Finds the previous record in a specified recordset.

Chapter: 5 CSV_Include Reference

185



Syntax

CSV_DB_MovePrev(hRecordSet)

Return Value

Previous record if successful, otherwise -1.

CSV_DB_StandbyConnectionActive
Check the last connection state of the specified primary connection and the specified
standby connection.

Syntax

CSV_DB_StandbyConnectionActive(sPrimaryConnection, sStandbyConnection)

Return Value

If the primary connection state is offline and the standby connection state is online then
return 1 otherwise return 0.

CSV_DB_StrToSQL
Replaces single quote with two single quotes to verify SQL interprets single quote as text
only.

Syntax

CSV_DB_StrToSQL(sText)

#sText:

The text to convert to SQL format

Return Value

Converted text.

CSV_Display_Logo
Displays company logo at specified x and y coordinates. The logo needs to be a 256-
color (or less) bitmap file. The default file is "logo.bmp" located in the [RUN] directory.
Alternatively, a file name and path may be specified.

Note: The logo will only be displayed on the first scanupdate of the page.

Chapter: 5 CSV_Include Reference

186



Syntax

CSV_Display_Logo(iX,iY,sLogoFile)

#iX:

X coordinate to display top-left corner of logo.

#iY:

Y coordinate to display top-left corner of logo.

#sLogoFile:

File name to display (including path).

CSV_Display_ServicePack()
Gets CitectSCADA Service Pack in the form 'Service Pack A' . The function will only
return a value for officially released service packs. Any hotfix being applied will result
in the function returning 'Unknown'.

Return Value

CitectSCADA Service Pack as string.

CSV_Display_Title()
Gets window title to display in title bar.

Return Value

Window title.

CSV_Display_Version()
Gets CitectSCADA Version number in the form 5.41.128.

Return Value

CitectSCADA Version number as string.

CSV_File_Display
Displays textRich text file at a text box object AN.

Syntax

CSV_File_Display(sFile,iAN,iMode,sFontName,sFontSize, iFontColour,iBackColour,iWord-
Wrap,iScrollbars)

Chapter: 5 CSV_Include Reference

187



#sFile:

Name of file to display.

#iAN:

Animation point number of text box object.

#iMode:
l 1 = Locked (don't allow editing).
l 2 = Allow save (enables save option in popup context menu).
l 4 = Allow create (creates the file if it doesn't already exist).
l 8 = Allow open (enable open option in popup context menu, which allows
user to browse for another file to open).

#sFontName:

Name of font.

#sFontSize:

Size of font.

#iFontColour:

Color of font.

#iBackColour:

Color of text box.

#iWordWrap:

Wrap text (for text files only; i.e., not rtf files).

#iScrollbars:

Display scrollbars:

l 0 = None
l 1 = Horizontal
l 2 = Vertical
l 3 = Both

CSV_File_Print
Prints text/Rich text file.

Syntax

CSV_File_Print(Name)

#Name:

Chapter: 5 CSV_Include Reference

188



Name of file to print.

Return Value

0 if successful, otherwise -1.

CSV_File_Save
Saves text/Rich text file.

Syntax

CSV_File_Save(sFile)

#sFile:

Name of File to save.

Return Value

0 if successful, otherwise -1.

CSV_Form_Centre
Displays a form in the center of the current monitor screen.

Syntax

CSV_Form_Centre(iFormX, iFormY)

#iFormX:

Width of form.

#iFormY:

Height of form

CSV_Form_Login()
Displays the login form, gets the user name and password, and then tries to log the user
in. If the login does not succeed, it will retry until login is OK or user presses the Cancel
button.

Return Value

0 if login successful, otherwise an error (298).

CSV_Form_NumPad

Chapter: 5 CSV_Include Reference

189



Generates a form that allows the user to enter values through a number pad. The form is
displayed on the current ('active') monitor, at the cursor position.

Syntax

CSV_Form_NumPad(sTitle,sInput,iMode)

#sTitle:

Title of numeric pad form.

#sInput:

Initial default value.

#iMode:

Indicates the input mode:

l 0 = Normal keypad.
l 1 = With a Password style edit field.
l 2 = Mode not yet implemented.
l 4 = With "+-" button.
l 8 = With "" button.
l 16 = With "." button.
l 32 = With ":" button, not compatible with mode "+-".
l 64 = With "AM" and "PM" buttons, not comparable with mode "" or "."
l 128 = With "Now" button.
l 512 = With "1hr", "2hr", "8hr", "24hr" buttons, not compatible with mode
"Now".

Return Value

Returns the string of value entered through the keypad if closed with the accept button,
or a null string if closed any other way.

CSV_Form_Position
Displays a form at the specified x,y coordinates, and commands that the entire form be
displayed within the boundaries of the current monitor. (i.e., that the x,y coordinates are
automatically adjusted if necessary).

Syntax

CSV_Form_Position(iX, iY, iFormX, iFormY)

#iX:

Desired X position of top-left of form.

Chapter: 5 CSV_Include Reference

190



#iY:

Desired Y position of top-left of form.

#iFormX:

Width of form.

#iFormY:

Height of form.

CSV_Form_Shutdown()
Displays a dialog box to verify that the user really wants to shut down the CitectSCADA
system. If the user selects [Yes], CitectSCADA will be shut down.

Return Value

0 if shutdown confirmed, otherwise an error (298).

CSV_Form_UserCreate()
Displays a form to create a record for a new user. A new user of the specified type is
created. The name of the user needs to be unique.

Return Value

0 if new user is created successfully, otherwise an error.

CSV_Form_UserEdit()
Displays a form to allow the user to create or delete any user record in the database.
Give this function restricted access. Changes are written to both the Users database and
the runtime database in memory.

Return Value

0 if successful, otherwise an error.

CSV_Form_UserPassword()
Displays a form to allow users to change their own passwords. Changes are written to
both the Users database and the runtime database in memory.

Return Value

0 if successful, otherwise an error.

CSV_ListBox_AddItem

Chapter: 5 CSV_Include Reference

191



Adds item to combo box in ActiveX tag list object.

Syntax

CSV_ListBox_AddItem(hList,sItem,sCategory,sItemID)

#hList:

Handle to list object.

#sItem:

Item text to add to list.

#sCategory:

Category of item (list can be filtered by category).

#sItemID:

ID of item (optional, but if used make it unique for each item).

Return Value

0 if successful, otherwise -1.

CSV_ListBox_Clear
Clears ActiveX list object.

Syntax

CSV_ListBox_Clear(hList)

#hList:

Handle to list object.

Return Value

0 if successful, otherwise -1.

CSV_ListBox_Create()
Creates ActiveX list object.

Note: This object displays a form that contains a combobox. The form may be dis-
played or hidden at any time. Items may be added to or removed from the combobox
at any time (whether or not the combobox is currently being displayed). The com-
bobox remains in memory until the CSV_List_Destroy() function is called for that

Chapter: 5 CSV_Include Reference

192



combobox.

Return Value

0 if list box was created successfully, otherwise an error.

CSV_ListBox_Create()
Creates new list.

Return Value

Handle to the created list if list box was created successfully; otherwise -1.

CSV_ListBox_Destroy
Destroys ActiveX list object.

Note: Call this function if the listbox is no longer necessary to free memory.

Syntax

CSV_ListBox_Destroy(hList)

#hList:

Handle to list object.

Return Value

0 if successful, otherwise -1.

CSV_ListBox_GetCategory
Returns the item category associated with a given ItemID.

Syntax

CSV_ListBox_GetCategory(hList,sItemID)

#hList:

Handle to list object.

#sItemID:

ItemID of item.

Chapter: 5 CSV_Include Reference

193



Return Value

Category of item having ItemID = sItemID.

CSV_ListBox_GetItem
Returns the item text associated with a given ItemID.

Syntax

CSV_ListBox_GetItem(hList,sItemID)

#hList:

Handle to list object.

#sItemID:

ItemID of item.

Return Value

Item having ItemID = sItemID.

CSV_ListBox_GetItemID
Returns the item ID associated with a given Item text.

Syntax

CSV_ListBox_GetItemID(hList,sItem)

#hList:

Handle to list object.

#sItem:

Item text (as it appears in the listbox).

Return Value

ItemID.

CSV_ListBox_GetSelectedItem
Called when list is displayed. Returns the selected item.

Syntax

CSV_ListBox_GetSelectedItem(hList)

Chapter: 5 CSV_Include Reference

194



#hList:

Handle to list object.

Return Value

Item selected from list.

CSV_ListBox_GetSelectedItemCategory
Call after selection has been made from list. Returns the category of the selected item.

Syntax

CSV_ListBox_GetSelectedItemCategory(hList)

#hList:

Handle to list object.

Return Value

Category of item selected from list.

CSV_ListBox_GetSelectedItemID
Call after item has been selected from list to retrieve its Item ID.

Syntax

CSV_ListBox_GetSelectedItemID(hList)

#hList:

Handle to list object.

Return Value

ItemID of item selected from list.

CSV_ListBox_GetTagComment
Extracts the tag comment from a string containing the name followed by, in brackets, the
tag comment.

Syntax

CSV_ListBox_GetTagComment(sItem)

#sItem:

Chapter: 5 CSV_Include Reference

195



String containing tag name and comment.

Return Value

Comment of tag contained in string sItem

CSV_ListBox_GetTagDescFromTag
Extracts the tag name and comment from the tag name.

Syntax

CSV_ListBox_GetTagDescFromTag(sTrendTag)

#sTrendTag:

Name of tag.

Return Value

String containing formatted tag name and comment.

CSV_ListBox_GetTagName
Extracts the tag name from a string containing the name followed by, in brackets, the tag
comment.

Syntax

CSV_ListBox_GetTagName(sItem)

#sItem:

String containing tag name and comment.

Return Value

Name of tag contained in string sItem.

CSV_ListBox_GetTrendDescFromTag()
Remove item from combo box in ActiveX list object.

Syntax

CSV_ListBox_GetTrendDescFromTag(#sTrendTag)

#sTrendTag:

Name of trend tag.

Chapter: 5 CSV_Include Reference

196



Return Value

String containing formatted trend tag name and comment.

CSV_ListBox_RemoveItem
Removes item from combo box in ActiveX list object.

Note: Two options: 1) Specify both sItem AND sCategory; or 2) Set sItem = "", sCate-
gory = "", and specify only sItemID.

Syntax

CSV_ListBox_RemoveItem(hList,sItem,sCategory,sItemID)

#hList:

Handle to list object.

#sItem:

Item to remove from list.

#sCategory:

Category of item.

#sItemID:

ID of item.

Return Value

0 if successful, otherwise -1.

CSV_ListBox_Hide
Hides list.

Syntax

CSV_ListBox_Hide(hList)

#hList:

Handle to list object.

Return Value

0 if successful, otherwise -1.

Chapter: 5 CSV_Include Reference

197



CSV_ListBox_SelectCategories
Select categories of items to be displayed in list (filters list to display only items having
specified category. More than one category can be displayed by separating each category
with a comma (and no spaces between categories).

Note: Categories = "" -> removes category filter.

Syntax

CSV_ListBox_SelectCategories(hList, sCategories)

#hList:

Handle to list object.

#sCategories:

Categories to filter list for.

Return Value

0 if successful, otherwise -1.

CSV_ListBox_SelectTags()
Creates an ActiveX object which provides a combo box to allow a tag to be selected from
a list. If a tag list object already exists a new instance of it is created.

Return Value

Handle to tag list object.

CSV_ListBox_SelectTrends()
Creates an ActiveX object which provides a combo box to allow a trend tag to be selected
from a list. If a trend tag list object already exists a new instance of it is created.

Return Value

Handle to trend list object.

CSV_ListBox_SetText
Set title, description, OK button, and Cancel button text on ActiveX list object.

Syntax

CSV_ListBox_SetText(hList,sTitle,sDesc,sOK,sCancel)

Chapter: 5 CSV_Include Reference

198



#hList:

Handle to list object.

#sTitle:

Title appearing on form.

#sDesc:

Description appearing on form.

#sOK:

Text displayed on OK button.

#sCancel:

Text displayed on Cancel button.

Return Value

0 if successful, otherwise -1.

CSV_ListBox_Show
Displays list of tags.

Syntax

CSV_ListBox_Show(hList,sTitle,sDesc,sOK,sCancel,iX,iY)

#hList:

Handle to list object.

#sTitle:

Title appearing on form.

#sDesc:

Description appearing on form.

#sOK:

Text displayed on OK button.

#sCancel:

Text displayed on Cancel button.

#iX:

X coordinate of left corner, or -9999 to center horizontally on active monitor.

Chapter: 5 CSV_Include Reference

199



#iY:

Y coordinate of top corner, or -9999 to center vertically.

Return Value

Item selected from list (returns empty string if no item selected)

CSV_ListBox_TagFormat
Formats a string to contain the name of the specified variable followed by, in brackets,
the comment associated with the variable. Called before adding a variable to a drop
down list of variables available for trending. Formats each item in the drop down list.

Syntax

CSV_ListBox_TagFormat(sVariable)

#sVariable:

Name of variable to be formatted.

CSV_ListBox_Visible
Checks if a ListBox is currently visible.

Syntax

CSV_ListBox_Visible(hObject)

#hObject:

Handle to list object.

Return Value

1 if list is currently visible, otherwise 0.

CSV_Math_RoundDown
Rounds a real value down (toward 0) to a specified number of decimal places.

Syntax

CSV_Math_RoundDown(rValue, iDecPlaces)

#rValue:

The value to be rounded down.

#iDecPlaces:

Chapter: 5 CSV_Include Reference

200



The number of decimal places the value is rounded down to.

Example

CSV_Math_RoundDown(4.328, 2) = 4.32

CSV_Math_RoundDown(4.321, 2) = 4.32

CSV_Math_RoundDown(-4.321, 2) = -4.32

CSV_Math_RoundDown(512.3, -2) = 500

Return Value

Rounded value.

CSV_Math_Truncate
Truncates a real value down to an integer value.

Syntax

CSV_Math_Truncate(rValue)

Example

CSV_Math_Truncate(4.328) = 4

CSV_Math_Truncate(5.867) = 5

Return Value

Truncated value (as integer).

CSV_MenuConfig_Close()
Closes the Menu Configuration popup. If changes have not been saved, a prompt to
save the configuration will appear.

Return Value

0 if successful, otherwise -1.

CSV_MenuConfig_Display()
Displays Menu configuration popup, which gives the user the ability to configure menus
at runtime.

Chapter: 5 CSV_Include Reference

201



Return Value

0 if successful, otherwise -1.

CSV_MenuConfig_LoadDflt()
Loads a default menu configuration from the [Bin] directory.

Return Value

0 if successful, otherwise -1.

CSV_MenuConfig_UserPages()
Updates the menu configuration to allow the user to select from the "Pages" menu every
non-system page (maximum number of pages = 25).

Return Value

0 if successful, otherwise -1.

CSV_MessageBox
Displays a message box centered on the active monitor screen and waits for the user to
select a button. Can display up to three buttons, as well as a checkbox. Can disappear
after specified timeout. The maximum timeout is 30s if this is used. If 0 is passed in then
no timeout applies.

When using 1,2 or 3 custom buttons: due to the way the underlying widget works, 1 or 2
button custom popups do not have the Cancel or Timeout Feature. The 3 button version
does have Timeout. It is recommended when using 2 buttons to use this syntax :

"button1", "button2", "Cancel"

This will allow your 2 button selection to have a timeout feature. In this example your
Cicode needs to use the '2' button reply as meaning cancel (299).

Error 359 is returned when a 2nd popup is attempts to display with the same title. The
location of the message box is the same so multiple popup boxes // can be problematic.

Syntax

CSV_MessageBox(sTitle,sPrompt,iMode,iTimeout,sButton1Text,sButton2Text,sBut-
ton3Text,sCheckboxText)

#sTitle:

Message box title

#sPrompt:

Chapter: 5 CSV_Include Reference

202



Message box prompt

#iMode :
l 0 - OK button only (default)
l 1 - OK and Cancel buttons
l 2 - Abort, Retry, and Ignore buttons
l 3 - Yes, No, and Cancel buttons
l 4 - Yes and No buttons
l 5 - Retry and Cancel buttons
l 16 - Critical message
l 32 - Warning query
l 48 - Warning message
l 64 - Information message
l 0 - First button is default (default)
l 256 - Second button is default
l 512 - Third button is default
l 768 - Fourth button is default
l 0 - Application modal message box (default)
l 4096 - System modal message box
l 16384 - Adds Help button to the message box
l 65536 - Specifies the message box window as the foreground window
l 524288 - Text is right aligned
l 1048576 - Specifies text to appear as right-to-left reading on Hebrew and
Arabic systems

#iTimeout:

The number of seconds before the message box disappears.

#sButton1Text:

Text for first button

#sButton2Text:

Text for second button

#sButton3Text:

Text for third button

#sCheckBoxText:

Text for the checkbox

Chapter: 5 CSV_Include Reference

203



Return Value

If sButtonText1="" OR the 3 TextBoxes are in use then:

Return Value Description

0 OK button pressed

299 Cancel button pressed

359 A Popup with the same title is already displayed

512 A timeout has occurred

3 Abort button pressed

4 Retry button pressed

5 Ignore button pressed

6 Yes button pressed

7 No button pressed

Else:

Return Value Description

0 First button pressed

1 Second button pressed

2 Third button pressed

359 A Popup with the same title is already displayed

If sCheckBoxText <> "" then 1024 is added to the above return values.

CSV_Misc_CheckNumPadValue
Uses the MultiMonitor Numpad to get a value, then checks the value's range and
returns the new value, or the old if range is incorrect.

Syntax

CSV_Misc_CheckNumPadValue(sDESC, rValue, rUpLimit, rLowLimit)

#sDESC:

The description to appear in the form numpad title (as a string)

#rValue:

The original value to be changed (as a real or int)

#rUpLimit:

Chapter: 5 CSV_Include Reference

204



The Upper limit that the original value can be changed to (as a real or int)

#rLowLimit:

The Lower limit that the original value can be changed to (as a real or int)

Return Value

The new value or the original value if out of range.

Example
Tag = CSV_Misc_CheckNumPadValue("change Value", Tag, 190, 10)

! This will means that Tag can only have values of 10 - 190 written to it via the form-

NumPad.

CSV_Misc_IntRange
Checks the range is valid for Integers; if not, a message box appears informing the user
of the correct range.

Syntax

CSV_Misc_IntRange(LowerRange,UpperRange,OriginalValue,NewValue)

#LowerRange:

The Lower range of the necessary Range

#UpperRange:

The Upper range of the necessary Range

#Original Value:

The value to be change back too; this is used if the value is invalid or out of range.

#New Value:

The new value to change to.

Return Value

The new value, or the original value if out of range.

CSV_Misc_MouseOver
Returns TRUE if the mouse is inside the region defined by the extents of the object at
'hAN'.

Chapter: 5 CSV_Include Reference

205



Syntax

CSV_Misc_MouseOver(hAN)

#hAN:

The animation number of the display object

Return Value

l TRUE (1) if the mouse cursor is inside the region bounded by the extents of the spec-
ified display object

l FALSE (0) otherwise.

CSV_MM_BackEmpty()
Checks if backward navigation is possible.

Note: If CSV_MM_BackEmpty() = 1, disable backward navigation button (there are no
pages on the last-page stack that may be navigated in a backward direction from the cur-
rent position).

Return Value

1 if backward navigation is not possible, otherwise 0.

CSV_MM_ConfigInit()
Initializes parameters needed for multi-monitor functionality. Initializes queues for stor-
ing last pages displayed (last page stack) Parameter values are read from .ini file [Mul-
tiMonitors] section:

l Number of monitors (parameter = "Monitors", default = 1).

l Screen width of monitor (parameter = "ScreenWidth", default = 1024).

l Startup pages for each monitor (parameter = "Startup1","Startup2",... etc. depending
on number of monitors, default = "Startup").

Size of last page stack (parameter = "LastPageStackSize", default = 10).

CSV_MM_FwdEmpty()
Checks if forward navigation is possible (only possible if backward navigation has been
used).

Return Value

1 if forward navigation is not possible, otherwise 0.

Chapter: 5 CSV_Include Reference

206



Note: If CSV_MM_FwdEmpty() = 1 then disable forward navigation button (there are
no pages on the last-page stack that may be navigated in a forward direction from
the current position).

CSV_MM_GetMonitor()
Gets the number of the currently active monitor. The 'active' monitor is the monitor that
contains the largest part of the area of the currently active window.

Return Value

Number of currently active monitor.

CSV_MM_GetMonitors()
Gets number of monitors, as set by Monitors parameter in [MultiMonitors] section of the
.ini file.

Return Value

Number of monitors.

CSV_MM_GetMouseX
Gets X coordinate of mouse position with respect to desktop, monitor, or window.

Syntax

CSV_MM_GetMouseX(iMode)

#iMode :
l 0 = Gets mouse position with respect to top-left corner of desktop.
l 1 = Gets mouse position with respect to top-left corner of active monitor.
l 2 = Gets mouse position with respect to top-left corner of active window.

CSV_MM_GetMouseY
Gets Y coordinate of mouse position with respect to desktop, monitor, or window.

Syntax

CSV_MM_GetMouseY(iMode)

#iMode :
l 0 = Gets mouse position with respect to top-left corner of desktop.
l 1 = Gets mouse position with respect to top-left corner of active monitor.

Chapter: 5 CSV_Include Reference

207



l 2 = Gets mouse position with respect to top-left corner of active window.

CSV_MM_GetOffset
Gets X-offset of selected monitor. To display a page on the selected monitor the page
needs to have its X coordinate set to this value.

Syntax

CSV_MM_GetOffset(iMonitorNo)

#iMonitorNo:

Number of monitor to get X-offset for.

Return Value

Offset of monitor.

CSV_MM_GetScreenWidth()
Gets width of screen, as set by ScreenWidth parameter in [MultiMonitors] section of .ini
file.

Return Value

Width of screen.

CSV_MM_ListLastPages
Displays on the active monitor a menu listing pages that may be navigated backwards
or forwards from the current page. A stack stores recently displayed pages in the order
in which they were displayed. This function can be used to allow these pages to be
selected for display.

Syntax

CSV_MM_ListLastPages(Mode)

#Mode :
l 0 = Lists pages which may be navigated backwards.
l 1 = Lists pages which may be navigated forwards.

Return Value

0 if successful, otherwise -1.

CSV_MM_MonitorFromPoint

Chapter: 5 CSV_Include Reference

208



Gets number of monitor containing point specified.

Syntax

CSV_MM_MonitorFromPoint(iX, iY)

#iX:

X-coordinate of point.

#iY:

Y-coordinate of point.

Return Value

Number of monitor containing specified point.

CSV_MM_MonitorFromWindow
Gets number of monitor intersecting the largest area of the specified window.

Syntax

CSV_MM_MonitorFromWindow(iWindowNo)

#iWindowNo:

Window number to get monitor number for.

Return Value

Number of monitor associated with window.

CSV_MM_MonitorGoto
Goes to main window of specified monitor.

Syntax

CSV_MM_MonitorGoto(iMonitor)

#iMonitor:

Number of monitor to go to.

Return Value

Number of main window associated with monitor if successful, otherwise -1.

CSV_MM_NextEmpty()

Chapter: 5 CSV_Include Reference

209



Checks if a 'Next' page has been defined for the current page.

Note: If CSV_MM_NextEmpty() = 1 then disable 'Next Page' navigation button.

Return Value

1 if 'Next Page' has not been defined, otherwise 0.

CSV_MM_PageDisplay
Displays selected page on the 'active' monitor, or a pre-selected monitor.

Syntax

CSV_MM_PageDisplay(sPage,iMonitor,bStoreLastPage,sStoreFunction)

#sPage:

Name of page to display.

#iMonitor:

Number of monitor to display page on. First monitor = '0', Second = '1' etc. If iMonitor = -1 then
page is displayed on the 'active' (that is. currently selected) monitor.

#bStoreLastPage:

Add page to last page stack. If bStoreLastPage = 0 then the page is not written to the queue that
stores the previous pages displayed.

#sStoreFunction:

Name of function to store on last page stack.

If a function has been specified then that function will be called when navi-
gating through the last pages, rather than displaying the page.

To include arguments append a space and then a comma-separated list of the
arguments (string constants) to the function name.

Return Value

`0' if successful, otherwise an error number.

CSV_MM_PageLast
Navigates last page stack. Allows moving backward and (subsequently) forward
through a predefined number of previously displayed pages, in the order in which they
were displayed. The stack is unique to the currently active monitor. that is. only the last
pages displayed on the active monitor are navigated.

Chapter: 5 CSV_Include Reference

210



Syntax

CSV_MM_PageLast(iMode)

#iMode:

Direction of navigation:

l 0 = backwards (Default).
l 1 = forwards.

Return Value

0 if successful, otherwise -1

CSV_MM_PageNext()
Displays 'Next page' of currently active page. Page is displayed on same monitor (that
is. currently active monitor).

Return Value

0 if successful, otherwise -1.

CSV_MM_PagePrev()
Displays 'Previous page' of currently active page. Page is displayed on same monitor
(i.e., currently active monitor).

Return Value

0 if successful, otherwise -1.

CSV_MM_PagesInit()
Displays startup pages. Parameter values are read from .ini file [MultiMonitors] section.

Note: This function is to be called on startup for clients requiring multiple-monitor
support. To implement this without requiring a call to this function from within the
startup Cicode function, it has been configured as a periodic event (listed as a 'CSV_
MultiMonitor' event). The first time the event is processed the multi-monitor func-
tionality is initialized. Subsequent calls return immediately without effect.

CSV_MM_PreviousEmpty()
Checks if a 'Previous' page has been defined for the current page.

Chapter: 5 CSV_Include Reference

211



Note: If CSV_MM_PreviousEmpty() = 1 then disable 'Previous Page' navigation but-
ton.

Return Value

1 if 'Previous Page' has not been defined, otherwise 0.

CSV_MM_StoreLastPage
Adds page to last page stack for selected monitor. Page Title is written to queue that
stores pages in order of access. (Each monitor has its own queue.) The action to perform
when navigating through the last page stack is also stored.

Syntax

CSV_MM_StoreLastPage(iMonitorNo,sPageAction,sPageTitle)

#iMonitorNo:

Number of monitor page was displayed on.

#sPageAction:

Name of action to store on last page stack.

To specify a function, prefix the function name with "?" If a function has been
specified then that function will be called when navigating through the
last pages, rather than displaying the page.

To include arguments, append a space and then a comma-separated list of the
arguments (string constants) to the function name.

#sPageTitle:

Name of page displayed.

Return Value

1 if backward navigation is not possible, otherwise 0.

CSV_MM_WinDrag()
Moves active window with mouse; i.e., window position will track mouse movements.

Note: Call CSV_MM_WinDragEnd to end dragging of window.

CSV_MM_WinDragEnd()
Ends window dragging initiated by CSV_MM_WinDrag().

Chapter: 5 CSV_Include Reference

212



CSV_MM_WinFree()
Closes active window, if active window is not main window for a monitor.

Calling CSV_MM_WinFree rather than WinFree verifies that assigned monitors maintain at
least one open window. That window will be the one opened by the CSV_MM_PageDisplay
function.

Always call CSV_MM_WinFree to close a window if multi-monitor functionality has been
implemented.

Return Value

0 if successful, otherwise an error is returned. -1 indicates that you attempted to close the
main window of a monitor.

CSV_MM_WinNewAt
Displays a new window at the X and Y coordinates relative to the top-left corner of
active monitor.

Syntax

CSV_MM_WinNewAt(sPage,iX,iY,iMode)

#sPage:

Name of pagewindow to display.

#iX:

X-offset to display window at relative to left of monitor.

#iY:

Y-offset to display window at relative to top of monitor.

#iMode:

Display mode (same settings as for 'WinNewAt' function, except that the window by default will be
'always on top', regardless of whether or not you add 64 to the mode.This verifies that the popup
window does not disappear behind the main window. To de-select this option add 2048 to the
mode). Dynamic resizing will be disabled unless 4096 is added to the mode. To center the window
within the page add 8192 to the mode.

Return Value

The window number of the window, or -1 if the window cannot be opened.

CSV_MM_WinPopup

Chapter: 5 CSV_Include Reference

213



Display popup window at x and y coordinates relative to top left corner of active mon-
itor.

Syntax

CSV_MM_WinPopup(sWindow, iX, iY, iHideTitleBar)

#sWindow:

Name of page window to display.

#iX:

X offset to display window at relative to left of monitor.

#iY:

Y offset to display window at relative to top of monitor.

#iHideTitleBar :
l 0 = display window standard title bar.
l 1 = don't display title bar (for XP style window).

Return Value

The window number of the window, or -1 if the window cannot be opened.

Note: The entire window is displayed within the borders of a single screen. If iX = -1
and iY = -1, the window is centered on screen.

CSV_MM_WinTitle
Sets the window title. Call this function rather than WinTitle to set window title. Changes
the title of the page on the last page stack if the window is a main page. Shows the cor-
rect page title in the forward/back navigation drop down list.

Syntax

CSV_MM_WinTitle(sTitle)

#sTitle:

Title of window.

Return Value

0 if successful, otherwise an error.

CSV_Nav_Alarms()

Chapter: 5 CSV_Include Reference

214



Displays Alarm page, or calls function defined for alarm page.

Note: The Network page is defined by the parameter [Navigation] AlarmPage. To
specify a function prefix the function name with "?"

Return Value

0 if successful, otherwise -1.

CSV_Nav_AlarmsDisabled()
Displays Disabled Alarm page, or calls function defined for disabled alarm page.

Note: The Network page is defined by the parameter [Navigation]DisabledPage. To
specify a function prefix the function name with "?".

Return Value

0 if successful, otherwise -1.

CSV_Nav_AlarmsHardware()
Displays Hardware Alarm page, or calls function defined for hardware alarm page.

Note: The Network page is defined by the parameter [Navigation] HardwarePage. To
specify a function prefix the function name with "?"

Return Value

0 if successful, otherwise -1.

CSV_Nav_AlarmsSummary()
Displays Alarm page, or calls function defined for alarm page.

Note: The Network page is defined by the parameter [Navigation]SummaryPage. To spec-
ify a function prefix the function name with "?"

Return Value

0 if successful, otherwise -1.

CSV_Nav_CloseWindow()
Displays form to enable user to shutdown CitectSCADA.

Chapter: 5 CSV_Include Reference

215



CSV_Nav_DisableMenuItem
Disables/enables a specified item in a specified popup menu. A disabled menu item
appears embossed in the popup menu and cannot be selected.

Syntax

CSV_Nav_DisableMenuItem(iMode,sMenuItem,sSubMenuItem,sMenuName,sPageName)

#iMode :
l 1 = disable menu item.
l 0 = enable menu item.

#sMenuItem:

Menu item to enable/disable.

#sSubMenuItem:

Submenu item to enable/disable(if applicable).

#sMenuName:

Name of menu (that is. button associated with popup menu).

#sPageName:

Name of page associated with menu.

Return Value

0 if successful, otherwise -1.

CSV_Nav_DisplayMenuBar
Creates menu bar for specified page. The PageMenu.dbf (previously named Menu.dbf) is
accessed to determine what buttons appear in the menu bar. A new menu bar (ActiveX
object) is created with the specified buttons.

Syntax

CSV_Nav_DisplayMenuBar(sPageName,iX,iY,nBackColour,nForeColour)

#sPageName:

Name of page.

#iX:

X-coordinate of top left corner of menu bar.

#iY:

Chapter: 5 CSV_Include Reference

216



Y-coordinate of top left corner of menu bar.

#nBackColour:

Background color of menu bar (CitectSCADA palette number).

#nForeColour:

Foreground (font) color of menu bar (CitectSCADA palette number).

Return Value

0 if successful, otherwise -1.

CSV_Nav_DisplayPopupMenu
Displays popup menu for specified page and specified menu. Top left corner of menu is
displayed at nominated x,y coordinates.

Syntax

CSV_Nav_DisplayPopupMenu(sPageName,sMenuName,iX,iY)

#sPageName:

Name of page.

#sMenuName:

Name of menu.

#iX:

X-coordinate of top left corner of popup menu.

#iY:

Y-coordinate of top left corner of popup menu.

Return Value

0 if successful, otherwise -1.

CSV_Nav_File
Displays text/Rich text file.

Syntax

CSV_Nav_File(sTitle,sFile,iMode,sFontName,iFontSize,iFontColour, iBackColour,iWordWrap)

#sTitle:

Chapter: 5 CSV_Include Reference

217



Title to appear on file page.

#sFile:

File name including path (for example, "[Run]:\file.txt").

#iMode :
l 1 = Locked (don't allow editing).
l 2 = Allow save (enables save option in popup context menu).
l 4 = Allow create (creates the file if it doesn't already exist).
l 8 = Allow open (enable open option in popup context menu - allows user to
browse for another file to open).

#sFontName:

Name of font to display file in (if not an rtf file).

#iFontSize:

Size of font (if not an rtf file).

#iFontColour:

Color of font (if not an rtf file).

#iBackColour:

Color of background.

#iWordWrap:

Enable word wrap.

Return Value

0 if successful, otherwise -1.

CSV_Nav_GetEngToolsPrivilege()
Checks that the user has the privilege level necessary for engineering tools.

Return Value

1 if user has necessary privilege level, otherwise 0.

CSV_Nav_Home()
Displays Home page, or calls function defined for home page.

Note: The Home page is defined by the parameter [Navigation]HomePage. To specify a

Chapter: 5 CSV_Include Reference

218



function prefix the function name with "?"

Return Value

0 if successful, otherwise -1.

CSV_Nav_Login()
Displays popup form allowing user to login.

CSV_Nav_LoginMenu()
Displays popup menu for Screen Login.

Note: Login popup menu is defined by the "Template" page and "Login" menu in the
PageMenu.dbf (previously named Menu.dbf). If no "Login" menu has been defined in
this section of the PageMenu.dbf then a default menu is displayed.

CSV_Nav_MenuBar_MenuClick
Event triggered by clicking a button in the ActiveX menu bar.

Syntax

CSV_Nav_MenuBar_MenuClick(sPageName,sButtonName,iX,iY)

#sPageName:

Name of page containing menu bar.

#sButtonName:

Name of button clicked.

#iX:

X-coordinate of top-left corner of menu bar.

#iY:

Y-coordinate of top-left corner of menu bar.

CSV_Nav_Network()
Displays Network page, or calls function defined for network page.

Note: The Network page is defined by the parameter [Navigation] NetworkPage. To

Chapter: 5 CSV_Include Reference

219



specify a function prefix the function name with "?"

Return Value

0 if successful, otherwise -1.

CSV_Nav_NetworkBtnEnabled()
Checks if network page exists.

Return Value

1 if network page exists, or function has been specified for network page.

CSV_Nav_PageExists
Checks if a page exists by attempting to locate its associated runtime file.

Syntax

CSV_Nav_PageExists(sPage)

#sPage:

Name of page to check.

Return Value

1 if page exists, otherwise 0.

CSV_Nav_PagePrint()
Creates a screen print of the active page, or calls the function defined for page print.

Note: The print function is defined by the page environment variable "PrintPage" if it
exists, otherwise by the parameter [Navigation] PrintPage. To specify a function prefix
the function name with "?". If no function has been defined, a screen print will be per-
formed.

CSV_Nav_Parent()
Displays page configured as ParentPage environment variable for current page, or calls
function specified by ParentPage.

Chapter: 5 CSV_Include Reference

220



Return Value

0 if successful, otherwise -1.

Note: To specify a function prefix the function name with "?".

CSV_Nav_ParentBtnEnabled()
Checks if a page has been defined for the current page.

Return Value

1 if parent page has been defined.

CSV_Nav_Report()
Displays Report page, or calls function defined for report page.

Note: The Network page is defined by the parameter [Navigation]ReportPage. To spec-
ify a function prefix the function name with "?".

Return Value

0 if successful, otherwise -1.

CSV_Nav_ReportBtnEnabled()
Checks if Report page exists.

Return Value

1 if Report page exists, or function has been specified for Report page.

CSV_Nav_ReportMenu
Displays popup menu for Reports.

Note: Report popup menu is defined by the "Template" page and "Reports" menu in
the PageMenu.dbf (previously named Menu.dbf).

Syntax

CSV_Nav_ReportMenu(iX,iY)

#iX:

Chapter: 5 CSV_Include Reference

221



X-coordinate of popup menu position.

#iY:

Y-coordinate of popup menu position.

CSV_Nav_Tools()
Displays Tools page, or calls function defined for tools page.

Note: The Tools page is defined by the parameter [Navigation]ToolsPage.

To specify a function, prefix the function name with "?".

Return Value

0 if successful, otherwise -1.

CSV_Nav_ToolsBtnEnabled()
Checks if Tools page exists.

Return Value

1 if Tools page exists, or function has been specified for Tools page.

CSV_Nav_ToolsMenu()
Displays popup menu for Screen Tools.

Note: Tools popup menu is defined by the "Template" page and "Tools" menu in the
PageMenu.dbf (previously named Menu.dbf). If no Tools menu has been defined in
this section of the PageMenu.dbf, a default menu is displayed.

CSV_Nav_Trend()
Displays Trend page, or calls function defined for trend page.

Note: The Trend page is defined by the parameter [Navigation] TrendPage. To spec-
ify a function prefix the function name with "?".

Return Value

0 if successful, otherwise -1.

CSV_Nav_TrendBtnEnabled()

Chapter: 5 CSV_Include Reference

222



Checks if Trend page exists.

Return Value

1 if Trend page exists, or function has been specified for Trend page.

CSV_Nav_TrendMenu()
Displays popup menu for Trends.

Note: Trend popup menu is defined by the "Template" page and "Trends" menu in
the PageMenu.dbf (previously named Menu.dbf).

CSV_Nav_TrendX()
Displays Instant Trend page.

Note: To implement this function, you need to add the CSV_InstantTrend project as
an Included project. (See "Including a project in the current project" in the Citect-
SCADA User Guide.)

Return Value

0 if successful, otherwise -1.

CSV_Nav_TickMenuItem
Checks/unchecks a specified item in a specified popup menu. A checked menu item
appears with a tick beside it in the popup menu.

Syntax

CSV_Nav_TickMenuItem(iMode,sMenuItem,sSubMenuItem,sMenuName,sPageName)

#iMode :
l 1 = Check menu item.
l 0 = Uncheck menu item.

#sMenuItem:

Menu item to check/uncheck.

#sSubMenuItem:

Submenu item to check/uncheck (if applicable).

#sMenuName:

Chapter: 5 CSV_Include Reference

223



Name of menu (i.e., button associated with popup menu).

#sPageName:

Name of page associated with menu.

Return Value

0 if successful, otherwise -1.

CSV_Sec_ShowLoginMenu
Displays a popup menu allowing user to login, logout, change the password, and, if the
user has the necessary privilege, to edit a user or add a user.

Syntax

CSV_Sec_ShowLoginMenu(iXpos,iYpos,iUserEditPrivilege)

#iXpos:

X position of top-left corner of popup menu.

#iYpos:

Y position of top-left corner of popup menu.

#iUserEditPrivilege:

Privilege necessary to edit or add a user.

CSV_String_GetField
Gets a field value (text) from a string, where the string consists of a number of fields sep-
arated by a field separation character.

Syntax

CSV_String_GetField(sText,iField,sFieldSeparator)

#sText:

String containing fields.

#iField:

Index of field value to return (starting at 1).

#SFieldSeparator:

Field separation character.

Chapter: 5 CSV_Include Reference

224



Return Value

Field value as string.

Example

sText = "ab?cde?fghi?j";

sField = CSV_String_GetField(sText,3,"?");

In this case sField = "fghi"

CSV_String_GetLines
Returns the number of lines in a string, given a maximum number of characters per line.

Syntax

CSV_String_GetLines(sText, iChars)

#sText:

Text to convert to lines.

#iChars:

Maximum number of characters per line.

Return Value

Number of lines that text would be converted to.

CSV_String_Replace
Returns a string in which a specified substring has been replaced with another substring
a specified number of times.

Syntax

CSV_String_Replace(sTextString,sFind,sReplace,iStart,iCount)

#sTextString:

Expression containing substring to replace.

#sFind:

Substring being searched for.

#sReplace:

Chapter: 5 CSV_Include Reference

225



Replacement substring.

#iStart:

Optional. Position within expression where substring search is to begin. If omitted, 0 is assumed.

#iCount:

Optional. Number of substring substitutions to perform. If omitted, the default value is -1, which
means make every possible substitution.

CSV_Tag_Debug
Builds a form to provide simple user access to every Variable Tag during runtime. Read-
ing and writing are supported. The Form is always on top, and only one instance is
allowed.

Syntax

CSV_Tag_Debug()

Return Value

Name of selected tag.

Note: Uses a listbox object to display every tag in system. List may be filtered.

CSV_Trend_AutoScale
Auto scales trend pens, such that the 100% scale is 10% of the full tag range above the
maximum tag value in the viewable trend window, and the 0% scale is 10% of the tag
range below the minimum tag value in the viewable trend window.

Syntax

CSV_Trend_AutoScale(hTrendAN)

#hTrendAN:

Animation point number of the trend.

CSV_Trend_DspGroup
Displays a specified group of trend pens on a specified trend page. The group of trend
pens need to have been defined in the TrendGrp.dbf file in the [RUN] directory. The
group may be specified by either the group name or the group description.

Chapter: 5 CSV_Include Reference

226



Syntax

CSV_Trend_DspGroup(sTitle,sTrendPage,hTrendAN,sTrendID,iTrendIDType, iTrendDataSet)

#sTitle:

Title to appear on trend page.

#sTrendPage:

Name of trend page to display.

#hTrendAN:

Animation point number of trend.

#sTrendID:

Name or Desc of trend group (found in TrendGrp.dbf).

#iTrendIDType:

The type of the trend. Two possible values:

l 0 = sTrendID specifies the Name of the trend group.
l 1 = sTrendID specifies the description of the trend group.

#iTrendDataSet:

Identifies the data set to be used for the group.

Normal trend page uses data set 0, double trend page uses data sets 1 and 2.

CSV_Trend_DspGroupList
Displays available groups of trend tags in a listbox. Returns the description of the item
selected from the list. Groups are configured in the TrendGrp.dbf file found in the [RUN]
directory.

Syntax

CSV_Trend_DspGroupList(sSelectedGroup,sAreas)

#sSelectedGroup:

Name of group to preselect in the list.

#sAreas:

Areas to enable in the list; i.e., only trend groups belonging to these areas are displayed.

Return Value

Trend group (description) selected from the list, or "" if cancel is pressed.

Chapter: 5 CSV_Include Reference

227



CSV_Trend_DspPopupMenu
Displays a popup menu to allow the user to add or clear the selected pen.

Syntax

CSV_Trend_DspPopupMenu(hTrendAN,iPen)

#hTrendAN:

Animation point number of the trend.

#iPen:

Number of selected pen.

Return Value

Description of trend group.

CSV_Trend_DspScaleRange
Returns the current displayed scale range for a specified trend pen, in the format: "Lo -
HiEU" where Lo = RangeMin, Hi = RangeMax, and EU = engineering units.

Syntax

CSV_Trend_DspScaleRange(hTrendAN,iPen)

#hTrendAN:

Animation point number of the trend.

#iPen:

Number of the trend pen.

Return Value

Formatted range value as a string.

CSV_Trend_DspTrendText
Returns the comment for the trend tag plotted by the specified pen if a comment exists,
otherwise returns the name of the trend tag.

Syntax

CSV_Trend_DspTrendText(hTrendAN,iPen)

#hTrendAN:

Chapter: 5 CSV_Include Reference

228



Animation point number of the trend.

#iPen:

Number of the trend pen.

Return Value

Trend tag comment if it exists, otherwise the trend tag name (all capitalized).

CSV_Trend_GetCursorPos
Gets the offset of a trend cursor from its origin, in samples.

Syntax

CSV_Trend_GetCursorPos(hTrendAN)

#hTrendAN:

Animation point number of the trend.

Return Value

The offset of a trend cursor from its origin, in samples, or -1 if the trend cursor is dis-
abled.

CSV_Trend_GetCursorTypeStr
Returns text indicating whether the cursor is displayed. Used in conjunction with CSV_

Trend_GetCursorValueStr() to notify the user whether the displayed trend tag value cor-
responds to the value at the cursor, or the current value.

Syntax

CSV_Trend_GetCursorTypeStr(hTrendAN)

#hTrendAN:

Animation point number of the trend.

Return Value

Returns "Current Value" if the cursor is not displayed, or "Cursor Value" if the cursor is
displayed.

CSV_Trend_GetCursorValueStr

Chapter: 5 CSV_Include Reference

229



Gets the value of a trend pen at the cursor position, or the current value of the trend pen
if the cursor is disabled. The value is returned as a string, optionally followed by the
engineering units of the tag.

Syntax

CSV_Trend_GetCursorValueStr(hTrendAN, iPen, iEngUnits)

#hTrendAN:

Animation point number of the trend.

#iPen:

Number of the trend pen.

#iEngUnits:

Append the engineering units to the cursor value returned.

Return Value

Value of the trend pen at the cursor position, or its current value if the cursor is not dis-
played.

CSV_Trend_GetGroup
Gets the description of the group of trends (as defined in TrendGrp.dbf) currently dis-
played (or last displayed) on a specified monitor.

Syntax

CSV_Trend_GetGroup(iMonitor, iTrendDataSet)

#iMonitor:

Number of monitor the trend is/was displayed on.

#iTrendDataSet:

Identifies the data set to be used for the group of trend tags. Normal trend page uses data set 0; a
double trend page uses data sets 1 and 2.

Return Value

Description of trend group.

CSV_Trend_GetMode
Gets the mode (real-time or historical trending) of the trend pen.

Chapter: 5 CSV_Include Reference

230



Syntax
CSV_Trend_GetMode(hTrendAN)

#hTrendAN:

Animation point number of the trend.

Return Value

The current mode: 0 for real-time or 1 for historical.

CSV_Trend_GetPen
Gets the trend tag being plotted by a specified pen.

Syntax

CSV_Trend_GetPen(hTrendAN, iPen)

#hTrendAN:

Animation point number of the trend.

#iPen:

Number of pen.

Return Value

Trend tag of specified pen.

CSV_Trend_GetPenFocus
Gets the trend pen currently in focus.

Syntax

CSV_Trend_GetPenFocus(hTrendAN)

#hTrendAN:

Animation point number of the trend.

Return Value

Number of pen in focus.

CSV_Trend_GetSettings

Chapter: 5 CSV_Include Reference

231



Reads an .ini file to recall (Get) the settings (Tags displayed and scales) for the current
page. This function will allocate a separate section in the .ini file for each page.

Syntax

CSV_Trend_GetSettings(sPage, hTrendAN)

#sPage:

The reference for the settings to recall.

#hTrendAN:

Animation point number of the trend.

Example

[TrendPage1]

Tag_1=TrendTag1

Zero_1=0.

Full_1=1000.

Tag_2=TrendTag2

Zero_2=0.

Full_2=1000.

Tag_3=TrendTag3

Zero_3=0.

Full_3=1000.

Tag_4=TrendTag4

Zero_4=0.

Full_4=1000.

Tag_5=

Tag_6=

Tag_7=

Tag_8=

Note: Call this function on entry to the Trend Page.

CSV_Trend_GetSettings
Writes an .ini file to recall (Get) the settings (tags displayed and scales) for the current
page. This function allocates a separate section in the .ini file for each page.

Syntax

CSV_Trend_GetSettings(sPage,hTrendAN)

Chapter: 5 CSV_Include Reference

232



Example

[TrendPage1]

Tag_1=TrendTag1

Zero_1=0.

Full_1=1000.

Tag_2=TrendTag2

Zero_2=0.

Full_2=1000.

Tag_3=TrendTag3

Zero_3=0.

Full_3=1000.

Tag_4=TrendTag4

Zero_4=0.

Full_4=1000.

Tag_5=

Tag_6=

Tag_7=

Tag_8=

Note: Call this function on exiting the Trend Page.

CSV_Trend_GetSpan
Gets the time span as a time formatted string "HH:MM:SS" for a specified trend.

Syntax

CSV_Trend_GetSpan(hTrendAN)

#hTrendAN:

Animation point number of the trend.

Return Value

The formatted time string.

CSV_Trend_GetTime
Gets the time of the trend at a percentage along the trend, using the time of the right-
most sample displayed. The time associated with the right-most sample displayed is
known as the end time. The start time is the time of the left-most sample displayed. Per-
cent 0 (zero) will correspond to the end time, and Percent 100 will correspond to the start
time.

Chapter: 5 CSV_Include Reference

233



Syntax

CSV_Trend_GetTime(hTrendAN, iPercent)

#hTrendAN:

Animation point number of the trend.

#iPercent:

The percentage of the trend from the time of the right-most sample displayed.

Return Value

The time of the trend in the format hh:mm:ss.

CSV_Trend_GetDate
Gets the date of the trend at a percentage along the trend, using the date of the right-
most sample displayed. The date associated with the right-most sample displayed is
known as the end date.

The start date is the date of the left-most sample displayed. Percent 0 (zero) will cor-
respond to the end date, and Percent 100 will correspond to the start date.

Syntax

GetDate(hTrendAN,iPercent)

#hTrendAN:

Animation point number of the trend.

#iPercent:

The percentage of the trend from the date of the right-most sample displayed.

Return Value

The date of the trend in the format month day year.

CSV_Trend_GroupConfig()
Displays a popup window allowing the user to browse/edit/add/delete records in the
TrendGrp.dbf at runtime.

CSV_Trend_Page
Builds a trend page with the specified pens.

Chapter: 5 CSV_Include Reference

234



Note: Because you cannot mix templates in a project, CSV_Trend_Page only works
on trend pages based on XP-style templates. When using CSV_Trend_Page to go to a
page based on a standard template, the page displays, but no trend tag is added.
This also applies for the PageTrend Cicode function.

Syntax

CSV_Trend_Page(sPage,sPen1,sPen2,sPen3,sPen4,sPen5,sPen6,sPen7,sPen8)

#sPage:

Name of trend page to display.

#sPen1:

Trend tag to be trended by pen 1.

#sPen2:

Trend tag to be trended by pen 2.

#sPen3:

Trend tag to be trended by pen 3.

#sPen4:

Trend tag to be trended by pen 4.

#sPen5:

Trend tag to be trended by pen 5.

#sPen6:

Trend tag to be trended by pen 6.

#sPen7:

Trend tag to be trended by pen 7.

#sPen8:

Trend tag to be trended by pen 8.

Return Value

0 if successful, otherwise an error number.

CSV_Trend_Popup

Chapter: 5 CSV_Include Reference

235



Builds a Pop-up trend page in a new window with the specified pens. The window is
centered on the active monitor.

Syntax

CSV_Trend_Popup(sPage,sPen1,sPen2,sPen3,sPen4)

#sPage:

Name of trend page to display.

#sPen1:

Trend tag to be trended by pen 1.

#sPen2:

Trend tag to be trended by pen 2.

#sPen3:

Trend tag to be trended by pen 3.

#sPen4:

Trend tag to be trended by pen 4.

Return Value

Window number of popup trend window; otherwise -1 if the window couldn't be
created.

CSV_Trend_ScaleDigital
Rescales digital pens between -2 and 2.

Note: To be rescaled trend tags need to have same name as digital variable tag.

Syntax

CSV_Trend_ScaleDigital(hTrendAN,iPen)

#hTrendAN:

Animation point number of the trend.

#iPen:

Number of pen to scale, or -1 for every pen.

CSV_Trend_SelectGroup

Chapter: 5 CSV_Include Reference

236



Allows the user to select a group of trend tags from a listbox. Each group has an asso-
ciated name, description and list of up to 8 tags. This function stores the selected group
data and returns the name of the group selected from the list.

Note: Groups are configured in the TrendGrp.dbf file found in the [RUN] directory.

Syntax
CSV_Trend_SelectGroup(iMonitor,iTrendDataSet)

#iMonitor:

Number of monitor the trend is/was displayed on.

#iTrendDataSet:

Identifies the data set to be used for the group of trend tags. A normal trend page uses data set 0,
double trend page uses data sets 1 and 2.

Return Value

Trend group (description) selected from the list, or "" if Cancel is pressed.

CSV_Trend_SelectPen
Displays a listbox to allow the user to select a tag to trend with the selected pen.

Syntax

CSV_Trend_SelectPen(sSelectedPen)

#sSelectedPen:

Name of trend tag to pre-select.

Return Value

Name of trend tag selected from list, or "" if action is canceled.

CSV_Trend_SetCursor
If no trend pen has the focus, this function returns, otherwise it moves the trend cursor
by a specified number of samples. If the trend cursor is disabled, this function enables it.
If the cursor is enabled and the number of samples is 0 (zero), the cursor is disabled. If
the cursor is moved off the current trend frame, the trend scrolls.

Syntax

CSV_Trend_SetCursor(hTrendAN)

Chapter: 5 CSV_Include Reference

237



#hTrendAN:

Animation point number of the trend.

CSV_Trend_SetDate
Sets the 0% date of the trend via a keypad form. This allows the user to view trend infor-
mation up to the date entered.

Syntax

CSV_Trend_SetDate(hTrendAN,sValue)

#hTrendAN:

Animation point number of the trend.

#sValue:

The date to set the 0% trend date to. If sValue = "", a form is displayed for the user to select a date.

Return Value

New date (as string).

CSV_Trend_SetDateTime
Sets the 0% date and time of the trend via a keypad form. This allows the user to view
trend information up to the time and date entered.

Syntax

CSV_Trend_SetDateTime(hTrendAN)

#hTrendAN:

Animation point number of the trend.

Return Value

New time and date, separated by a space.

CSV_Trend_SetPens
Allocates trend tags to trend pens. The names of the trend tags are extracted from a
string that stores the last group of trend tags displayed on a particular monitor.

Syntax

CSV_Trend_SetPens(hTrendAN, iMonitor, iTrendDataSet)

Chapter: 5 CSV_Include Reference

238



#hTrendAN:

Animation point number of the trend.

#iMonitor:

Number of monitor the trend is displayed on (-1 for active monitor).

#iTrendDataSet:

Identifies the data set to be used for the group of trend tags. Normal trend page uses data set 0;
double trend page uses data sets 1 and 2.

CSV_Trend_SetRange
Gets the default range for trend pens and sets page strings 10-17 to the values of the
ranges.

Syntax

CSV_Trend_SetRange(hTrendAN)

#hTrendAN:

Animation point number of trend.

CSV_Trend_SetScale
Allows the user to set the zero and full scale values of the trend. The scale may be
changed for every trend or only the current trend.

Syntax

CSV_Trend_SetScale(hTrendAN,iPercentage,sValue)

#hTrendAN:

Animation point number of trend for which the timebase is to be set.

#iPercentage:

Scale percentage to set (0 or 100).

#sValue:

Value to set scale percentage to. If sValue = "", a form will be displayed allowing the user to select a
new scale.

Return Value

New scale value as string.

CSV_Trend_SetSpan

Chapter: 5 CSV_Include Reference

239



Sets the span (total amount of time visible) on the trend.

Syntax

CSV_Trend_SetSpan(hTrendAN,sSpan)

#hTrendAN:

Animation point number of trend.

#sSpan:

Value to set the span to. If sSpan = "", a form will be displayed allowing the user to select the trend
span.

Return Value

New span as string.

CSV_Trend_SetTime
Sets the 0% time of the trend via a keypad form. This allows the user to view trend infor-
mation up to the time entered.

Syntax

CSV_Trend_SetTime(hTrendAN,sValue)

#hTrendAN:

Animation point number of the trend.

#sValue:

The time to set the 0% trend time to. If sValue = "", a form is displayed for the user to select a time.

Return Value

New time (as string).

CSV_Trend_SetTimebase
Allows the operator to set the time interval between each sample.

Syntax

CSV_Trend_SetTimebase(hTrendAN,sValue)

#hTrendAN:

Animation point number of trend for which the timebase is to be set.

Chapter: 5 CSV_Include Reference

240



#sValue:

Value to set timebase to. If sValue = "", a form will be displayed allowing the user to select a new
timebase.

Return Value

New timebase as string.

CSV_Trend_UpdatePens
Stores the names of tags currently trended at a specified AN to a string as a comma sep-
arated list. A separate string is assigned to each monitor. The string is used to restore the
last tags trended when the trend page is redisplayed.

Syntax

CSV_Trend_UpdatePens(hTrendAN,iMonitor,iTrendDataSet)

#hTrendAN:

Animation point number of the trend.

#iMonitor:

Number of monitor the trend is displayed on (-1 for active monitor).

#iTrendDataSet:

Identifies the data set to be used for the group of trend tags. Normal trend page uses data set 0,
double trend page uses data sets 1 and 2.

CSV_Trend_Win
Builds a trend page in a new window with the specified pens.

Syntax

CSV_Trend_Win(sPage,iX,iY,iMode,sPen1,sPen2,sPen3,sPen4,sPen5,sPen6,sPen7, sPen8)

#sPage:

Name of trend page to display.

#iX:

X coordinate of top left corner of window.

#iY:

Y coordinate of top left corner of window.

#iMode:

Chapter: 5 CSV_Include Reference

241



Mode of the window (= mode used by WinNewAt).

#sPen1:

Trend tag to be trended by pen 1.

#sPen2:

Trend tag to be trended by pen 2.

#sPen3:

Trend tag to be trended by pen 3.

#sPen4:

Trend tag to be trended by pen 4.

#sPen5:

Trend tag to be trended by pen 5.

#sPen6:

Trend tag to be trended by pen 6.

#sPen7:

Trend tag to be trended by pen 7.

#sPen8:

Trend tag to be trended by pen 8.

Return Value

Window number of the window; otherwise -1 if window can't be opened.

CSV_TrendX_AddVariable
Assigns a variable to the first available instant trend tag. An instant trend tag is avail-
able if no variable is currently being trended by it; that is, msTrendXVariable[iTrendNo] =

"", where iTrendNo is the number of the instant trend.

Note:This function is to be called only on a Trends Server. To maintain redundancy
the function is also called with the same arguments on the second/redundant Trends
Server.

The variable is assigned a trend duration. The variable name is also added to the end of
a queue storing currently assigned variables in the order in which they were assigned.

If there are no available trend tags then the variable is not assigned to be trended.

Chapter: 5 CSV_Include Reference

242



Syntax

CSV_TrendX_AddVariable(sVariable, iDuration, IupdateRedundantSrvr)

#sVariable:

Name of variable to be trended.

#iDuration:

Value to preset trend tag timer to. This determines the number of seconds that the variable will be
trended for.

#iUpdateRedundantSrvr:
l 1 = update second Trends Server with same info, i.e. RPC same function on
second Trends Server. Set to 0 only in RPC call from within function itself.

l 0 = don't RPC second Trends Server.

Note:Number of instant trend tag assigned to trending sVariable if successful, other-
wise -1.

CSV_TrendX_AgeTrends()
Decrements trend countdown timers.

CSV_TrendX_ClearTrend
Clears trend cache and delete trend file associated with specified trend.

This function needs to be called before a new variable can be assigned to a Instant Trend
tag. This needs to be done as the trend tag may have been previously assigned to a dif-
ferent variable, in which case scrolling back through the trends history could display
data not associated with the current variable.

Note: This function is to be called only on a Trends Server. To maintain redundancy the
function is also called with the same arguments on the second/redundant Trends Server.

Syntax

CSV_TrendX_ClearTrend(iTrendNo, IUpdateRedundantSrvr)

#iTrendNo:

Number of Instant Trend to be cleared.

#iUpdateRedundantSrvr :
l 1 = update second Trends Server with same info; i.e., RPC same function on
second Trends Server.

Chapter: 5 CSV_Include Reference

243



l 0 = don't RPC second Trends Server. Set to 0 only in RPC call from within
function itself.

CSV_TrendX_Close
Frees instant trend tags associated with trend pens. Close the instant trend popup.

Syntax

CSV_TrendX_Close(hAN)

#hAN:

AN number of instant trend.

CSV_TrendX_DeletePen()
Deletes trend pen on instant trend page. Stop trending variable assigned to instant trend
Tag.

Syntax

CSV_TrendX_DeletePen(hAN,iPenNo)

#hAN:

AN number of Instant Trend

#iPenNo:

Number of trend pen to delete.

CSV_TrendX_Display()
Displays the Instant Trend popup. Set trend duration to default value.

CSV_TrendX_DspPopupMenu
Creates a popup at the location of the mouse on an Instant Trend page, giving the user a
choice of selecting a trend pen (i.e., selecting a tag to be trended by the selected pen), or
clearing a trend pen.

If the user chooses 'select trend pen' then a form is displayed allowing the user to select
a variable tag to be trended by the pen from a menu of available variable tags. If the user
chooses 'clear trend pen', the selected trend pen is deleted. Called when the user right-
clicks a trend pen marker.

Syntax

CSV_TrendX_DspPopupMenu(hTrendAN, iPenNo)

#hTrendAn:

Chapter: 5 CSV_Include Reference

244



AN number of Instant Trend.

#iPenNo:

Number of trend pen to select/clear.

CSV_TrendX_GenericToTag
Converts raw integer value (0-32000) to real value scaled between specified tag's engi-
neering zero and engineering full scale.

Syntax

CSV_TrendX_GenericToTag(iValue,sTagName)

#iValue:

Raw value scaled between 0 - 32000.

#sTagname:

Name of tag whose eng zero and eng full scale values are to be used to scale iValue.

Return Value

Value scaled between tag's eng zero scale and eng full scale.

CSV_TrendX_GenericToTagStr
Converts raw integer value (0-32000) to real value scaled between specified tag's engi-
neering zero and engineering full scale, then returns that value as a string.

Note: Instant trend data is stored in generic format. i.e., as a raw integer with range
0-32000. Call this function to convert raw trend value into scaled value to be dis-
played on the trend popup.

Syntax

CSV_TrendX_GenericToTagStr(iValue,sTagName)

#iValue:

Raw value scaled between 0 - 32000.

#sTagname:

Name of tag whose eng zero and eng full scale values are to be used to scale iValue.

Chapter: 5 CSV_Include Reference

245



Return Value

Value (as string) scaled between tag's eng zero scale and eng full scale.

CSV_TrendX_GetComment
Gets comment associated with variable tag.

Syntax

CSV_TrendX_GetComment(sVariable)

#sVariable:

Name of tag to retrieve comment for.

Return Value

Comment associated with variable tag sVariable.

CSV_TrendX_GetCursor
Gets value of instant trend pen at cursor.

Syntax

CSV_TrendX_GetCursor(hAN, iPenNo)

#hAN:

AN number of Instant Trend.

#iPenNo:

Pen to get cursor value for.

Return Value

Value of trend pen at cursor (returned as string). Value is scaled between eng zero and
eng full for variable being trended, as specified by in variable tag configuration.

CSV_TrendX_GetDuration()
Gets duration associated with instant trend popup.

Return Value

Trend duration of instant trend popup, in long time period format (hh:mm:ss).

CSV_TrendX_GetSamplePeriod

Chapter: 5 CSV_Include Reference

246



Gets period at which trend tag is being sampled.

Syntax

CSV_TrendX_GetSamplePeriod(iTrendNo)

#iTrendNo:

Number of trend tag to get sample period for.

Return Value

Sample period of specified Instant Trend (in seconds).

Note: This is not the same as the sample period specified in the trend tag con-
figuration form (which is set to 1 sec). The sample period for a Instant Trend can be
set dynamically at run time.

CSV_TrendX_GetScale
Gets value representing a percentage of the displayed range for trend pen in focus. Used
for determining/displaying 0, 50, 100% etc, scale on Instant Trend page.

Syntax

CSV_TrendX_GetScale(hAN, iPercent)

#hAN:

AN number of Instant Trend.

#iPercent:

Percentage of full scale.

Return Value

Scale value.

CSV_TrendX_GetTrendName
Gets name of instant trend from number of instant trend.

Syntax

CSV_TrendX_GetTrendName(iTrendNo)

#iTrendNo:

Number of instant trend tag.

Chapter: 5 CSV_Include Reference

247



Return Value

Name of trend tag.

CSV_TrendX_GetTrigger
Description This function is called in the Trigger field of the Trend Tag configuration
form for Instant Trend tags.

Syntax

CSV_TrendX_GetTrigger(iTrendNo)

#iTrendNo:

Number of the instant trend tag.

Return Value

Return Value Trigger setting for each Instant Trend tag.

CSV_TrendX_GetVal
This function is called in the Expression field of the Trend Tag configuration form for
instant trend tags. Makes the element of the array that stores the value assigned to a
trend tag available to the trend system.

Syntax

CSV_TrendX_GetVal(iTrendNo)

#iTrendNo:

Number of the instant trend tag.

Return Value

Last stored value of the variable associated with the instant trend tag, as an integer
between -1 and 32000.

CSV_TrendX_InitClient()
Initializes trend client for instant trending.

Note: This function is to be called on startup for each trend client if instant trend
functionality is necessary. To implement this without requiring a call to this function
from within the startup Cicode function, it has been configured as a periodic event

Chapter: 5 CSV_Include Reference

248



(listed as a CSV_TrendXClient event). The first time the event is processed the instant
trend client functionality is initialized. Any subsequent calls return immediately with-
out effect.

CSV_TrendX_InitSrvr()
Initializes Trends Server for instant trending. Set up table used for clearing data in trend
cache. Set instant trend triggers to 1. Initializes queue for storing names of variables
being trended by instant trend system.

Note: This function is to be called on startup for Trends Servers if instant trend func-
tionality is necessary. To implement this without requiring a call to this function
from within the startup Cicode function, it has been configured as a periodic event
(listed as a CSV_TrendXServer event). The first time the event is processed the instant
Trends Server functionality is initialized. Subsequent calls return immediately with-
out effect.

CSV_TrendX_MapTrendTags()
Wrapper function for _CSV_TrendX_MapTrendTags. Called as an event on Trends Server
every 1 second, to update trend tag values (if CSV_TrendXServer event has been enabled).

CSV_TrendX_RefreshTrendPage
Refreshes trend page. Called after a variable has been added to instant trend system.
Scrolls to current time.

Syntax

CSV_TrendX_RefreshTrendPage(hAN)

#hAN:

AN number of instant trend.

Note: Calling TrendSetNow results in old/invalid data being cleared from the screen.
This is necessary when the variable being trended by a pen changes.

CSV_TrendX_SetDuration
Sets duration of Instant Trend popup.

Chapter: 5 CSV_Include Reference

249



Syntax

CSV_TrendX_SetDuration(iDuration, iDspNumPad)

#iDuration:

Duration of popup (in seconds).

#iDspNumPad:

Display number pad for data entry.

CSV_TrendX_SetDuration
Sets duration of Instant Trend on Trends Server.

Note: This function is to be called only on a Trends Server. To maintain redundancy,
the function is also called with the same arguments on the second/redundant Trends
Server.

Syntax

CSV_TrendX_SetDuration(iTrendNo,iDuration,iUpdateRedundantSrvr)

#iTrendNo:

Number of trend to set duration for.

#iDuration:

Duration of popup (in seconds).

#iUpdateRedundantSrvr :
l 1 = Update second Trends Server with same info; i.e., RPC same function on
second Trends Server.

l 0 = Don't RPC second Trends Server. Set to 0 only in RPC call from within
function itself.

Return Value

0 if successful, otherwise -1.

CSV_TrendX_SetPen()
Displays form allowing user to select variable to assign to trend pen.

CSV_TrendX_SetSamplePeriod

Chapter: 5 CSV_Include Reference

250



Sets the sample period for a specified instant trend pen. For display purposes only, the
sample period is stored as a page-based integer. This is updated when this function is
called. The sample period is updated on the Trends Server.

Syntax

CSV_TrendX_SetSamplePeriod(hAN, iPenNo, iPeriod)

#hAN:

Number of Instant Trend AN.

#iPenNo:

Number of pen to update sample period.

#iPeriod:

Time (in seconds) to set new sample period to.

CSV_TrendX_SetScale
Sets scale for instant trend. Scale may be set for every pen or current pen only.

Syntax

CSV_TrendX_SetScale(hAN,iPercent,iScaleVal,iDspNumPad)

#hAN:

AN number of Instant Trend.

#iPercent:

Percent of displayed range that scale setting represents.

#iScaleVal:

New scale value.

#iDspNumPad:

Display number pad for setting scale.

CSV_TrendX_TagSelect
Assigns a variable to a pen on the Instant Trend page. The variable will be assigned to
the first available Instant Trend tag. The local page based variables accessed by the trend
page are updated.

Return Value

Number of instant trend tag assigned to trending sVariable if successful, otherwise -1.

Chapter: 5 CSV_Include Reference

251



Syntax

CSV_TrendX_TagSelect(hAN,iPenNo,sVariable)

#hAN:

AN number of Instant Trend.

#iPenNo:

Number of pen to assign to variable.

#sVariable:

Name of variable to assign to pen.

CSV_TrendX_TagSelectFrmCursor()
Assigns a variable to a pen on the Instant Trend page by positioning the mouse pointer
over an animation point. The variable associated with the AN point will be selected.

CSV_TrendX_TagToGeneric
Converts real value scaled between specified tag's engineering zero and engineering full
scale, to a raw integer value (0 - 32000).

Instant Trend data is stored in generic format. i.e. as a raw integer with range 0 - 32000.

Syntax

CSV_TrendX_TagToGeneric(rValue, sTagName)

#rValue:

Scaled value to convert to raw integer 0-32000.

#sTagname:

Name of tag whose eng zero and eng full scale values rValue is scaled between.

Return Value

Value scaled between 0-32000.

CSV_TrendX_TrendTimeout
Monitors time remaining for trends associated with instant trend popup.

Syntax

CSV_TrendX_TrendTimeout(hAN)

#hAN:

Chapter: 5 CSV_Include Reference

252



Number of Instant Trend AN.

Return Value

1 if trend has timed out, 0 otherwise.

CSV_WinUtl_DestroyCursor()
Deletes the specified cursor and sets the cursor to the normal cursor.

CSV_WinUtl_GetColourRes()
Gets the screen color resolution.

Return Value

Screen color resolution: 0 = 256 colors, 1 = High color (16 bit), 2 = True color (24 bit/32
bit), -1 = Error.

CSV_WinUtl_GetCpuUsage
Gets the percent CPU usage of a specified process, or the total CPU usage.

Note: This function has been deprecated on Windows Vista, and will return 0 when
called on this operating system.

Syntax

CSV_WinUtl_GetCpuUsage(sProcessName)

#sProcessName:

Name of process, or "" to get total CPU usage.

Return Value

Percentage CPU usage.

CSV_WinUtl_GetSystemDir()
Gets the windows system directory.

Return Value

Windows system directory path.

CSV_WinUtl_GetTotalCpuUsage()
Gets the total percent CPU usage.

Chapter: 5 CSV_Include Reference

253



Note: Call CSV_WinUtl_UpdateTotalCpuUsage to refresh the data (CSV_WinUtl_Update-
TotalCpuUsage prevents a 'Foreground Cicode run too long' error).

Return Value

Total CPU Usage.

CSV_WinUtl_GetWindowsDir()
Gets the windows directory.

Return Value

Windows directory path.

CSV_WinUtl_GetWinMode()
Returns 1 if CitectSCADA is in FullScreen mode.

Return Value

1 if fullscreen mode([Animator]FullScreen = 1), otherwise 0.

CSV_WinUtl_LoadCursor
Loads the cursor for a specified window from a file (.ani or .cur).

Syntax

CSV_WinUtl_LoadCursor(sCursor,hWnd)

#sCursor:

File (including path) containing cursor.

#hWnd:

Handle of window to change cursor for.

Return Value

Handle to new cursor.

CSV_WinUtl_LockWindowUpdate
Freezes the specified window (prevents CitectSCADA repainting it).

Chapter: 5 CSV_Include Reference

254



Syntax

CSV_WinUtl_LockWindowUpdate(hWnd)

#hWnd:

Handle of window to freeze, or -1 to unfreeze any frozen window.

Return Value

0 if successful, otherwise -1.

CSV_WinUtl_NormalCursor
Loads the normal cursor for a specified window.

Syntax

CSV_WinUtl_NormalCursor(hWnd)

#hWnd:

Handle of window to change cursor for.

Return Value

Handle to normal cursor.

CSV_WinUtl_ShellExec
Opens or prints a specified file.

Syntax

CSV_WinUtl_ShellExec(sFile,sArgs,sDir,sOperation,iShowCmd)

#sFile:

Specifies the file to open or print or the folder to open or explore. The function can open an execut-
able file or a document file. The function can print a document file.

#sArgs:

If sFile specifies an executable file, sArgs specifies the parameters to be passed to the application. If
sFile specifies a document file, make sArgs as "".

#sDir:

Specifies the default directory.

#sOperation:

Specifies the operation to perform. The following operation strings are valid:

Chapter: 5 CSV_Include Reference

255



l open - Opens the file specified by the lpFile parameter. The file can be an
executable file or a document file. It can also be a folder.

l print - The function prints the file specified by lpFile. The file has to be a
document file. If the file is an executable file, the function opens the file, as if
"open" had been specified.

l explore - The function explores the folder specified by lpFile. This parameter
can be "". In that case, the function opens the file specified by lpFile.

#iShowCmd:

If sFile specifies an executable file, iShowCmd specifies how the application is to be shown when it
is opened. This parameter can be one of the following values:

l SW_HIDE (=0) - Hides the window and activates another window.
l SW_MAXIMIZE (=3) - Maximizes the specified window.
l SW_MINIMIZE (=6) - Minimizes the specified window and activates the
next top-level window in the z-order.

l SW_RESTORE (=9) - Activates and displays the window. If the window is
minimized or maximized, Windows restores it to its original size and posi-
tion. An application should specify this flag when restoring a minimized
window.

l SW_SHOW (=5) - Activates the window and displays it in its current size
and position.

l SW_SHOWDEFAULT (=10) - Sets the show state based on the SW_ flag spec-
ified in the STARTUPINFO structure passed to theCreateProcess function by
the program that started the application. An application should call Show-
Window with this flag to set the initial show state of its main window.

l SW_SHOWMAXIMIZED (=3) - Activates the window and displays it as a
maximized window.

l SW_SHOWMINIMIZED (=2) - Activates the window and displays it as a
minimized window.

l SW_SHOWMINNOACTIVE (=7) - Displays the window as a minimized
window. The active window remains active.

l SW_SHOWNA (=8) - Displays the window in its current state. The active
window remains active.

l SW_SHOWNOACTIVATE (=4) - Displays a window in its last size and posi-
tion. The active window remains active.

l SW_SHOWNORMAL (=1) - Activates and displays a window. If the win-
dow is minimized or maximized, Windows restores it to its original size
and position. An application should specify this flag when displaying the
window for the first time. If sFile specifies a document file, nShowCmd
should be zero.

Chapter: 5 CSV_Include Reference

256



Return Value

Returns a value greater than 32 if successful, or an error value that is less than or equal
to 32 otherwise. The following table lists the error values.

l ERROR_FILE_NOT_FOUND (=2) - The specified file was not found.

l ERROR_PATH_NOT_FOUND (=3) - The specified path was not found.

l ERROR_BAD_FORMAT (=17) - The .exe file is invalid (non-Win32® .exe or error in
.exe image).

l SE_ERR_ACCESSDENIED (=5) - The operating system denied access to the specified
file.

l SE_ERR_ASSOCINCOMPLETE (=27) - The file name association is incomplete or
invalid.

l SE_ERR_DDEBUSY (=30) - The DDE transaction could not be completed because
other DDE transactions were being processed.

l SE_ERR_DDEFAIL (=29) - The DDE transaction did not succeed.

l SE_ERR_DDETIMEOUT (=28) - The DDE transaction could not be completed because
the request timed out.

l SE_ERR_DLLNOTFOUND (=32) - The specified dynamic-link library was not found.

l SE_ERR_FNF (=2) - The specified file was not found.

l SE_ERR_NOASSOC (=31) - There is no application associated with the given file
name extension.

l SE_ERR_OOM (=8) - There was not enough memory to complete the operation.

l SE_ERR_PNF (=3) - The specified path was not found.

l SE_ERR_SHARE (=26) - A sharing violation occurred.

CSV_WinUtl_UpdateTotalCpuUsage()
Updates the total percent CPU usage at minimum of 0.5 second intervals. Called from
the Admin Tools page.

CSV_WinUtl_WaitCursor
Loads the wait/busy cursor for a specified window.

Syntax

CSV_WinUtl_WaitCursor(hWnd)

#hWnd:

Handle of window to change cursor for.

Chapter: 5 CSV_Include Reference

257



Return Value

Handle to wait cursor.

Chapter: 5 CSV_Include Reference

258



Chapter: 6 Graphics Builder Automation Interface

The CitectSCADA Graphics Builder now offers support for "automation," an OLE service
that allows applications to expose their functionality, or to control the functionality of
other applications on the same computer or across a network. As a result, applications
can be integrated and automated with programming code.

The two key elements of automation are:

l Applications or software components, called automation Servers, that can be con-
trolled because their functionality has been exposed and made accessible to other
applications. Examples of Microsoft Automation servers are Microsoft Office appli-
cations and Microsoft Project. These Automation servers expose their functionality
through object models.

l Other applications or development tools, called automation controllers, that can con-
trol OLE Automation servers through programming code, by accessing the func-
tionality exposed by the Automation servers. Examples of Microsoft Automation
controllers are Microsoft Visual Basic, Microsoft Visual C++, and Microsoft Visual
Basic for Applications (which is built into Microsoft Access, Microsoft Excel, and
Microsoft Project).

Automation is the umbrella term for the process by which an automation controller sends
instructions to an automation server (using the functionality exposed by the automation
server), where they are run.

The CitectSCADA Graphics Builder automation interface enables the CitectSCADA
Graphics Builder to act as an automation server, as it exposes many Graphics Builder
functions as well as some Project Editor and Citect Explorer functions.

The interface supports a simple object model: functions are on the root level. Names are
structured and contain a group identifier and a function name; for example, DrawLine,
DrawRectangle, PositionAt, PositionRotate, ProjectSelect, ProjectUpgrade. These functions
can be called from a Visual Basic (VB) program.

Note: In the VB development environment, the reference GraphicsBuilder Type
Library needs to have previously been selected. If it hasn't, choose References from
the Project menu in the VB and check the Graphics Builder Type Library.

259



Example

The following sample VB code allows you to create a new CitectSCADA page, place a
Genie at a specific location, set one of its parameter, draw a line, and then save the page
with the name "TEST".

Dim GraphicsBuilder As IGraphicsBuilder2

Set GraphicsBuilder = New GraphicsBuilder.GraphicsBuilder

With GraphicsBuilder

.Visible = True

.PageNew "include", "standard", "normal", 0, True, True

.LibraryObjectPlace "include", "motors", "motor_1_east", 0, True

.PositionAt 300, 500

.LibraryObjectPutProperty "Tag", "Test_Tag"

.DrawLine 100, 100, 300, 300

.AttributeLineColour = 120

.PageSaveAs "Example", "TEST"

.PageClose

.Visible = False

End With

Set GraphicsBuilder = Nothing

See Also
Error Handling
Automation Events

Error Handling

Functions, when called from VB, throw an exception on error. The following table lists
the possible HRESULT errors that may be encountered:

C++
define

Hex
value

Hex codes in VB Description

S_OK 0 No exception Successful execution

E_INVAL-
IDARG 80070057

5 One or more arguments are
out of range

E_HANDLE
80070006

80070006 No active object (page or
graphical object)

E_POINTER
80004003

80004003 Missing or broken link
encountered

Chapter: 6 Graphics Builder Automation Interface

260



E_ABORT
80000007

11F Enumeration terminated or
function manually canceled
(for example Pro-
jectUpdate)

E_FAIL
80004005

80004005 Every other error

The following VB code can be used to process the error code:

On Error Resume Next

Err.Clear

GraphicsBuilder.LibObjectName Project, File, Page, Type

If Err.Number <> 0 Then

Debug.Print "Error occurred in LibObjectName"

End If

Note the following points:

l VB sets the Err variable only in the erroneous case. It will not be set to 0 if the func-
tion succeeds.

l When VB handles an exception, it ignores the functions parameters. Hence when a
function like ProjectNext does not succeed, the returned string is undefined and not
an empty string.

The functions in the groups Page Functions, Options Functions, Object Drawing and
Property Functions, Text Property Functions and the individual functions Lib-
SelectionHooksEnabled, SelectionEventEnabled, BrokenLinkCancelEnabled and Visible
are treated as variables in VB.

When calling these functions from C++, you need to use a "put_" or "get_" prefix, for
example, "put_Visible(TRUE)", "get_Visible(bValue)" to set or fetch the values, except if
the Attribute is read-only. In this case the function is the same in C++; for example, Page-
Name.

To evaluate the correct function name for C++ reference the Type library
CTDRAW32.TLB, which can be found in CitectSCADA's BIN directory. You can use
Microsoft's Visual Studio Tool OLE / COM Object Viewer (select menu File | View Type-
lib...) to look at a type library.

See Also
Automation Events

Chapter: 6 Graphics Builder Automation Interface

261



Automation Events

The graphics builder also provides event based notification of actions, which an Auto-
mation client can intercept and react to accordingly. The following example creates a
form, creates a graphics builder automation object with event capability and performs
actions on two events that the graphics builder might generate, pasting a symbol and
saving a page.

To enable this:

l The Graphics Builder object needs to be declared "WithEvents"

l The event handler subroutine needs to have the correct name and signature. Note
how the event handler function names are gb, the graphics builder object, followed by
_<eventName> e.g gb_PasteSymbol. This is consistent with standard Visual Basic
event handling subroutine naming.

For details, see the individual event subroutine description.

Private WithEvents gb As GraphicsBuilder.GraphicsBuilder

Public Sub Form_Load()

Set gb = New GraphicsBuilder.GraphicsBuilder

gb.LibrarySelectionHooksEnabled = True

gb.Visible = True

End Sub

Public Sub gb_PasteSymbol()

MsgBox ("PasteSymbol")

End Sub

Private Sub gb_PageSaved(ByVal Project As String, ByVal Page As String,

ByVal LastPage As Boolean)

MsgBox "PageSaved: " + Project + "." + Page + "--"

End Sub

See Also
Error Handling

Function Categories

This table lists the CitectSCADA functions exposed through the Graphics Builder auto-
mation interface, grouped into the following categories:

Arrange and
Position
Functions

Allow you to modify the position of a selected object in three dimensions
(X,Y and Z order).

Chapter: 6 Graphics Builder Automation Interface

262



Events Func-
tions

Allow you to use the automation dispatch mechanism to fire events in spe-
cific situations.

Specific
Functions

Currently include only the Visible function.

Dynamic
Properties
Functions

Allow you to modify the dynamic properties of the graphics objects in
your project (movement, scaling, rotation, sliders, dynamic color fill).

Library
Object Func-
tions

Allow you to use and manipulate the objects stored in libraries in your
project. This includes such objects as Genies, Super Genies, Symbols,
and so on.

Mis-
cellaneous
Functions

Used for special interactions with the Graphics Builder, for example an
external drag-and-drop action could be performed by requesting the
active window handle.

Object Draw-
ing and
Property
Functions

Allow you to draw objects and manipulate the properties of objects.

Options
Functions

Relate to the options found under the Graphics Builder 's Tools menu.

Page Func-
tions

Allow you to manipulate the pages in your project (for example open,
close, save, delete), and select objects on those pages. This includes tem-
plates, symbols, Genies, Super Genies.

Page Prop-
erties Func-
tions

Allow you to manipulate the properties of the pages in your project.

Project Func-
tions

These functions operate on the project level. Some are actually initiated
within Citect Project Editor or the Project Explorer.

Text Prop-
erty Func-
tions

Allow you to read and modify the properties of the text objects in your
project.

For details and a VB example on handling return and error values, see Error Handling.

Chapter: 6 Graphics Builder Automation Interface

263



Arrange and Position Functions

The following functions modify the position of a selected object in three dimensions (X,
Y and Z order).

PositionAt Positions the active object at the specified location.

Posi-
tionBringForwards

Moves the last object addressed one step forward in the layering
of objects on a page, creating the appearance of moving for-
ward.

PositionBringToFront Positions the last object addressed as the closest layer on a
graphics page, giving it the appearance of being in front of the
other objects.

Posi-
tionMirrorHorizontal

Turns the last object addressed into a mirror image of itself
across a horizontal axis.

Posi-
tionMirrorVertical

Turns the last object addressed into a mirror image of itself
across a vertical axis.

PositionRotate Rotates the last object addressed by 90 degrees clockwise.

Posi-
tionSendBackwards

Moves the last object addressed one step backwards in the lay-
ering of objects on a page, creating the appearance of moving
backwards.

PositionSendToBack Positions the last object addressed as the lowest layer on a
graphics page, giving it the appearance of being behind the
other objects.

For details and a VB example on handling return and error values, see Error Handling.

PositionAt
Positions the active object at the specified location. The destination coordinates is
adjusted if OptionSnapToGrid or OptionSnapToGuidelines are set to TRUE.

Syntax

PositionAt(XPosition, YPosition)

XPosition:

Absolute X position in pixels from the left side of the page.

YPosition:

Chapter: 6 Graphics Builder Automation Interface

264



Absolute Y position in pixels from the top of the page.

Return Value

0 (zero) if successful; otherwise an error is returned.

Note: For details on handling return and error values, see Error Handling.

Related Functions

PositionRotate, PositionMirrorVertical, PositionMirrorHorizontal, PositionSendToBack,
PositionBringToFront, PositionBringForwards, PositionSendBackwards

Example

GraphicsBuilder.LibraryObjectPlace "include", "agitator", "agit_1_Pos1_g", 2, True

GraphicsBuilder.PositionAt "200,200"

PositionBringForwards
Moves the last object addressed one step forward in the layering of objects on a page, cre-
ating the appearance of moving forward.

Syntax

PositionBringForwards

Return Value

0 (zero) if successful, otherwise an error is returned.

Note: For details on handling return and error values, see Error Handling.

Related Functions

PositionAt, PositionRotate, PositionMirrorVertical, PositionMirrorHorizontal, Posi-
tionSendToBack, PositionBringToFront, PositionSendBackwards

Chapter: 6 Graphics Builder Automation Interface

265



Example

' Moves an object forward in the layering of objects on a graphics page

GraphicsBuilder.LibraryObjectPlace "include", "agitator", "agit_1_Pos1_g", 2, True

GraphicsBuilder.PositionAt 200, 200

GraphicsBuilder.PositionBringForwards

PositionBringToFront
Positions the last object addressed as the closest layer on a graphics page, giving it the
appearance of being in front of other objects.

Syntax

PositionBringToFront

Return Value

0 (zero) if successful; otherwise an error is returned.

Note: For details on handling return and error values, see Error Handling.

Related Functions

PositionAt, PositionRotate, PositionMirrorVertical, PositionMirrorHorizontal, Posi-
tionSendToBack, PositionBringForwards, PositionSendBackwards

Example

' Places an object in front of other objects on a graphics page

GraphicsBuilder.LibraryObjectPlace "include", "agitator", "agit_1_Pos1_g", 2, True

GraphicsBuilder.PositionAt 200, 200

GraphicsBuilder.PositionBringToFront

PositionMirrorHorizontal
Turns the last object addressed into a mirror image of itself across a horizontal axis.

Syntax

PositionMirrorHorizontal

Chapter: 6 Graphics Builder Automation Interface

266



Return Value

0 (zero) if successful; otherwise an error is returned.

Note: For details on handling return and error values, see Error Handling.

Related Functions

PositionAt, PositionRotate, PositionMirrorVertical, PositionSendToBack, Posi-
tionBringToFront, PositionBringForwards, PositionSendBackwards

Example

' Mirrors an object across a horizontal access

GraphicsBuilder.LibraryObjectPlace "include", "agitator", "agit_1_Pos1_g", 2, True

GraphicsBuilder.PositionAt 200, 200

GraphicsBuilder.PositionMirrorHorizontal

PositionMirrorVertical
Turns the last object addressed into a mirror image of itself across a vertical axis.

Syntax

PositionMirrorVertical

Return Value

0 (zero) if successful, otherwise an error is returned.

Note: For details on handling return and error values, see Error Handling.

Related Functions

PositionAt, PositionRotate, PositionMirrorHorizontal, PositionSendToBack, Posi-
tionBringToFront, PositionBringForwards, PositionSendBackwards

Example

' Mirrors an object across a vertical access

GraphicsBuilder.LibraryObjectPlace "include", "agitator", "agit_1_Pos1_g", 2, True

GraphicsBuilder.PositionAt 200, 200

GraphicsBuilder.PositionMirrorVertical

Chapter: 6 Graphics Builder Automation Interface

267



PositionRotate
Rotates the last object addressed by 90 degrees clockwise.

Syntax

PositionRotate

Return Value

0 (zero) if successful, otherwise an error is returned.

Note: For details on handling return and error values, see Error Handling.

Related Functions

PositionAt, PositionMirrorVertical, PositionMirrorHorizontal, PositionSendToBack, Posi-
tionBringToFront, PositionBringForwards, PositionSendBackwards

Example

' Rotates an object 90 degrees

GraphicsBuilder.LibraryObjectPlace "include", "agitator", "agit_1_Pos1_g", 2, True

GraphicsBuilder.PositionAt 200, 200

GraphicsBuilder.PositionRotate

PositionSendBackwards

Moves the last object addressed one step backwards in the layering of objects on a page,
creating the appearance of moving backwards.

Syntax

PositionSendBackwards

Return Value

0 (zero) if successful; otherwise an error is returned.

Note: For details on handling return and error values, see Error Handling.

Chapter: 6 Graphics Builder Automation Interface

268



Related Functions

PositionAt, PositionMirrorVertical, PositionMirrorHorizontal, PositionSendToBack, Posi-
tionBringToFront, PositionBringForwards, PositionRotate

Example

' Moves an object backwards in the layering of objects on a graphics page

GraphicsBuilder.LibraryObjectPlace "include", "agitator", "agit_1_Pos1_g", 2, True

GraphicsBuilder.PositionAt 200, 200

GraphicsBuilder.PositionSendBackwards

PositionSendToBack
Positions the last object addressed as the lowest layer on a graphics page, giving it the
appearance of being behind other objects.

Syntax

PositionSendToBack

Return Value

0 (zero) if successful, otherwise an error is returned.

Note: For details on handling return and error values, see Error Handling.

Related Functions

PositionAt, PositionMirrorVertical, PositionMirrorHorizontal, PositionSendBackwards,
PositionBringToFront, PositionBringForwards, PositionRotate

Example

' Places an object behind other objects on a graphics page

GraphicsBuilder.LibraryObjectPlace "include", "agitator", "agit_1_Pos1_g", 2, True

GraphicsBuilder.PositionAt 200, 200

GraphicsBuilder.PositionSendToBack

Chapter: 6 Graphics Builder Automation Interface

269



Events Functions

The following events use the automation Idispatch mechanism to fire events in specific
situations.

BrokenLink This event is fired if a missing link is encountered while executing the
functions ProjectUpdatePages() or PageOpen(). Details of the missing
object are provided through the parameters Project, Library, Object, Geni-
eOrSymbol.

PasteGenie When the LibrarySelectionHooksEnabled() attribute is set to TRUE, this
event is fired when: the paste Genie menu item is selected; the paste
genie toolbar button is pressed; or F11 is pressed.

Pas-
teSymbol

When the LibrarySelectionHooksEnabled() attribute is set to TRUE, this
event is fired when the paste symbol menu item is selected, the paste sym-
bol toolbar button is pressed, or F6 is pressed.

Pro-
jectChange

This event is fired whenever a new project is selected in Citect Explorer.

Selection When SelectionEventEnabled() is set to TRUE, this event is fired every
time a selection is made within a graphics page. The dimension of the
selection rectangle is passed as parameters.

Swa-
pObject

When the LibrarySelectionHooksEnabled() attribute is set to TRUE, this
event is fired when pressing the CTRL+SHIFT keys and double-clicking on
the object in the graphics page.

Note: For details on handling return and error values, see Error Handling.

BrokenLink
This event is fired if a missing link is encountered while executing the functions Pro-
jectUpdatePages or PageOpen. Details of the missing object are provided through the
parameters Project, Library, Object, GenieOrSymbol.

Syntax

BrokenLink(Project, Library, Object, GenieOrSymbol)

Project:

The name of the project.

Library:

Chapter: 6 Graphics Builder Automation Interface

270



The name of the library.

Object:

The name of the symbol or Genie.

GenieOrSymbol:

Identifies if the object is a symbol or Genie: 1 = Genie; 2 = symbol.

See Also
Automation Events

PasteGenie

When the LibrarySelectionHooksEnabled attribute is set to TRUE, this event is fired
when the paste Genie menu item is selected, the paste genie toolbar button is pressed, or
when F11 is pressed.

Syntax

PasteGenie

See Also
Automation Events

PasteSymbol

When the LibrarySelectionHooksEnabled attribute is set to TRUE, this event is fired
when the paste symbol menu item is selected, the paste symbol toolbar button is
pressed, or F6 is pressed.

Syntax

PasteSymbol

See Also
Automation Events

ProjectChange
This event is fired whenever a new project is selected in Citect Explorer.

Syntax

ProjectChange

See Also
Automation Events

Chapter: 6 Graphics Builder Automation Interface

271



Selection
When SelectionEventEnabled is set to TRUE, this event is fired every time a selection is
made within a graphics page. The dimension of the selection rectangle is passed as
parameters.

Syntax

Selection (FromXPosition, FromYPosition, ToXPosition, ToYPosition)

FromXPosition:

Distance from the left-hand side of the page to top-left hand corner of the selection rectangle (in pix-
els).

FromYPosition:

Distance from the top of the page to the top-left hand corner of the selection rectangle (in pixels).

ToXPosition:

Distance from the left-hand side of the page to the bottom-right hand corner of the selection rec-
tangle (in pixels).

ToYPosition:

Distance from the top of the page to the bottom-right hand corner of the selection rectangle (in pix-
els).

See Also
Automation Events

SwapObject
When the LibSelectionHooksEnabled attribute is set to TRUE, this event is fired when
pressing the CTRL+SHIFT keys and double-clicking the object in the graphics page.

Syntax

SwapObject

See Also
Automation Events

Specific Functions

The specific functions category currently includes only the Visible function.

Vis-
ible

Controls visibility of the CitectSCADA Graphics Builder, or retrieves its current vis-
ible state.

Chapter: 6 Graphics Builder Automation Interface

272



Note: For details on handling return and error values, see Error Handling.

Visible

Controls visibility of the CitectSCADA Graphics Builder, or retrieves its current visible
state.

Syntax

Visible

Return Value

If determining the current visible state of the Graphics Builder, TRUE or FALSE is
returned. If applying a setting to this function, 0 (zero) is returned if successful, other-
wise an error is returned.

Note: For details on handling return and error values, see Error Handling.

Example

' Make CitectSCADA Graphics Builder appear

GraphicsBuilder.Visible = TRUE

' Retrieve the current visible state of the Graphics Builder

MyVariable = GraphicsBuilder.Visible

Note: This function is implemented in the C++ environment as two separate func-
tions: put_Visible sets the visible state of the Graphics Builder, and get_Visible

retrieves the current state of the Graphics Builder (TRUE = visible).

Dynamic Properties Functions

With these functions, you can modify the dynamic properties of the graphics objects in
your project (movement, scaling, rotation, sliders, dynamic color fill).

The error E_HANDLE is returned if there is no selected or active object, or if an object
does not support this type of property. E_INVALIDARG is returned if an argument is
out of range.

Chapter: 6 Graphics Builder Automation Interface

273



PropertiesAccessDisableGet Reads the current values set on the Access | Dis-
able tab of the Object Properties dialog.

PropertiesAccessDisablePut Sets the values on the Access | Disable tab of the
Object Properties dialog.

PropertiesAccessGeneralGet Reads the values on the Access | General tab of
the Object Properties dialog.

PropertiesAccessGeneralPut Sets the values on the Access | General tab of the
Object Properties dialog.

PropertiesButtonGet Reads the values for a button object from the
Appearance | General tab of the Object Prop-
erties dialog.

PropertiesButtonPut Sets the values on the Appearance | General tab
of the Object Properties dialog for a button
object.

PropertiesCicodeObjectGet Reads the values set for a Cicode object on the
Cicode | General tab of the Object Properties
dialog.

PropertiesCicodeObjectPut Sets the values for a Cicode object on the Cicode
| General tab of the Object Properties dialog.

PropertiesDisplayValueGet Reads the type and expressions configured on
the Appearance | Display Value tab of the Object
Properties dialog.

PropertiesDisplayValuePut Sets the values and expressions on the Appear-
ance | Display Value tab of the Object Properties
dialog.

PropertiesDisplayValueTextGet Reads the text for a specific index from the
Appearance | Display Value tab of the Object
Properties dialog.

PropertiesDisplayValueTextPut Sets the text for a specific index on the Appear-
ance | Display Value tab of the Object Properties
dialog.

PropertiesFillColourColourGet Reads the current color value set for the spec-
ified index point on the Fill | Color tab of the
Object Properties dialog. This function has been
superseded by the function Prop-
ertiesFillColourColourGetEx.

Chapter: 6 Graphics Builder Automation Interface

274



PropertiesFillColourColourGetEx Reads the current color value set for the spec-
ified index point on the Fill | Color tab of the
Object Properties dialog.

PropertiesFillColourColourPut Sets the color at the specific index on the Fill |
Color tab of the Object Properties dialog. This
function has been superseded by the function
PropertiesFillColourColourPutEx.

PropertiesFillColourColourPutEx Sets the color at the specific index on the Fill |
Color tab of the Object Properties dialog.

PropertiesFillColourGet Reads the values set on the Fill | Color tab of the
Object Properties dialog for the current object.

PropertiesFillColourPut Sets the values on the Fill | Color tab of the
Object Properties dialog.

PropertiesFillLevelGet Reads the values set on the Fill | Level tab of the
Object Properties dialog. This function has been
superseded by the function Prop-
ertiesFillLevelGetEx.

PropertiesFillLevelGetEx Reads the values set on the Fill | Level tab of the
Object Properties dialog.

PropertiesFillLevelPut Sets the values on the Fill | Level tab of the
Object Properties dialog. This function has been
superseded by the function Prop-
ertiesFillLevelPutEx.

PropertiesFillLevelPutEx Sets the values on the Fill | Level tab of the
Object Properties dialog.

PropertiesInputKeyboardGet Reads the values set on the Input | Keyboard
Command tab of the Object Properties dialog

PropertiesInputKeyboardPut Sets the values on the Input | Keyboard Com-
mands tab of the Object Properties dialog

PropertiesInputTouchGet Reads the values set on the Input | Touch tab of
the Object Properties dialog

PropertiesInputTouchPut Sets the values on the Input | Touch tab of the
Object Properties dialog.

PropertiesShowDialog Shows the property dialog for an object or a form
for Genies.

Chapter: 6 Graphics Builder Automation Interface

275



PropertiesSymbolSetGet Reads the type and expressions configured on
the Appearance | General tab of the Object Prop-
erties dialog.

PropertiesSymbolSetPut Sets the type defined for a symbol set on the
Appearance | General tab of the Object Prop-
erties dialog.

PropertiesSymbolSetSymbolGet Retrieves the Element name and Library name of the
"Index" element of the currently selected object.

PropertiesSymbolSetSymbolPut Sets the Element name and Library name of the
"Index" element of the currently selected object.

PropertiesTransCentreOffsetExpressGet Retrieve the express properties.

PropertiesTransCentreOffsetExpressPut Set the express properties.

PropertiesTransformationGet Reads the property values set on the Movement,
Scaling and Slider tabs of the Object Properties
dialog.

PropertiesTransformationPut Sets values for the properties on the Movement,
Scaling and Slider tabs of the Object Properties
dialog.

PropertiesTrendGet Reads the values for a trend object as set on the
Appearance | General tab of the Object Prop-
erties dialog. This function has been superseded
by the function PropertiesTrendGetEx.

PropertiesTrendGetEx Reads the values for a trend object as set on the
Appearance | General tab of the Object Prop-
erties dialog.

PropertiesTrendPut Sets the values for a trend object that appear on
the Appearance | General tab of the Object Prop-
erties dialog. This function has been superseded
by the function PropertiesTrendPutEx.

PropertiesTrendPutEx Sets the values for a trend object that appear on
the Appearance | General tab of the Object Prop-
erties dialog

PropertyVisibility Sets the Hidden when argument on the Appear-
ance | Visibility tab of the Object Properties
dialog.

Note: For details on handling return and error values, see Error Handling.

Chapter: 6 Graphics Builder Automation Interface

276



PropertiesAccessDisableGet
Reads the current values set on the Access | Disable tab of the Object Properties dialog
for the current object.

Syntax

PropertiesAccessDisableGet(Expression, DisableFlag, DisableStyle)

Expression:

The string for the Disable when command.

DisableFlag:

TRUE if the object is configured to disable when an insufficient area or privilege setting is encoun-
tered.

DisableStyle:

The disable style setting:

l 0 = Embossed
l 1 = Grayed
l 2 = Hidden

Return Value

The requested values, as a string.

Note: For details on handling return and error values, see Error Handling.

Related Functions

PropertiesAccessDisablePut

PropertiesAccessDisablePut
Sets the values on the Access | Disable tab of the Object Properties dialog for the current
object.

Syntax

PropertiesAccessDisablePut(Expression, DisableFlag, DisableStyle)

Expression:

The string for the Disable when command.

DisableFlag:

Chapter: 6 Graphics Builder Automation Interface

277



TRUE if the object is configured to disable when an insufficient area or privilege setting is encoun-
tered.

DisableStyle:

The disable style setting:

l 0 = Embossed
l 1 = Grayed
l 2 = Hidden

Return Value

0 (zero) if successful, otherwise an error is returned

Note: For details on handling return and error values, see Error Handling.

Related Functions

PropertiesAccessDisableGet

PropertiesAccessGeneralGet
Reads the values on the Access | General tab of the Object Properties dialog for the cur-
rent object.

Syntax

PropertiesAccessGeneralGet(Description, Tooltip, Area, Privilege, LogDevice)

Description:

Description string for the object.

Tooltip:

Tooltip string for the object.

Area:

1 to 255 representing the current area setting, or 0 if the Same area as page check box is ticked.

Privilege:

1 to 255 representing the current privilege setting, or 0 if the No privilege restrictions checkbox is
ticked.

LogDevice:

The name of the log device as a string.

Chapter: 6 Graphics Builder Automation Interface

278



Return Value

The requested values, as a string

Note: For details on handling return and error values, see Error Handling.

Related Functions

PropertiesAccessGeneralPut

PropertiesAccessGeneralPut
Sets the values on the Access | General tab of the Object Properties dialog for the current
object.

Syntax

PropertiesAccessGeneralPut(Description, Tooltip, Area, Privilege, LogDevice)

Description:

Description string for the object.

Tooltip:

Tooltip string for the object.

Area:

1 to 255 representing the current area setting, or 0 if the Same area as page check box is ticked.

Privilege:

1 to 255 representing the current privilege setting, or 0 if the No privilege restrictions checkbox is
ticked.

LogDevice:

The name of the log device as a string.

Return Value

0 (zero) if successful, otherwise an error is returned

Note: For details on handling return and error values, see Automation Error Han-
dling.

Chapter: 6 Graphics Builder Automation Interface

279



Related Functions

PropertiesAccessGeneralGet

PropertiesButtonGet
Reads the values for a button object from the Appearance | General tab of the Object
Properties dialog.

Syntax

PropertiesButtonGet(ButtonType, Text, TextFont, Library, SymbolName)

ButtonType:

Defines the button type:

l 0 = Text
l 1 = Border 3D Target
l 2 = Border Target
l 3 = Target
l 4 = Symbol
l 5 = XP Style button with text
l 6 = XP Style Button with Symbol

Text:

Button text. This argument is only valid for ButtonType = 0 and 5 (text).

TextFont:

The font use for the button text. This argument is only valid for ButtonType = 0 and 5 (text).

Library:

Library where the button symbol can be found. This argument is only valid for ButtonType = 4 and
6 (symbol).

SymbolName:

Name of the symbol to be displayed for a button. This argument is only valid for ButtonType = 4
and 6 (symbol).

Return Value

The requested values, as a string.

Note: For details on handling return and error values, see Error Handling.

Chapter: 6 Graphics Builder Automation Interface

280



Related Functions

PropertiesButtonPut

PropertiesButtonPut
Sets the values on the Appearance | General tab of the Object Properties dialog for a but-
ton object.

Syntax

PropertiesButtonPut(Type, Text, TextFont, Library, SymbolName)

ButtonType:

Defines the button type:

l 0 = Text
l 1 = Border 3D Target
l 2 = Border Target
l 3 = Target
l 4 = Symbol
l 5 = XP Style button with text
l 6 = XP Style Button with Symbol

Text:

Button text. This argument is only valid for ButtonType = 0 and 5 (text).

TextFont:

The font use for the button text. This argument is only valid for ButtonType = 0 and 5 (text).

Library:

Library where the button symbol can be found. This argument is only valid for ButtonType = 4 and
6 (symbol).

SymbolName:

Name of the symbol to be displayed for a button. This argument is only valid for ButtonType = 4
and 6 (symbol).

Return Value

0 (zero) if successful, otherwise an error is returned.

Note: For details on handling return and error values, see Error Handling.

Chapter: 6 Graphics Builder Automation Interface

281



Related Functions

PropertiesButtonGet

PropertiesCicodeObjectGet
Reads the values set for a Cicode object on the Cicode | General tab of the Object Prop-
erties dialog.

Syntax

PropertiesCicodeObjectGet(Expression, Library, SymbolName)

Expression:

The command expression.

Library:

Name of the library where the symbol used can be found.

SymbolName:

Name of the symbol used.

Return Value

The requested values, as a string.

Note: For details on handling return and error values, see Error Handling.

Related Functions

PropertiesCicodeObjectPut

PropertiesCicodeObjectPut
Sets the values for a Cicode object on the Cicode | General tab of the Object Properties
dialog.

Syntax

PropertiesCicodeObjectPut(Expression, Library, SymbolName)

Expression:

The command expression.

Library:

Name of the library where the symbol used can be found.

Chapter: 6 Graphics Builder Automation Interface

282



SymbolName:

Name of the symbol used.

Return Value

0 (zero) if successful, otherwise an error is returned.

Note: For details on handling return and error values, see Error Handling.

Related Functions

PropertiesCicodeObjectGet

PropertiesDisplayValueGet
Reads the type and expressions configured on the Appearance | Display Value tab of
the Object Properties dialog for a number or text object.

Syntax

PropertiesDisplayValueGet(SymbolSetType, ExpressionA, ExpressionB, ExpressionC, Expres-
sionD, ExpressionE)

SymbolSetType:

Defines the symbol set type:

l 0 = On / Off
l 1 = Multi-state
l 2 = Array
l 3 = Numeric
l 4 = String

ExpressionA:

This is the main expression:

l ON text when for type On / Off.
l Conditions A for type Multi-state.
l Array expression for type Array.
l Numeric Expression for type Numeric.
l String Expression for type String.

ExpressionB:

Conditions B, only used for multistate type.

ExpressionC:

Chapter: 6 Graphics Builder Automation Interface

283



Conditions C, only used for multistate type.

ExpressionD:

Conditions D, only used for multistate type.

ExpressionE:

Conditions E, only used for multistate type.

Return Value

The requested values, as a string

Note: For details on handling return and error values, see Error Handling.

Related Functions

PropertiesDisplayValuePut

Example

` Gets the properties on the Appearance/DisplayValue sheet for a

number or text object

GraphicsBuilder.PropertiesDisplayValueGet nType, Expression1,

Expression2, Expression3, Expression4, Expression5

PropertiesDisplayValuePut
Sets the fields that appear on the Appearance | Display Value tab of the Object Prop-
erties dialog for a number or text object. This includes the type setting and related expres-
sions.

Syntax

PropertiesDisplayValueGet(SymbolSetType, ExpressionA, ExpressionB, ExpressionC, Expres-
sionD, ExpressionE)

SymbolSetType:

Defines the symbol set type:

l 0 = On / Off
l 1 = Multi-state
l 2 = Array

Chapter: 6 Graphics Builder Automation Interface

284



l 3 = Numeric
l 4 = String

ExpressionA:

This is the main expression:

l ON text when for type On / Off.
l Conditions A for type Multi-state.
l Array expression for type Array.
l Numeric Expression for type Numeric.
l String Expression for type String.

ExpressionB:

Conditions B, only used for multistate type.

ExpressionC:

Conditions C, only used for multistate type.

ExpressionD:

Conditions D, only used for multistate type.

ExpressionE:

Conditions E, only used for multistate type.

Return Value

0 (zero) if successful, otherwise an error is returned.

Note: For details on handling return and error values, see Error Handling.

Related Functions

PropertiesDisplayValueGet

PropertiesDisplayValueTextGet
Reads the text for a specific index from the Appearance | Display Value tab of the Object
Properties dialog for a number or text object of type Multistate, Array or Numeric.

Syntax

PropertiesDisplayValueTextGet(Index, Text)

Index:

The position of the text:

Chapter: 6 Graphics Builder Automation Interface

285



l 0..31 for type Multistate.
l 0..255 for type Array.
l 0 for type Numeric.

Text:

The text written to the field:

l State text for type Multi-state.
l Array text for type Array.
l Format for type Numeric.

Return Value

The requested values, as a string.

Note: For details on handling return and error values, see Error Handling.

Related Functions

PropertiesDisplayValueTextPut, PropertiesDisplayValuePut, PropertiesCicodeObjectPut

PropertiesDisplayValueTextPut
Sets the text for a specific index on the Appearance | Display Value tab of the Object
Properties dialog for a number or text object of type Multistate, Array, or Numeric.

Syntax

PropertiesDisplayValueTextGet(Index, Text)

Index:

The position of the text:

l 0..31 for type Multistate.
l 0..255 for type Array.
l 0 for type Numeric.

Text:

The text written to the field:

l State text for type Multi-state.
l Array text for type Array.
l Format for type Numeric.

Return Value

0 (zero) if successful, otherwise an error is returned.

Chapter: 6 Graphics Builder Automation Interface

286



Note: For details on handling return and error values, see Error Handling.

Related Functions

PropertiesDisplayValueTextGet, PropertiesSymbolSetPut, PropertiesSymbolSetGet

PropertiesFillColourColourGet
Reads the current color value set for the specified index point on the Fill | Color tab of
the Object Properties dialog for Array, Threshold and Gradient types.

Note: As this function does not supportTrue Color functionality, it has been super-
seded by the function PropertiesFillColourColourGetEx.

Syntax

PropertiesFillColourColourGet(Index, ColourNo, Limit, Operator)

Index:

Specify the index you would like to read the current color for. This values depends on the type of
color fill selected:

l 0 - 31 for type Multi-state
l 0 - 255 for type Array
l 0 - 255 for type Threshold
l 0- 1 for Gradient

ColourNo:

A value between 0 and 255 representing the color applied to the Index setting.

Limit:

A value between 0 and 100 representing the threshold limit. Used for type Threshold only.

Operator:

The value representing the current operator used for the threshold limit setting:

l 0 : < (less than)
l 1 : > (greater than)
l 2 : <= (less than or equal to)
l 3 : >= (greater than or equal to)

Return Value

0 (zero) if successful, otherwise an error is returned.

Chapter: 6 Graphics Builder Automation Interface

287



Note: For details on handling return and error values, see Error Handling.

Related Functions

PropertiesFillColourColourPut, PropertiesFillColourGet, PropertiesFillColourPut

PropertiesFillColourColourGetEx
Reads the current color value set for the specified index point on the Fill | Color tab of
the Object Properties dialog for Array, Threshold and Gradient types.

Syntax

PropertiesFillColourColourGet(Index, OnColourNo, OffColourNo, Limit, Operator)

Index:

Specify the index you would like to read the current color for. This values depends on the type of
color fill selected:

l 0 - 31 for type Multi-state
l 0 - 255 for type Array
l 0 - 255 for type Threshold
l 0- 1 for Gradient

OnColourNo:

An RGB value representing the "on" color applied to the Index setting.

OffColourNo:

An RGB value representing the "off" color applied to the Index setting.

Limit:

A value between 0 and 100 representing the threshold limit. Used for type Threshold only.

Operator:

The value representing the current operator used for the threshold limit setting:

l 0 : < (less than)
l 1 : > (greater than)
l 2 : <= (less than or equal to)
l 3 : >= (greater than or equal to)

Return Value

0 (zero) if successful, otherwise an error is returned.

Chapter: 6 Graphics Builder Automation Interface

288



Note: For details on handling return and error values, see Error Handling.

Related Functions

PropertiesFillColourColourPutEx, PropertiesFillColourGet, PropertiesFillColourPut

PropertiesFillColourColourPut
Sets the color at the specific index on the Fill | Color tab of the Object Properties dialog
for type Array, Threshold and Gradient.

Note: As this function does not support True Color functionality, it has been super-
seded by the function PropertiesFillColourColourPutEx.

Syntax

PropertiesFillColourColourPut(Index, ColourNo, Limit, Operator)

Index:

Specify the index you would like to read the current color for. This values depends on the type of
color fill selected:

l 0 - 31 for type Multi-state
l 0 - 255 for type Array
l 0 - 255 for type Threshold
l 0- 1 for Gradient

ColourNo:

A value between 0 and 255 representing the color applied to the Index setting.

Limit:

A value between 0 and 100 representing the threshold limit. Used for type Threshold only.

Operator:

The value representing the current operator used for the threshold limit setting:

l 0 : < (less than)
l 1 : > (greater than)
l 2 : <= (less than or equal to)
l 3 : >= (greater than or equal to)

Return Value

0 (zero) if successful, otherwise an error is returned.

Chapter: 6 Graphics Builder Automation Interface

289



Note: For details on handling return and error values, see Error Handling.

Related Functions

PropertiesFillColourColourGet, PropertiesFillColourGet, PropertiesFillColourPut

PropertiesFillColourColourPutEx
Sets the color at the specific index on the Fill | Color tab of the Object Properties dialog
for type Array, Threshold and Gradient.

Syntax

PropertiesFillColourColourPutEx(Index, OnColourNo, OffColourNo, Limit, Operator)

Index:

Specify the index you want to read the current color for. This values depends on the type of color
fill selected:

l 0 - 31 for type Multi-state
l 0 - 255 for type Array
l 0 - 255 for type Threshold
l 0- 1 for Gradient

OnColourNo:

An RGB value representing the "on" color applied to the Index setting.

OffColourNo:

An RGB value representing the "off" color applied to the Index setting.

Limit:

A value between 0 and 100 representing the threshold limit. Used for type Threshold only.

Operator:

The value representing the current operator used for the threshold limit setting:

l 0 : < (less than)
l 1 : > (greater than)
l 2 : <= (less than or equal to)
l 3 : >= (greater than or equal to)

Return Value

0 (zero) if successful, otherwise an error is returned.

Chapter: 6 Graphics Builder Automation Interface

290



Note: For details on handling return and error values, see Error Handling.

Related Functions

PropertiesFillColourColourGetEx, PropertiesFillColourPut

PropertiesFillColourGet
Reads the values set on the Fill | Color tab of the Object Properties dialog for the current
object.

Syntax

PropertiesFillColourGet(FillColourType, ExpressionA, ExpressionB, ExpressionC, Expres-
sionD, ExpressionE, RangeFlag, RangeMin, RangeMax)

FillColourType:

The fill color type:

l 0 = On / Off
l 1 = Multi-state
l 2 = Array
l 3 = Threshold
l 4 = Gradient

ExpressionA:

This is the main expression:

l ON color when for type On / Off
l Conditions A for type Multi-state
l Array expression for type Array
l Color expression for type Animated

ExpressionB:

Conditions B, only used for multistate symbol sets.

ExpressionC:

Conditions C, only used for multistate symbol sets.

ExpressionD:

Conditions D, only used for multistate symbol sets.

ExpressionE:

Conditions E, only used for multistate symbol sets.

Chapter: 6 Graphics Builder Automation Interface

291



RangeFlag:

If set to TRUE, checks the Specify range checkbox. Flag is only valid for Threshold and Gradient
types.

RangeMin:

This floating point value sets the minimum range of the tag value. Only necessary if the argument
RangeFlag is set to TRUE.

RangeMax:

This floating point value sets the maximum range of the tag value. Only necessary, if the argument
RangeFlag is set to TRUE.

Return Value

The requested values, as a string.

Note: For details on handling return and error values, see Error Handling.

Related Functions

PropertiesFillColourPut, PropertiesFillColourColourGet, PropertiesFillColourColourPut

PropertiesFillColourPut
Sets the values on the Fill | Color tab of the Object Properties dialog for the current
object.

Syntax

PropertiesFillColourPut(FillColourType, ExpressionA, ExpressionB, ExpressionC, Expres-
sionD, ExpressionE, RangeFlag, RangeMin, RangeMax)

FillColourType:

The fill color type:

l 0 = On / Off
l 1 = Multi-state
l 2 = Array
l 3 = Threshold
l 4 = Gradient

ExpressionA:

This is the main expression:

Chapter: 6 Graphics Builder Automation Interface

292



l ON color when for type On / Off
l Conditions A for type Multi-state
l Array expression for type Array
l Color expression for type Animated

ExpressionB:

Conditions B, only used for multistate symbol sets.

ExpressionC:

Conditions C, only used for multistate symbol sets.

ExpressionD:

Conditions D, only used for multistate symbol sets.

ExpressionE:

Conditions E, only used for multistate symbol sets.

RangeFlag:

If set to TRUE, checks the Specify range checkbox. Flag is only valid for Threshold and Gradient
types.

RangeMin:

This floating point value sets the minimum range of the tag value. Only necessary if the argument
RangeFlag is set to TRUE.

RangeMax:

This floating point value sets the maximum range of the tag value. Only necessary, if the argument
RangeFlag is set to TRUE.

Return Value

0 (zero) if successful, otherwise an error is returned.

Note: For details on handling return and error values, see Error Handling.

Related Functions

PropertiesFillColourGet, PropertiesFillColourColourGet, PropertiesFillColourColourPut

PropertiesFillLevelGet
Reads the values set on the Fill | Level tab of the Object Properties dialog for the current
object.

Chapter: 6 Graphics Builder Automation Interface

293



Note: As this function does not support True Color functionality, it has been super-
seded by the function PropertiesFillLevelGetEx.

Syntax

PropertiesFillLevelGet(Expression, RangeFlag, RangeMin, RangeMax, OffsetMin, OffsetMax,
FillDirection, BackgroundColour)

Expression:

The level expression.

RangeFlag:

TRUE if the Specify range checkbox is selected.

RangeMin:

The minimum floating point value in the range of the tag. This argument is only valid if RangeFlag
is set to TRUE.

RangeMax:

The maximum floating point value in the range of the tag. This argument is only valid if RangeFlag
is set to TRUE.

OffsetMin:

The value between 0 and 100 representing the percentage of the area displayed as filled when the
tag value is at its minimum.

OffsetMax:

The value between 0 and 100 representing the percentage of the area displayed as filled when the
tag value is at its maximum.

FillDirection:

The current fill direction setting:

l 0 = up
l 1 = down
l 2 = left
l 3 = right

BackgroundColour:

A value between 0 and 255 representing the background color setting.

Return Value

The requested values, as a string.

Chapter: 6 Graphics Builder Automation Interface

294



Note: For details on handling return and error values, see Error Handling.

Related Functions

PropertiesFillColourPut

PropertiesFillLevelGetEx
Reads the values set on the Fill | Level tab of the Object Properties dialog for the current
object.

Syntax

PropertiesFillLevelGetEx(Expression, RangeFlag, RangeMin, RangeMax, OffsetMin, Off-
setMax, FillDirection, OnColour, OffColour)

Expression:

The level expression.

RangeFlag:

TRUE if the Specify range checkbox is selected.

RangeMin:

The minimum floating point value in the range of the tag. This argument is only valid if RangeFlag
is set to TRUE.

RangeMax:

The maximum floating point value in the range of the tag. This argument is only valid if RangeFlag
is set to TRUE.

OffsetMin:

The value between 0 and 100 representing the percentage of the area displayed as filled when the
tag value is at its minimum.

OffsetMax:

The value between 0 and 100 representing the percentage of the area displayed as filled when the
tag value is at its maximum.

FillDirection:

The current fill direction setting:

l 0 = up
l 1 = down

Chapter: 6 Graphics Builder Automation Interface

295



l 2 = left
l 3 = right

OnColour:

An RGB value representing the background "on" color setting.

OffColour:

An RGB value representing the background "off" color setting.

Return Value

The requested values, as a string.

Note: For details on handling return and error values, see Error Handling.

Related Functions

PropertiesFillColourPut

PropertiesFillLevelPut
Sets the values on the Fill | Level tab of the Object Properties dialog for the current
object.

Note: As this function does not support True Color functionality, it is superseded by
the function PropertiesFillLevelPutEx.

Syntax

PropertiesFillLevelPut(Expression, RangeFlag, RangeMin, RangeMax, OffsetMin, OffsetMax,
FillDirection, BackgroundColour)

Expression:

The level expression.

RangeFlag:

TRUE if the Specify range checkbox is selected.

RangeMin:

The minimum floating point value in the range of the tag. This argument is only valid if RangeFlag
is set to TRUE.

RangeMax:

Chapter: 6 Graphics Builder Automation Interface

296



The maximum floating point value in the range of the tag. This argument is only valid if RangeFlag
is set to TRUE.

OffsetMin:

The value between 0 and 100 representing the percentage of the area displayed as filled when the
tag value is at its minimum.

OffsetMax:

The value between 0 and 100 representing the percentage of the area displayed as filled when the
tag value is at its maximum.

FillDirection:

The current fill direction setting:

l 0 = up
l 1 = down
l 2 = left
l 3 = right

BackgroundColour:

A value between 0 and 255 representing the background color setting.

Return Value

0 (zero) if successful, otherwise an error is returned.

Note: For details on handling return and error values, see Error Handling.

Related Functions

PropertiesFillLevelPutEx,PropertiesFillLevelGet

PropertiesFillLevelPutEx
Sets the values on the Fill | Level tab of the Object Properties dialog for the current
object.

Syntax

PropertiesFillLevelPutEx(Expression, RangeFlag, RangeMin, RangeMax, OffsetMin, Off-
setMax, FillDirection, OnColour, OffColour)

Expression:

The level expression.

RangeFlag:

Chapter: 6 Graphics Builder Automation Interface

297



TRUE if the Specify range checkbox is selected.

RangeMin:

The minimum floating point value in the range of the tag. This argument is only valid if RangeFlag
is set to TRUE.

RangeMax:

The maximum floating point value in the range of the tag. This argument is only valid if RangeFlag
is set to TRUE.

OffsetMin:

The value between 0 and 100 representing the percentage of the area displayed as filled when the
tag value is at its minimum.

OffsetMax:

The value between 0 and 100 representing the percentage of the area displayed as filled when the
tag value is at its maximum.

FillDirection:

The current fill direction setting:

l 0 = up
l 1 = down
l 2 = left
l 3 = right

OnColour:

An RGB value representing the background "on" color setting.

OffColour:

An RGB value representing the background "off" color setting.

Return Value

0 (zero) if successful, otherwise an error is returned.

Note: For details on handling return and error values, see Error Handling.

Related Functions

PropertiesFillLevelGetEx

PropertiesInputKeyboardGet

Chapter: 6 Graphics Builder Automation Interface

298



Reads the values set on the Input | Keyboard Command tab of the Object Properties
dialog for the current object.

Syntax

PropertiesInputKeyboardGet(Index, KeySequence, Command, Area, Privilege, LogMessage)

Index:

0 to 255 for the key sequence.

KeySequence:

String of the keys to be pressed.

Command:

Expression for the key sequence command.

Area:

0 to 255 for the area, where 0 ticks the checkbox Same area as object.

Privilege:

0 to 255 for the privilege, where 0 ticks the checkbox Same privilege as object.

LogMessage:

The message text to be logged.

Return Value

The requested values, as a string.

Note: For details on handling return and error values, see Error Handling.

Related Functions

PropertiesInputKeyboardPut

PropertiesInputKeyboardPut
Sets the values on the Input | Keyboard Commands tab of the Object Properties dialog
for the current object.

Syntax

PropertiesInputKeyboardPut(Index, KeySequence, Command, Area, Privilege, LogMessage)

Index:

Chapter: 6 Graphics Builder Automation Interface

299



0 to 255 for the key sequence.

KeySequence:

String of the keys to be pressed.

Command:

Expression for the key sequence command.

Area:

0 to 255 for the area, where 0 ticks the checkbox Same area as object.

Privilege:

0 to 255 for the privilege, where 0 ticks the checkbox Same privilege as object.

LogMessage:

The message text to be logged.

Return Value

0 (zero) if successful, otherwise an error is returned.

Note: For details on handling return and error values, see Error Handling.

Related Functions

PropertiesInputKeyboardGet

PropertiesInputTouchGet

Reads the values set on the Input | Touch tab of the Object Properties dialog for the cur-
rent object.

Syntax

PropertiesInputTouchGet(Action, Expression, LogMessage, RepeatRate)

Action:

The type of keyboard action:

l 0 = Up
l 1 = Down
l 2 = Repeat

Expression:

Chapter: 6 Graphics Builder Automation Interface

300



The expression configured for the selected keyboard action (either up, down or repeat).

LogMessage:

The message text to be logged.

RepeatRate:

A value between 1 and 32000 representing the repeat rate in milliseconds.

Return Value

The requested values, as a string.

Note: For details on handling return and error values, see Error Handling.

Related Functions

PropertiesInputTouchPut

PropertiesInputTouchPut

Sets the values on the Input | Touch tab of the Object Properties dialog for the current
object.

Syntax

PropertiesInputTouchPut(Action, Expression, LogMessage, RepeatRate)

Action:

The type of keyboard action:

l 0 = Up
l 1 = Down
l 2 = Repeat

Expression:

The expression configured for the selected keyboard action (either up, down or repeat).

LogMessage:

The message text to be logged.

RepeatRate:

A value between 1 and 32000 representing the repeat rate in milliseconds.

Chapter: 6 Graphics Builder Automation Interface

301



Return Value

0 (zero) if successful, otherwise an error is returned.

Note: For details on handling return and error values, see Error Handling.

Related Functions

PropertiesInputTouchGet

PropertiesShowDialog

Shows the properties dialog for an object or a form for Genies.

Syntax

PropertiesShowDialog

Return Value

0 (zero) if successful, otherwise an error is returned.

Note: For details on handling return and error values, see Error Handling.

PropertiesSymbolSetGet

Reads the type and expressions configured on the Appearance | General tab of the
Object Properties dialog for a symbol set.

Syntax

PropertiesSymbolSetGet(SymbolSetType, ExpressionA, ExpressionB, ExpressionC, Expres-
sionD, ExpressionE)

SymbolSetType:

Defines the symbol set type:

l 0 = On / Off
l 1 = Multi-state
l 2 = Array
l 3 = Animated

ExpressionA:

Chapter: 6 Graphics Builder Automation Interface

302



This is the main expression:

l ON symbol when for type On / Off
l Conditions A for type Multi-state
l Array expression for type Array
l Animate when for type Animated

ExpressionB:

Conditions B, only used for multistate symbol sets.

ExpressionC:

Conditions C, only used for multistate symbol sets.

ExpressionD:

Conditions D, only used for multistate symbol sets.

ExpressionE:

Conditions E, only used for multistate symbol sets.

Return Value

The requested values, as a string.

Note: For details on handling return and error values, see Error Handling.

Related Functions

PropertiesSymbolSetPut

Example

` Gets the properties on the Appearance/General sheet for a symbol set

GraphicsBuilder.PropertiesSymbolSetGet nType, Expression1, Expression2, Expression3,

Expression4, Expression5

PropertiesSymbolSetPut

Sets the type defined for a symbol set on the Appearance | General tab of the Object
Properties dialog, as well any expressions used

Chapter: 6 Graphics Builder Automation Interface

303



Syntax

PropertiesSymbolSetPut(SymbolSetType, ExpressionA, ExpressionB, ExpressionC, Expres-
sionD, ExpressionE)

SymbolSetType:

Defines the symbol set type:

l 0 = On / Off
l 1 = Multi-state
l 2 = Array
l 3 = Animated

ExpressionA:

This is the main expression:

l ON symbol when for type On / Off
l Conditions A for type Multi-state
l Array expression for type Array
l Animate when for type Animated

ExpressionB:

Conditions B, only used for multistate symbol sets.

ExpressionC:

Conditions C, only used for multistate symbol sets.

ExpressionD:

Conditions D, only used for multistate symbol sets.

ExpressionE:

Conditions E, only used for multistate symbol sets.

Return Value

0 (zero) if successful, otherwise an error is returned.

Note: For details on handling return and error values, see Error Handling.

Related Functions

PropertiesSymbolSetGet

Chapter: 6 Graphics Builder Automation Interface

304



Example

` Sets the properties on the Appearance General sheet for a symbol set

GraphicsBuilder.PropertiesSymbolSetPut 0, "ON / OFF", "", "", "", ""

PropertiesSymbolSetSymbolGet

Retrieves the Element name and Library name of the "Index" element of the currently
selected object.

"Index" refers to the element within the currently selected object. For example:

l If the currently selected object is an On/Off symbol set, index can be a value in the
range 0..1

l If the currently selected object is a multistate symbol set, index can be a value in the
range 0..31

l If the currently selected object is an array symbol set, index can be a value in the
range 0..255

l If the currently selected object is an animated symbol set, index can be a value in the
range 0..255

l On return, "Element" will contain the name of the symbol set element name for the
"Index" element

l On return, "Library" will contain the name of the symbol set library name for the
"Index" element
e.g.
Index=0, Element="detail_entrycoil1_grey_01", Library="steelmill"
Index=1, Element="detail_entrycoil1_green_01", Library="steelmill"

Syntax

PropertiesSymbolSetSymbolGet(Index, Library, Element)

Return Value

N/A

Note: For details on handling return and error values, see Error Handling.

Chapter: 6 Graphics Builder Automation Interface

305



Example

Public Sub Test()

Dim gb As GraphicsBuilder.GraphicsBuilder

.

.

.

gb.PropertiesSymbolSetSymbolPut(1, "

Library", "

Element")

Dim sLibrary As String

Dim sElement As String

gb.PropertiesSymbolSetSymbolGet(1, sLibrary, sElement)

End Sub

Related Functions

PropertiesSymbolSetSymbolPut

PropertiesSymbolSetSymbolPut

Sets the Element name and Library name of the "Index" element of the currently selected
object.

"Index" refers to the element within the currently selected object. For example:

l If the currently selected object is an On/Off symbol set, index can be a value in the
range 0..1

l If the currently selected object is a multistate symbol set, index can be a value in the
range 0..31

l If the currently selected object is an array symbol set, index can be a value in the
range 0..255

l If the currently selected object is an animated symbol set, index can be a value in the
range 0..255

l On return, "Element" will contain the name of the symbol set element name for the
"Index" element

l On return, "Library" will contain the name of the symbol set library name for the
"Index" element
e.g.
Index=0, Element="detail_entrycoil1_grey_01", Library="steelmill"
Index=1, Element="detail_entrycoil1_green_01", Library="steelmill"

Chapter: 6 Graphics Builder Automation Interface

306



Syntax

PropertiesSymbolSetSymbolPut(Index, Library, Element)

Return Value

N/A

Note: For details on handling return and error values, see Error Handling.

Example

Public Sub Test()

Dim gb As GraphicsBuilder.GraphicsBuilder

.

.

.

gb.PropertiesSymbolSetSymbolPut(1, "

Library", "

Element")

Dim sLibrary As String

Dim sElement As String

gb.PropertiesSymbolSetSymbolGet(1, sLibrary, sElement)

End Sub

Related Functions

PropertiesSymbolSetSymbolGet()

PropertiesTransCentreOffsetExpressGet

Retrieve the express properties.

Syntax

Prop-
ert-
iesTransCentreOffsetExpressGet(movementRotationalExpress,scalingHorizontalExpress,scalingVerticalExpress,sliderRotationalExpress)

movementRotationalExpress - Movement Rotational Express
scalingHorizontalExpress - Scaling Horizontal Express
scalingVerticalExpress - Scaling Vertical Express
sliderRotationalExpress - Slider Rotational Express

Chapter: 6 Graphics Builder Automation Interface

307



Return Value

N/A

Note: For details on handling return and error values, see Error Handling.

Example

Public Sub Test()

Dim gb As GraphicsBuilder.GraphicsBuilder

gb = New GraphicsBuilder.GraphicsBuilder

.

.

.

gb.PropertiesTransCentreOffsetExpressPut(0, 0, 0, 0)

Dim nMovRot As Short

Dim nScaleHorz As Short

Dim nScaleVert As Short

Dim nSliderRot As Short

gb.PropertiesTransCentreOffsetExpressGet(nMovRot, nScaleHorz, nScaleVert, nSlid-

erRot)

End Sub

Related Functions

PropertiesTransCentreOffsetExpressPut

PropertiesTransCentreOffsetExpressPut

Sets the express properties.

Syntax

Prop-
ert-
iesTransCentreOffsetExpressPut(movementRotationalExpress,scalingHorizontalExpress,scalingVerticalExpress,sliderRotationalExpress)

movementRotationalExpress - Movement Rotational Express
scalingHorizontalExpress - Scaling Horizontal Express
scalingVerticalExpress - Scaling Vertical Express
sliderRotationalExpress - Slider Rotational Express

Chapter: 6 Graphics Builder Automation Interface

308



Return Value

N/A

Note: For details on handling return and error values, see Error Handling.

Example

Public Sub Test()

Dim gb As GraphicsBuilder.GraphicsBuilder

gb = New GraphicsBuilder.GraphicsBuilder

.

.

.

gb.PropertiesTransCentreOffsetExpressPut(0, 0, 0, 0)

Dim nMovRot As Short

Dim nScaleHorz As Short

Dim nScaleVert As Short

Dim nSliderRot As Short

gb.PropertiesTransCentreOffsetExpressGet(nMovRot, nScaleHorz, nScaleVert, nSlid-

erRot)

End Sub

Related Functions

PropertiesTransCentreOffsetExpressGet

PropertiesTransformationGet

Reads the property values set on theMovement, Scaling and Slider tabs of the Object
Properties dialog for the current object.

Syntax

PropertiesTransformationGet(Action, Expression, RangeFlag, RangeMin, RangeMax, Off-
setMin, OffsetMax, CustomFlag, CentreOffsetRight, CentreOffsetDown)

Action:

Selects the tab on the Object Properties dialog that data will be read from:

l 0 = MovementHorizontal
l 1 = MovementVertical
l 2 = MovementRotational
l 3 = ScalingHorizontal
l 4 = ScalingVertical

Chapter: 6 Graphics Builder Automation Interface

309



l 5 = SliderHorizontal
l 6 = SliderVertical
l 7 = SliderRotational

Expression:

The main expression in Field:

l Movement expression for the actions MovementHorizontal or Move-
mentVertical

l Angle expression for action MovementRotational
l Scaling expression for actions ScalingHorizontal or ScalingVertical
l Tag for actions SliderHorizontal, SliderVertical or SliderRotational

RangeFlag:

TRUE if Specify range is checked

RangeMin:

The minimum floating point value. 0 (zero) if RangeFlag is not set.

RangeMax:

This maximum floating point value. 0 (zero) if RangeFlag is set to TRUE.

OffsetMin:

The value of Angle at minimum for the actions MovementRotational and SliderRotational, or Offset
at minimum for other actions.

OffsetMax:

The value of Angle at maximum for the actions MovementRotational and SliderRotational, or Offset
at maximum for other actions.

CustomFlag:

TRUE if custom is selected for the center axis offset setting for the actions MovementRotational,
SliderRotational, Scaling Horizontal or ScalingVertical.

CentreOffsetRight:

A value between 0 and 32767 representing the customized setting for center offset right. 0 (zero) if
CustomFlag is not set.

CentreOffsetDown:

A value between 0 and 32767 representing the customized setting for center offset down. 0 (zero) if
CustomFlag is not set.

Return Value

The requested values, as a string.

Chapter: 6 Graphics Builder Automation Interface

310



Note: For details on handling return and error values, see Error Handling.

Related Functions

PropertiesTransformationPut

PropertiesTransformationPut

Sets values for the properties on theMovement, Scaling and Slider tabs of the Object
Properties dialog.

Syntax

PropertiesTransformationGet(Action, Expression, RangeFlag, RangeMin, RangeMax, Off-
setMin, OffsetMax, CustomFlag, CentreOffsetRight, CentreOffsetDown)

Action:

Selects the tab on the Object Properties dialog that data will be read from:

l 0 = MovementHorizontal
l 1 = MovementVertical
l 2 = MovementRotational
l 3 = ScalingHorizontal
l 4 = ScalingVertical
l 5 = SliderHorizontal
l 6 = SliderVertical
l 7 = SliderRotational

Expression:

The main expression in Field:

l Movement expression for the actions MovementHorizontal or Move-
mentVertical

l Angle expression for action MovementRotational
l Scaling expression for actions ScalingHorizontal or ScalingVertical
l Tag for actions SliderHorizontal, SliderVertical or SliderRotational

RangeFlag:

TRUE if Specify range is checked

RangeMin:

The minimum floating point value. 0 (zero) if RangeFlag is not set.

Chapter: 6 Graphics Builder Automation Interface

311



RangeMax:

This maximum floating point value. 0 (zero) if RangeFlag is set to TRUE.

OffsetMin:

The value of Angle at minimum for the actions MovementRotational and SliderRotational, or Offset
at minimum for other actions.

OffsetMax:

The value of Angle at maximum for the actions MovementRotational and SliderRotational, or Offset
at maximum for other actions.

CustomFlag:

TRUE if custom is selected for the center axis offset setting for the actions MovementRotational,
SliderRotational, Scaling Horizontal or ScalingVertical.

CentreOffsetRight:

A value between 0 and 32767 representing the customized setting for center offset right. 0 (zero) if
CustomFlag is not set.

CentreOffsetDown:

A value between 0 and 32767 representing the customized setting for center offset down. 0 (zero) if
CustomFlag is not set.

Return Value

The requested values, as a string.

Note: For details on handling return and error values, see Error Handling.

Related Functions

PropertiesTransformationGet

PropertiesTrendGet
Reads the values for a trend object as set on the Appearance | General tab of the Object
Properties dialog.

Note: As this function does not support True Color functionality, it has been super-
seded by the function PropertiesTrendGetEx.

Chapter: 6 Graphics Builder Automation Interface

312



Syntax

PropertiesTrendGet(NumberOfSamples, PixelPerSample, Expression1, Colour1, Expression2,
Colour2, Expression3, Colour3, Expression4, Colour4, Expression5, Colour5, Expression6,
Colour6, Expression7, Colour7, Expression8, Colour8)

NumberOfSamples:

A value between 0 and 32767 representing the number of samples in a trend display.

PixelPerSample:

A value between 1 and 32, representing the width of each sample in pixels.

Expression1:

String argument for the field Pen1.

Colour1:

A value between 0 and 255 representing the color of trend Pen1.

Expression2:

String argument for the field Pen2.

Colour2:

A value between 0 and 255 representing the color of trend Pen2.

Expression3:

String argument for the field Pen3.

Colour3:

A value between 0 and 255 representing the color of trend Pen3.

Expression4:

String argument for the field Pen4.

Colour4:

A value between 0 and 255 representing the color of trend Pen4.

Expression5:

String argument for the field Pen5.

Colour5:

A value between 0 and 255 representing the color of trend Pen5.

Expression6:

String argument for the field Pen6.

Chapter: 6 Graphics Builder Automation Interface

313



Colour6:

A value between 0 and 255 representing the color of trend Pen6.

Expression7:

String argument for the field Pen7.

Colour7:

A value between 0 and 255 representing the color of trend Pen7.

Expression8:

String argument for the field Pen8.

Colour8:

A value between 0 and 255 representing the color of trend Pen8.

Return Value

The requested values, as a string.

Note: For details on handling return and error values, see Error Handling.

Related Functions

PropertiesTrendPut

PropertiesTrendGetEx
Reads the values for a trend object as set on the Appearance | General tab of the Object
Properties dialog.

Syntax

PropertiesTrendGetEx(NumberOfSamples, PixelPerSample, Expression1, OnColour1, Off-
Colour1, Expression2, OnColour2, OffColour2, Expression3, OnColour3, OffColour3, Expres-
sion4, OnColour4, OffColour4, Expression5, OnColour5, OffColour5, Expression6, OnColour6,
OffColour6, Expression7, OnColour7, OffColour7, Expression8, OnColour8, OffColour8)

NumberOfSamples:

A value between 0 and 32767 representing the number of samples in a trend display.

PixelPerSample:

A value between 1 and 32, representing the width of each sample in pixels.

Expression1:

Chapter: 6 Graphics Builder Automation Interface

314



String argument for the field Pen1.

OnColour1:

An RGB value representing the "on" color of trend Pen1.

OffColour1:

An RGB value representing the "off" color of trend Pen1.

Expression2:

String argument for the field Pen2.

OnColour2:

An RGB value representing the "on" color of trend Pen2.

OffColour2:

An RGB value representing the "off" color of trend Pen2.

Expression3:

String argument for the field Pen3.

OnColour3:

An RGB value representing the "on" color of trend Pen3.

OffColour3:

An RGB value representing the "off" color of trend Pen3.

Expression4:

String argument for the field Pen4.

OnColour4:

An RGB value representing the "on" color of trend Pen4.

OffColour4:

An RGB value representing the "off" color of trend Pen4.

Expression5:

String argument for the field Pen5.

OnColour5:

An RGB value representing the "on" color of trend Pen5.

OffColour5:

An RGB value representing the "off" color of trend Pen5.

Chapter: 6 Graphics Builder Automation Interface

315



Expression6:

String argument for the field Pen6.

OnColour6:

An RGB value representing the "on" color of trend Pen6.

OffColour6:

An RGB value representing the "off" color of trend Pen6.

Expression7:

String argument for the field Pen7.

OnColour7:

An RGB value representing the "on" color of trend Pen7.

OffColour7:

An RGB value representing the "off" color of trend Pen7.

Expression8:

String argument for the field Pen8.

OnColour8:

An RGB value representing the "on" color of trend Pen8.

OffColour8:

An RGB value representing the "off" color of trend Pen8.

Return Value

The requested values, as a string.

Note: For details on handling return and error values, see Error Handling.

Related Functions

PropertiesTrendPutEx

PropertiesTrendPut
Sets the values for a trend object that appear on the Appearance | General tab of the
Object Properties dialog.

Note: As this function does not support True Color functionality, it has been

Chapter: 6 Graphics Builder Automation Interface

316



superseded by the functions PropertiesTrendPutEx.

Syntax

PropertiesTrendGet(NumberOfSamples, PixelPerSample, Expression1, Colour1, Expression2,
Colour2, Expression3, Colour3, Expression4, Colour4, Expression5, Colour5, Expression6,
Colour6, Expression7, Colour7, Expression8, Colour8)

NumberOfSamples:

A value between 0 and 32767 representing the number of samples in a trend display.

PixelPerSample:

A value between 1 and 32, representing the width of each sample in pixels.

Expression1:

String argument for the field Pen1.

Colour1:

A value between 0 and 255 representing the color of trend Pen1

Expression2:

String argument for the field Pen2.

Colour2:

A value between 0 and 255 representing the color of trend Pen2.

Expression3:

String argument for the field Pen3.

Colour3:

A value between 0 and 255 representing the color of trend Pen3.

Expression4:

String argument for the field Pen4.

Colour4:

A value between 0 and 255 representing the color of trend Pen4.

Expression5:

String argument for the field Pen5.

Colour5:

A value between 0 and 255 representing the color of trend Pen5.

Chapter: 6 Graphics Builder Automation Interface

317



Expression6:

String argument for the field Pen6.

Colour6:

A value between 0 and 255 representing the color of trend Pen6.

Expression7:

String argument for the field Pen7.

Colour7:

A value between 0 and 255 representing the color of trend Pen7.

Expression8:

String argument for the field Pen8.

Colour8:

A value between 0 and 255 representing the color of trend Pen8.

Return Value

0 (zero) if successful, otherwise an error is returned.

Note: For details on handling return and error values, see Error Handling.

Related Functions

PropertiesTrendGet

PropertiesTrendPutEx
Sets the values for a trend object that appear on the Appearance | General tab of the
Object Properties dialog.

Syntax

PropertiesTrendPutEx(NumberOfSamples, PixelPerSample, Expression1, OnColour1, Off-
Colour1, Expression2, OnColour2, OffColour2 , Expression3, OnColour3, OffColour3 , Expres-
sion4, OnColour4, OffColour4 , Expression5, OnColour5, OffColour5, Expression6, OnColour6,
OffColour6 , Expression7, OnColour7, OffColour7, Expression8, OnColour8, OffColour8, )

NumberOfSamples:

A value between 0 and 32767 representing the number of samples in a trend display.

PixelPerSample:

Chapter: 6 Graphics Builder Automation Interface

318



A value between 1 and 32, representing the width of each sample in pixels.

Expression1:

String argument for the field Pen1.

OnColour1:

An RGB value representing the "on" color of trend Pen1.

OffColour1:

An RGB value representing the "off" color of trend Pen1.

Expression2:

String argument for the field Pen2.

OnColour2:

An RGB value representing the "on" color of trend Pen2.

OffColour2:

An RGB value representing the "off" color of trend Pen2.

Expression3:

String argument for the field Pen3.

OnColour3:

An RGB value representing the "on" color of trend Pen3.

OffColour3:

An RGB value representing the "off" color of trend Pen3.

Expression4:

String argument for the field Pen4.

OnColour4:

An RGB value representing the "on" color of trend Pen4.

OffColour4:

An RGB value representing the "off" color of trend Pen4.

Expression5:

String argument for the field Pen5.

OnColour5:

An RGB value representing the "on" color of trend Pen5.

Chapter: 6 Graphics Builder Automation Interface

319



OffColour5:

An RGB value representing the "off" color of trend Pen5.

Expression6:

String argument for the field Pen6.

OnColour6:

An RGB value representing the "on" color of trend Pen6.

OffColour6:

An RGB value representing the "off" color of trend Pen6.

Expression7:

String argument for the field Pen7.

OnColour7:

An RGB value representing the "on" color of trend Pen7.

OffColour7:

An RGB value representing the "off" color of trend Pen7.

Expression8:

String argument for the field Pen8.

OnColour8:

An RGB value representing the "on" color of trend Pen8.

OffColour8:

An RGB value representing the "off" color of trend Pen8.

Return Value

0 (zero) if successful, otherwise an error is returned.

Note: For details on handling return and error values, see Error Handling.

Related Functions

PropertiesTrendGetEx

PropertyVisibility

Chapter: 6 Graphics Builder Automation Interface

320



Sets the Hidden when argument on the Appearance | Visibility tab of the Object Prop-
erties dialog.

Syntax

PropertyVisibility(Text)

Text:

The argument string.

Return Value

If retrieving the current setting, the argument string. If enabling or disabling the option, 0
(zero) if successful. In both cases, an error is returned if unsuccessful.

Note: For details on handling return and error values, see Error Handling.

Note: This function is implemented in the C++ environment as two separate func-
tions: put_PropertyVisibility enables or disables this option, and get_Prop-

ertyVisiblity retrieves the current option setting.

Library Object Functions

With Library Object functions you can use and manipulate the objects stored in libraries
in your project. This includes such objects as Genies, Super Genies, Symbols, and so on.

LibraryObjectFirstProperty Returns the name and value of the active Genie's
first property.

LibraryObjectFirstPropertyEx Returns the name and value of a specified Genie's
first property.

LibraryObjectHotspotGet Retrieves the hotspot marker in a Genie or symbol
page.

LibraryObjectHotspotPut Positions the hotspot marker in a Genie or symbol
page.

LibraryObjectName Returns the name of the selected object.

LibraryObjectNextProperty Returns the name and value of the active Genie's
"next" property when implemented following a call

Chapter: 6 Graphics Builder Automation Interface

321



of the function LibraryObjectFirstProperty.

LibraryObjectNextPropertyEx Returns the name and value of the "next" property
of the Genie specified by the implementation of
LibraryObjectFirstPropertyEx.

LibraryObjectPlace Places a library object (a symbol or genie) on the
active CitectSCADA graphics page at the default loca-
tion (top left corner).

LibraryObjectPlaceEx Places a library object (a symbol or genie) on the
active CitectSCADA graphics page at the specified
location.

LibraryObjectPutProperty Sets the value of a specified property for the active
genie.

LibSelectionHooksEnabled Writing a TRUE value with this function enables
library selection hooks. When enabled, selecting
Paste Genie or Paste Symbol (or their equivalent
function key of toolbar button) will not show the
standard selection dialog, but will fire the auto-
mation event PasteSymbol or PasteGenie instead.

LibraryShowPasteDialog Shows either the paste Genie or Paste Symbol
dialog.

For details on handling return and error values, see Error Handling.

LibraryObjectFirstProperty
Returns the name and value of the active Genie's first property. Can be used with Libra-
ryObjectNextProperty to step through a genie's properties.

Syntax

LibraryObjectFirstProperty(PropertyName, PropertyValue)

PropertyName:

Returns the name of the active genie's first property as a string.

PropertyValue:

Returns the value of the active genie's first property as a string.

Return Value

The name and value of the Genie's first property as string values

Chapter: 6 Graphics Builder Automation Interface

322



Note: For details on handling return and error values, see Error Handling.

Related Functions

LibraryObjectPlace, LibraryObjectNextProperty, LibraryObjectPutProperty, Libra-
ryObjectName

Example

On Error Resume Next

Err.Clear

GraphicsBuilder.LibraryObjectFirstProperty PropName, PropValue

While Err.Number = 0

Debug.Print PropName, PropValue

GraphicsBuilder.LibraryObjectNextProperty PropName, PropValue

Wend

LibraryObjectFirstPropertyEx
Returns the name and value of a specified Genie's first property. Can be used in con-
junction with LibraryObjectNextPropertyEx to step through the specified Genie's prop-
erties.

Syntax

LibraryObjectFirstPropertyEx(Project, Library, Object, PropertyName, PropertyValue)

Project:

The name of the project where the Genie is located.

Library:

The name of the library where the Genie is located.

Object:

The name of the genie.

PropertyName:

Returns the name of the active genie's first property as a string.

PropertyValue:

Returns the value of the active genie's first property as a string.

Chapter: 6 Graphics Builder Automation Interface

323



Return Value

The name and value of the specified Genie's first property as string values.

Note: For details on handling return and error values, see Error Handling.

Related Functions

LibraryObjectPlace, LibraryObjectNextProperty, LibraryObjectPutProperty, Libra-
ryObjectName

Example

' Retrieves the first property of the specified Genie

GraphicsBuilder.LibraryObjectFirstPropertyEx "include", "motors", "Motor_2_east",

PropName, PropValue

LibraryObjectHotspotGet
Retrieves the hotspot marker in a Genie or symbol page. Fails if not a Genie or symbol
page.

Syntax

LibraryObjectHotspotGet(Xposition, YPosition)

Xposition:

Absolute X position in pixels from the left side of the page.

YPosition:

Absolute Y position in pixels from the top of the page.

Return Value

X and Y values for the hotspot, where X represents the number of pixels from the left
hand side of the page, and Y represents the number of pixels from the top of the page.

Note: For details on handling return and error values, see Error Handling.

Related Functions

LibraryObjectHotspotPut

Chapter: 6 Graphics Builder Automation Interface

324



LibraryObjectHotspotPut
Positions the hotspot marker in a Genie or symbol page. Fails if not a Genie or symbol
page.

Syntax

LibraryObjectHotspotPut(Xposition, YPosition)

Xposition:

Absolute X position in pixels from the left side of the page.

YPosition:

Absolute Y position in pixels from the top of the page.

Return Value

0 (zero) if successful, otherwise an error is returned.

Note: For details on handling return and error values, see Error Handling.

Related Functions

LibraryObjectHotspotGet

LibraryObjectName
Returns the name of the selected object, if it is a library object.

Syntax

LibraryObjectName(Project, Library, Object, GenieOrSymbol)

Project:

The name of the project that contains the object library you would like to source.

Library:

Specifies the library that contains the symbol or genie you would like to retrieve the name of.

Object:

The name of the symbol or genie as a string.

GenieOrSymbol:

Indicates whether the object you want to retrieve the name for is a symbol or a genie.

Chapter: 6 Graphics Builder Automation Interface

325



l 1 = Genie
l 2 = Symbol

Return Value

The name of the specified object as a string.

Note: For details on handling return and error values, see Error Handling.

Related Functions

LibraryObjectFirstProperty, LibraryObjectNextProperty, LibraryObjectPutProperty

Example

On Error Resume Next

Err.Clear

GraphicsBuilder.LibraryObjectName Project, File, Page, LibType

If Err.Number = 0 Then

Debug.Print Project; "."; File; "."; Page

Else

Debug.Print "not a library object"

End If

LibraryObjectNextProperty
Returns the name and value of the active Genie's "next" property when implemented fol-
lowing a call of the function LibraryObjectFirstProperty. By using multiple calls of this
function, you can iterate through an object's properties.

Syntax

LibraryObjectNextPropertyEx(PropertyName, PropertyValue)

PropertyName:

Returns the name of the active genie's next property as a string.

PropertyValue:

Returns the value of the active genie's next property as a string.

Return Value

The name and value of the Genie's next property as string values

Note: For details on handling return and error values, see Error Handling.

Chapter: 6 Graphics Builder Automation Interface

326



Related Functions

LibraryObjectPlace, LibraryObjectFirstProperty, LibraryObjectPutProperty, Libra-
ryObjectName

Example

On Error Resume Next

Err.Clear

GraphicsBuilder.LibraryObjectFirstProperty PropName, PropValue

While Err.Number = 0

Debug.Print PropName, PropValue

GraphicsBuilder.LibraryObjectNextProperty PropName, PropValue

Wend

LibraryObjectNextPropertyEx
Returns the name and value of the "next" property of the Genie specified by the imple-
mentation of LibraryObjectFirstPropertyEx. By using multiple calls of this function, you
can iterate through the specified genie's properties.

Syntax

LibraryObjectNextPropertyEx(PropertyName, PropertyValue)

PropertyName:

Returns the name of the active genie's next property as a string.

PropertyValue:

Returns the value of the active genie's next property as a string.

Return Value

The name and value of the Genie's next property as string values.

Note: For details on handling return and error values, see Error Handling.

Related Functions

LibraryObjectFirstPropertyEx

Chapter: 6 Graphics Builder Automation Interface

327



Example

On Error Resume Next

Err.Clear

GraphicsBuilder.LibraryObjectFirstPropertyEx "include", "motors", "Motor_2_east",

PropName, PropValue

While Err.Number = 0

Debug.Print PropName, PropValue

GraphicsBuilder.LibraryObjectNextProperty PropName, PropValue

Wend

LibraryObjectPlace
Places a library object (a symbol or genie) on the active CitectSCADA graphics page at
the default location (top left corner). This function will not succeed if the specified object
is not found.

Syntax

LibraryObjectPlace(Project, Library, Object, GenieOrSymbol, Linked)

Project:

The name of the project that contains the object library you would like to source.

Library:

Specifies the library that contains the symbol or genie you would like to place on the active Citect-
SCADA graphics page.

Object:

The name of the symbol or genie you would like to place on the active CitectSCADA graphics page.

GenieOrSymbol:

Indicates whether the object you want to use is a symbol of a genie.

l 0 = Library type unknown (will automatically select genie or symbol)
l 1 = Genie
l 2 = Symbol

Linked:

If set to TRUE, the object will remain linked to the library it came from. (select TRUE for Genies).
Can only be set to FALSE if GenieOrSymbol is set to 2 (Symbol).

Return Value

0 (zero) if successful, otherwise an error is returned.

Chapter: 6 Graphics Builder Automation Interface

328



Note: For details on handling return and error values, see Error Handling.

Related Functions

LibraryObjectFirstProperty, LibraryObjectNextProperty, LibraryObjectPutProperty, Libra-
ryObjectName

Example

' Adds an object to the current CitectSCADA graphics page

GraphicsBuilder.LibraryObjectPlace "include", "agitator", "agit_1_Pos1_g", 2, True

GraphicsBuilder.PositionAt 200, 200

LibraryObjectPlaceEx
Places a library object (a symbol or genie) on the active CitectSCADA graphics page at
the specified location. This function will not succeed if the specified object is not found.

Syntax

LibraryObjectPlaceEx(Project, Library, Object, GenieOrSymbol, Linked, Xposition, YPosition)

Project:

The name of the project that contains the object library you would like to source.

Library:

Specifies the library that contains the symbol or genie you would like to place on the active Citect-
SCADA graphics page.

Object:

The name of the symbol or genie you would like to place on the active CitectSCADA graphics page.

GenieOrSymbol:

Indicates whether the object you want to use is a symbol of a genie.

l 0 = Library type unknown (will automatically select genie or symbol)
l 1 = Genie
l 2 = Symbol

Linked:

If set to TRUE, the object will remain linked to the library it came from. (Select TRUE for Genies).

Xposition:

Absolute X position in pixels from the left hand side of the page.

Chapter: 6 Graphics Builder Automation Interface

329



YPosition:

Absolute Y position in pixels from the top of the page.

Return Value

0 (zero) if successful, otherwise an error is returned.

Note: For details on handling return and error values, see Error Handling.

Related Functions

LibraryObjectFirstProperty, LibraryObjectNextProperty, LibraryObjectPutProperty, Libra-
ryObjectName

Example

' Adds an object to the current graphics page at 200 pixels from the left and top

GraphicsBuilder.LibraryObjectPlaceEx "include", "agitator", "agit_1_Pos1_g",

2, True, 200, 200

LibraryObjectPutProperty
Sets the value of a specified property for the active genie. The field name is case-sen-
sitive.

Syntax

LibraryObjectPutProperty(PropertyName, PropertyValue)

PropertyName:

The name of the property to be modified, as returned by the function LibraryObjectFirstProperty or
LibraryObjectNextProperty.

PropertyValue:

The value to be written to the property as a string.

Return Value

0 (zero) if successful, otherwise an error is returned.

Note: For details on handling return and error values, see Error Handling.

Chapter: 6 Graphics Builder Automation Interface

330



Related Functions

LibraryObjectPlace, LibraryObjectFirstProperty, LibraryObjectNextProperty, Libra-
ryObjectName

Example

GraphicsBuilder.LibraryObjectPlace "include", "motors", "Motor_1_east", 1, True

GraphicsBuilder.LibraryObjectPutProperty "Tag", "My test genie"

LibraryShowPasteDialog
Shows either the Paste Genie or Paste Symbol dialog.

Syntax

LibraryShowPasteDialog(GenieOrSymbol)

GenieOrSymbol:

Indicates whether the object you want to use is a symbol of a genie.

l 1 = Genie
l 2 = Symbol

Note: For details on handling return and error values, see Error Handling.

Related Functions

PasteSymbol, PasteGenie

LibSelectionHooksEnabled
Writing a TRUE value with this function enables library selection hooks. When enabled,
selecting Paste Genie or Paste Symbol (or their equivalent function key of toolbar but-
ton) will not show the standard selection dialog, but will fire the automation event Pas-
teSymbol or PasteGenie instead.

Additionally, when hooks are enabled, pressing CTRL + SHIFT and double-clicking a
CitectSCADA page will fire the event SwapObject.

Syntax

LibSelectionHooksEnabled(HooksEnabled)

HooksEnabled:

Chapter: 6 Graphics Builder Automation Interface

331



A setting of TRUE enables library selection hooks.

Return Value

Enables library selection hooks, or retrieves the current library selection hooks setting.

Note: For details on handling return and error values, see Error Handling.

Related Functions

PasteSymbol, PasteGenie

Note: This function is implemented in the C++ environment as two separate func-
tions: put_LibSelectionHooksEnabled enables selection hooks, and get_ Lib-

SelectionHooksEnabled retrieves the current selection hooks setting.

Metadata Functions

Use these Metadata functions to configure the metadata of the current object on a page.

PropertiesAddMetadata Adds a new Metadata entry to the properties of the cur-
rent object.

ProperitiesSelectFirstMetadata Selects the first metadata entry from the properties of the
current object.

PropertiesSelectNextMetadata Selects the next metadata entry from the properties of the
current object.

PropertiesSelectMetadataByName Selects the specified metadata entry in the current page.

PropertiesDeleteMetadata Deletes the selected metadata from the properties of the
current object.

PropertiesMetadataName Sets or retrieves the name of the currently selected
object metadata.

PropertiesMetadataValue Sets or retrieves the value of the currently selected
object metadata.

For details and a VB example on handling return and error values, see Error Handling.

PropertiesAddMetadata
Adds a new metadata entry to the current object properties. This function will return an
error if metadata with the specified name already exists.

Chapter: 6 Graphics Builder Automation Interface

332



Syntax

PropertiesAddMetadata (Name, Value)

Name:

The name of the new metadata entry to be added to the properties of the current object

Value:

The value of the new metadata to be added to the current object properties.

Return Value

0 (zero) if successful, otherwise an error is returned.

Example

Adding a new element and setting its properties:

GraphicsBuilder.PropertiesAddMetadata("MyName","MyValue")

Related Functions

PropertiesMetadataValue, PropertiesMetadataName, PropertiesSelectNextMetadata, Prop-
ertiesSelectFirstMetadata, PropertiesDeleteMetadata, PropertiesSelectMetadataByName

PropertiesDeleteMetadata
Deletes the selected metadata from the properties of the current object. After an item has
been deleted, a call to PropertiesSelectNextMetadata will select the item immediately fol-
lowing the deleted item.

Syntax

PropertiesDeleteMetadata()

Return Value

0 (zero) if successful, otherwise an error is returned.

Example

delete any metadata starting with “a”:

Dim name As String

Chapter: 6 Graphics Builder Automation Interface

333



On Error Resume Next

Err.Clear()

GraphicsBuilder.PropertiesSelectFirstMetadata()

While (Err.Number = 0)

name = GraphicsBuilder.PropertiesMetadataName

If (name.ToLower().StartsWith("a")) Then

GraphicsBuilder.PropertiesDeleteMetadata()

End If

GraphicsBuilder.PropertiesSelectNextMetadata()

End While

Related Functions

PropertiesMetadataValue, PropertiesMetadataName, PropertiesSelectNextMetadata, Prop-
ertiesSelectFirstMetadata, PropertiesAddMetadata, PropertiesSelectMetadataByName

PropertiesMetadataName
Sets or retrieves the name of the currently selected object metadata.

Syntax

Name = PropertiesMetadataName
PropertiesMetadataName (Name)

Return Value

The name of the currently selected metadata item (as a string). An error is returned if
unsuccessful.

Related Functions

PropertiesMetadataValue, PropertiesDeleteMetadata, PropertiesSelectNextMetadata, Prop-
ertiesSelectFirstMetadata, PropertiesAddMetadata, PropertiesSelectMetadataByName

PropertiesMetadataValue
Sets or retrieves the value of the currently selected object metadata.

Syntax

Val = PropertiesMetadataValue

PropertiesMetadataValue(Def)

Chapter: 6 Graphics Builder Automation Interface

334



Return Value

The value of the currently selected metadata (as a string), or 0 (zero) if successfully used
to set the default. An error is returned if unsuccessful.

Related Functions

PropertiesMetadataName, PropertiesDeleteMetadata, PropertiesSelectNextMetadata, Prop-
ertiesSelectFirstMetadata, PropertiesAddMetadata, PropertiesSelectMetadataByName

PropertiesSelectFirstMetadata
Selects the first metadata entry from the properties of the current object.

Syntax

PropertiesSelectFirstMetadata()

Return Value

0 (zero) if successful, otherwise an error is returned.

Example

Determines whether the page properties of thecurrent object has defined metadata:

On Error Resume Next

Err.Clear()

GraphicsBuilder.PropertiesSelectFirstMetadata()

If (Err.Number <> 0)

' The object has no metadata

End If

Related Functions

PropertiesMetadataValue, PropertiesMetadataName, PropertiesSelectNextMetadata,Prop-
ertiesDeleteMetadata, PropertiesAddMetadata, PropertiesSelectMetadataByName

PropertiesSelectMetadataByName
Selects the specified metadata in the current page.

Syntax

PropertiesSelectMetadataByName(BSTR Name)

Name:

The name of the metadata to be selected.

Chapter: 6 Graphics Builder Automation Interface

335



Return Value

0 (zero) if successful, otherwise an error is returned.

Example

Determining whether an metadata with a particular name exists:

On Error Resume Next

Err.Clear()

GraphicsBuilder.PropertiesSelectMetadataByName("MyName")

If (Err.Number <> 0)

' The metadata does not exist

End If

Related Functions

PropertiesDeleteMetadata, PropertiesMetadataValue, PropertiesMetadataName, Prop-
ertiesSelectNextMetadata, PropertiesSelectFirstMetadata

PropertiesSelectNextMetadata
Selects the next metadata entry from the properties of the current object.

Syntax

PropertiesSelectNextMetadata()

Return Value

0 (zero) if successful, otherwise an error is returned.

Example

Print metadata entries in the current object properties:

On Error Resume Next

Err.Clear()

GraphicsBuilder.PropertiesSelectFirstMetadata()

While (Err.Number = 0)

Console.Out.WriteLine(GraphicsBuilder.PropertiesMetadataName)

GraphicsBuilder.PropertiesSelectNextMetadata()

End While

Chapter: 6 Graphics Builder Automation Interface

336



Related Functions

PropertiesMetadataValue, PropertiesMetadataName, PropertiesSelectNextMetadata, Prop-
ertiesSelectFirstMetadata, PropertiesAddMetadata, PropertiesSelectMetadataByName

Miscellaneous Functions

These functions are used for special interactions with the Graphics Builder; for example,
an external drag-and-drop action could be performed by requesting the active window
handle.

BrokenLinkCancelEnabled Writing a TRUE value enables the functions Pro-
jectUpdatePages or PageOpen to exit and report the
error E-POINTER when encountering the first
broken link (missing reference) during execution.

ClipboardCopy Copies the selected object(s) to the Windows Clip-
board.

ClipboardCut Cuts the selected object(s) to the Windows Clip-
board.

ClipboardPaste Paste the elements of the Windows Clipboard on to
the active page.

ConvertToBitmap Converts the active object to a bitmap. Unable to
convert if no active object.

Quit Exits the CitectSCADA development environment.

SelectionEventEnabled Writing a true value with this function enables an
event to be fired for every selection performed on a
graphics page. You can also use this function to
retrieve the current setting for this option.

UnLockObject Make an object selectable.

For details and a VB example on handling return and error values, see Error Handling.

BrokenLinkCancelEnabled
Writing a TRUE value enables the functions ProjectUpdatePages or PageOpen to exit and
report the error E-POINTER when encountering the first broken link (missing reference)
during execution. If set to FALSE, these functions will succeed, but will issue a Bro-
kenLink event for every unresolved reference on a page.

Chapter: 6 Graphics Builder Automation Interface

337



Syntax

BrokenLinkCancelEnabled(CancelEnabled)

CancelEnabled:

TRUE if enabled.

Return Value

If retrieving the current setting, TRUE or FALSE. If setting this option, 0 (zero) if suc-
cessful. In both cases, an error is returned if unsuccessful.

For details and a VB example on handling return and error values, see Error Handling.

Related Functions

BrokenLink, ProjectUpdatePages, PageOpen

Note: This function is implemented in the C++ environment as two separate func-
tions: put_BrokenLinkCancelEnabled enables or disables this option, and get_Bro-

kenLinkCancelEnabled retrieves the current setting.

ClipboardCopy
Copies the selected object(s) to the Windows clipboard.

Syntax

ClipboardCopy

Related Functions

ClipboardCut, ClipboardPaste

ClipboardCut
Cuts the selected object(s) to the Windows clipboard.

Syntax

ClipboardCut

Related Functions

ClipboardCopy, ClipboardPaste

Chapter: 6 Graphics Builder Automation Interface

338



ClipboardPaste
Paste the elements of the Windows Clipboard on to the active page.

Syntax

ClipboardPaste

Related Functions

ClipboardCut, ClipboardCopy

ConvertToBitmap
Converts the active object to a bitmap. Fails if no active object.

Syntax

ConvertToBitmap

Quit
Exits the CitectSCADA development environment.

SelectionEventEnabled
Writing a true value with this function enables an event to be fired for every selection
performed on a graphics page. You can also use this function to retrieve the current set-
ting for this option.

Syntax

SelectionEventEnabled(EventEnabled)

EventEnabled:

Set to TRUE to enable selection events.

Return Value

If retrieving the current setting, TRUE or FALSE. If setting this option, 0 (zero) if suc-
cessful. In both cases, an error is returned if unsuccessful.

Note: For details on handling return and error values, see Error Handling.

Related Functions

Selection

Chapter: 6 Graphics Builder Automation Interface

339



Note: This function is implemented in the C++ environment as two separate func-
tions: put_SelectionEventEnabled enables or disables this option, and get_Selec-

tionEventEnabled retrieves the current option setting.

UnLockObject
Make an object selectable.

Syntax

UnLockObject

Return Value

N/A

Note: For details on handling return and error values, see Error Handling.

Example
Public Sub Example()

Dim gb As GraphicsBuilder.GraphicsBuilder

.

.

.

gb.PageSelectFirstObjectInGenie()

gb.PageSelectNextObjectInGenie()

gb.PageTemplateSelectFirstObject()

gb.PageTemplateSelectNextObject()

gb.UnLockObject()

End Sub

Related Functions

N/A

Object Drawing and Property Functions

With these functions, you can draw objects and manipulate the properties of objects.

Note: Freehand line drawing is not supported, as the same output can be achieved
using the DrawPolygon function.

Chapter: 6 Graphics Builder Automation Interface

340



Only General and 3D properties are supported. Movement, Scaling, Fill, and so on are
not accessible.

The settings are applied to or read from the selected object. Typically, the last placed
object is the selected object. By using the PageSelectFirstObject() and PageSe-

lectNextObject() functions, you can access your objects and change or read their prop-
erties.

Attribute3dEffects Applies a 3D effect to an object, or retrieves the cur-
rent 3D effect setting.

Attribute3dEffectDepth Applies a level of depth to a 3D effect, or retrieves the
current depth setting.

AttributeAN Retrieves the animation number (AN) of the active
object.

AttributeBaseCoordinates Returns the base coordinates of an object.

AttributeClass Retrieves the class of the active object as a string.

AttributeCornerRadius Sets or retrieves the corner radius value for the cur-
rent object.

AttributeEllipseStyle Applies a style to an ellipse, or retrieves the current
ellipse style setting.

AttributeEndAngle Sets the end angle of an arc or pie-slice, or retrieves
the end angle.

AttributeExtentX Retrieves the X coordinate that represents the extent
of the active object.

AttributeExtentY Retrieves the Y coordinate that represents the extent
of the active object.

AttributeFillColour Sets the fill color for an object, or retrieves a value rep-
resenting the current fill color.

AttributeFillOffColourEx Sets the fill color for an object, or retrieves a value rep-
resenting the current fill color.

AttributeFillOnColourEx Sets the fill color for an object, or retrieves a value rep-
resenting the current fill color.

AttributeGradientMode Sets or retrieves the direction of the gradient for the
current object.

Chapter: 6 Graphics Builder Automation Interface

341



AttributeGradientOffColour Sets or retrieves the "Off" portion of the gradient
colour for the current object.

AttributeGradientOnColour Sets or retrieves the "On" portion of the gradient
colour for the current object.

AttributeHiLightColour Sets the highlight color applied to the 3D effects
raised, lowered or embossed, or retrieves the current
highlight color setting.

AttributeLineColour Applies a color to a line, or retrieves the current color
setting. This function has been replaced by the func-
tions AttributeLineOnColourEx and Attrib-
uteLineOffColourEx.

AttributeLineOnColourEx This function supports True Color functionality and
replaces AttributeLineColour.

AttributeLineOffColourEx This function supports True Color functionality and
replaces AttributeLineColour.

AttributeLineStyle Applies a style to a line, or retrieves the current style
setting.

AttributeLineWidth Sets the width of a line, or retrieves its current width.

AttributeLoLightColour Sets the lowlight color applied to the 3D effects raised,
lowered or embossed, or retrieves the current lowlight
color setting. As this function does not support True
Colour functionality, it has been superseded by the
functions AttributeLoLightOffColourEx and Attrib-
uteLoLightOnColourEx.

AttributeLoLightOffColourEx Sets the lowlight "off" color applied to the 3D effects
raised, lowered or embossed, or retrieves the current
lowlight color setting.

AttributeLoLightOnColourEx Sets the lowlight "on" color applied to the 3D effects
raised, lowered or embossed, or retrieves the current
lowlight color setting.

AttributeNodeCoordinatesFirst Returns the coordinates of the first node of a free hand
line, polygon or pipe.

AttributeNodeCoordinatesNext Returns the coordinates of any following nodes of a
free hand line, polygon or pipe when implemented
after AttributeNodeCoordinatesFirst.

AttributePolygonOpen Defines whether a polygon (polyline) is set to open

Chapter: 6 Graphics Builder Automation Interface

342



mode (i.e. its two end points are not joined) or closed
(its two ends are joined).

AttributeRectangleStyle Sets the rectangle style, or retrieves the rectangle
style setting.

AttributeSetFill Displays the object as filled, or retrieves the current
fill value.

AttributeShadowColour Sets the shadow color when a shadowed 3D effect is
used, or retrieves the current shadow color setting. As
this function does not support True Color functionality,
it has been superseded by the functions Attrib-
uteShadowOffColourEx and Attrib-
uteShadownOnColourEx.

AttributeShadowOffColourEx Sets the "off" shadow color when a shadowed 3D
effect is used, or retrieves the current shadow color
setting.

AttributeShadowOnColourEx Sets the "on" shadow color when a shadowed 3D effect
is used, or retrieves the current shadow color setting.

AttributeStartAngle Sets the start angle of an arc or pie-slice, or retrieves
the start angle.

Attrib-
uteTransformationMatrixGet

Reads the elements of the transformation matrix.

Attrib-
uteTransformationMatrixPut

Sets the elements of the transformation matrix.

AttributeX Retrieves the X coordinate of the active object.

AttributeY Retrieves the Y coordinate of the active object.

DrawButton Draws a button on the active page.

DrawCicodeObject Places a Cicode object on the page at the specified loca-
tion.

DrawEllipse Draws an ellipse on the active page.

DrawLine Draws a line on the active page.

DrawNumber Places a number object on the page at the specified
location.

Chapter: 6 Graphics Builder Automation Interface

343



DrawPipeEnd Terminates the drawing of a pipe on the active page.

DrawPipeSection Draws a section of pipe on the active page.

DrawPipeStart Initiates the process of drawing a pipe on the active
page by defining a starting point that Draw-
PipeSection() can be applied to.

DrawPolygonEnd Terminates the drawing of a polygon on the active
page.

DrawPolygonLine Draws a line on the active page that forms part of a
polygon.

DrawPolygonStart Initiates the process of drawing a polygon on the
active page by defining a starting point that Draw-
PolygonLine() can be applied to.

DrawRectangle Draws a rectangle on the active page.

DrawSymbolSet Places a Symbol Set object on the page at the specified
location.

DrawText Draws an alphanumeric string at the specified loca-
tion.

DrawTrend Draws a trend object on the active page.

For details and a VB example on handling return and error values, see Error Handling.

Attribute3dEffects
Applies a 3D effect to an object, or retrieves the current 3D effect setting.

This function applies to the selected object, which is typically the last placed object. By
using the PageSelectFirstObject() and PageSelectNextObject() functions, you can access
your objects and change or read their properties.

Syntax

Attribute3dEffects(Effects)

Effects:

A value between 0 and 4 representing the 3D effect type.

l 0 = none
l 1 = raised

Chapter: 6 Graphics Builder Automation Interface

344



l 2 = lowered
l 3 = shadowed
l 4 = embossed

Return Value

If retrieving the current 3D effect setting, a value between 0 and 4 representing the effect
type. If applying a 3D effect, 0 (zero) if successful. In both cases, an error is returned if
unsuccessful. If values are out of range on writing to the attribute, the function will exit
and report with the error E_INVALIDARG. If there is no active object, they will exit with
a return value of E_HANDLE.

Note: For details on handling return and error values, see Error Handling.

Related Functions

Attribute3dEffectDepth, AttributeShadowColour, AttributeHiLightColour, Attrib-
uteLoLightColour

Example

' Applies a 3D effect (embossed) to an object

GraphicsBuilder.Attribute3dEffects = 4

' Retrieves the current 3D effect applied to an object

MyVariable = GraphicsBuilder.Attribute3dEffects

Note: This function is implemented in the C++ environment as two separate func-
tions: put_Attribute3dEffect applies a 3D effect, and get_Attribute3dEffect retrieves
the current 3D effect setting.

Attribute3dEffectDepth
Applies a level of depth to a 3D effect, or retrieves the current depth setting.

This function applies to the selected object, which is typically the last placed object. By
using the PageSelectFirstObject() and PageSelectNextObject() functions, you can access
your objects and change or read their properties.

Syntax

Attribute3dEffectDepth(EffectDepth)

EffectDepth:

Chapter: 6 Graphics Builder Automation Interface

345



A value between 0 and 32 representing the depth of the 3D effect used.

Return Value

If retrieving the current depth setting for a 3D effect, a value between 0 and 32. If apply-
ing depth to a 3D effect, 0 (zero) if successful. In both cases, an error is returned if unsuc-
cessful. If values are out of range on writing to the attribute, the function will exit and
report the error E_INVALIDARG. If there is no active object, they will exit with a return
value of E_HANDLE.

Note: For details on handling return and error values, see Error Handling.

Related Functions

Attribute3dEffects, AttributeShadowColour, AttributeHiLightColour, Attrib-
uteLoLightColour

Example

' Applies depth to a 3D effect for the current object

GraphicsBuilder.Attribute3dEffectDepth = 28

' Retrieves the 3D depth for the current object

MyVariable = GraphicsBuilder.Attribute3dEffectDepth

Note: This function is implemented in the C++ environment as two separate func-
tions: put_Attribute3dEffectDepth applies depth to 3D effect, and get_Attrib-

ute3dEffectDepth retrieves the current 3D depth setting.

AttributeAN
Retrieves the animation number (AN) of the active object. This is a read only function.

This function applies to the selected object, which is typically the last placed object. By
using the PageSelectFirstObject() and PageSelectNextObject() functions, you can access
your objects and change or read their properties.

Syntax

AttributeAN(AN)

AN:

A value between 0 and 65536.

Chapter: 6 Graphics Builder Automation Interface

346



Return Value

A value between 0 and 65536. If values are out of range on writing to the attribute, the
function will exit and report the error E_INVALIDARG. If there is no active object, they
will exit with a return value of E_HANDLE.

Note: For details on handling return and error values, see Error Handling.

Related Functions

AttributeX, AttributeY

Example

' Retrieves the AN for the current object

MyVariable = GraphicsBuilder.AttributeAN

AttributeBaseCoordinates
Returns the base coordinates of an object. If you use these coordinates, also apply the
transformation matrix. Refer to functions AttributeTransformationMatrixPut and Attrib-
uteTransformationMatrixGet.

This function applies to the selected object, which is typically the last placed object. By
using the PageSelectFirstObject() and PageSelectNextObject() functions, you can access
your objects and change or read their properties.

Syntax

AttributeBaseCoordinates(FromXPosition, FromYPosition, ToXPosition, ToYPosition)

FromXPosition:

Distance from the left hand side of the page to top left hand corner of the object, measured in pix-
els.

FromYPosition:

Distance from the top of the page to the top left hand corner of the object, measured in pixels.

ToXPosition:

Distance from the left hand side of the page to the bottom right hand corner of the object, measured
in pixels.

ToYPosition:

Distance from the top of the page to the bottom right hand corner of the object, measured in pixels.

Chapter: 6 Graphics Builder Automation Interface

347



Return Value

The base coordinates of the current object. If values are out of range on writing to the
attribute, the function will exit and report the error E_INVALIDARG. If there is no active
object, they will exit with a return value of E_HANDLE.

Note: For details on handling return and error values, see Error Handling.

Related Functions

AttributeTransformationMatrixPut, AttributeTransformationMatrixGet

AttributeClass
Retrieves the class of the active object as a string. This is a read only function.

This function applies to the selected object, which is typically the last placed object. By
using the PageSelectFirstObject() and PageSelectNextObject() functions, you can access
your objects and change or read their properties.

Syntax

AttributeClass(Class)

Class:

A string depicting the class of the object. The class options include: "Draw", "Line", "Square", "Cir-
cle", "Polyline", "Pipe", "Text", "Button", "Set", "Trend", "Advanced Animation", "Bitmap", "Group",
"ActiveX", "Symbol" and "Genie".

Return Value

A string depicting the class of the object. If values are out of range on writing to the
attribute, the function will exit and report the error E_INVALIDARG. If there is no active
object, they will exit with a return value of E_HANDLE.

Note: For details on handling return and error values, see Error Handling.

Example

' Retrieves the Class for the current object

MyVariable = GraphicsBuilder.AttributeClass

AttributeCornerRadius

Chapter: 6 Graphics Builder Automation Interface

348



Sets or retrieves the corner radius value on the General | Appearance tab of the Object
Properties dialog for the current object. This is only supported on rectangle objects.

Syntax

AttributeCornerRadius(nRadius)

nRadius:

Defines the radius of the corner. Values from 0- 32 pixels are permitted.

Return Value

If retrieving the current corner radius, a value between 0 and 32. If applying a corner
radius, 0 (zero) if successful. In both cases, an error is returned if unsuccessful. If values
are out of range on writing to the attribute, the function exits and reports the error E_
INVALIDARG. If there is no active object, they exit with a return value of E_HANDLE.

AttributeEllipseStyle
Applies a style to an ellipse, or retrieves the current ellipse style setting.

This function applies to the selected object, which is typically the last placed object. By
using the PageSelectFirstObject() and PageSelectNextObject() functions, you can access
your objects and change or read their properties.

Syntax

AttributeEllipseStyle(EllipseStyle)

EllipseStyle:

A value representing the current ellipse style.

l 0 = normal ellipse
l 1 = pie slice
l 2 = arc

Return Value

If retrieving the current ellipse style setting, a value between 0 and 2 representing one of
three style options. If applying a style setting, 0 (zero) if successful. In both cases, an
error is returned if unsuccessful. If values are out of range on writing to the attribute, the
function will exit and report the error E_INVALIDARG. If there is no active object, they
will exit with a return value of E_HANDLE.

Note: For details on handling return and error values, see Error Handling.

Chapter: 6 Graphics Builder Automation Interface

349



Example

' Applies a style (arc) to an ellipse

GraphicsBuilder.AttributeEllipseStyle = 2

' Retrieves a value representing the style applied to an ellipse

MyVariable = GraphicsBuilder.AttributeEllipseStyle

Note: This function is implemented in the C++ environment as two separate func-
tions: put_AttributeEllipseStyle applies a style to an ellipse, and get_Attrib-

uteEllipseStyle retrieves the current ellipse style setting.

AttributeEndAngle
Sets the end angle of an arc or pie-slice, or retrieves the end angle.

This function applies to the selected object, which is typically the last placed object. By
using the PageSelectFirstObject() and PageSelectNextObject() functions, you can access
your objects and change or read their properties.

Syntax

AttributeEndAngle(Angle)

Angle:

A value between 0 and 360 representing the end angle (in degrees).

Return Value

If retrieving the end angle, a value between 0 and 360. If applying an end angle, 0 (zero)
if successful. In both cases, an error is returned if unsuccessful. If values are out of range
on writing to the attribute, the function will exit and report the error E_INVALIDARG. If
there is no active object, they will exit and report a return value of E_HANDLE.

Note: For details on handling return and error values, see Error Handling.

Related Functions

AttributeStartAngle

Chapter: 6 Graphics Builder Automation Interface

350



Example

' Sets the end angle of an arc

GraphicsBuilder.AttributeEndAngle = 45

' Retrieves the start angle for an arc

MyVariable = GraphicsBuilder.AttributeEndAngle

Note: This function is implemented in the C++ environment as two separate func-
tions: put_AttributeEndAngle applies an end angle setting, and get_AttributeEndAngle

retrieves the current end angle setting.

AttributeExtentX
Retrieves the X coordinate that represents the extent of the active object. For example, if
the active object were a line, it would be the end coordinate. This is a read only function.

This function applies to the selected object, which is typically the last placed object. By
using the PageSelectFirstObject() and PageSelectNextObject() functions, you can access
your objects and change or read their properties.

Syntax

AttributeExtentX(XPosition)

XPosition:

A value between 0 and 65536.

Return Value

A value between 0 and 65536. If values are out of range on writing to the attribute, the
function will exit and report the error E_INVALIDARG. If there is no active object, they
will exit and report a return value of E_HANDLE.

Note: For details on handling return and error values, see Error Handling.

Related Functions

AttributeExtentY, AttributeAN

Chapter: 6 Graphics Builder Automation Interface

351



Example

' Retrieves the X coordinate for the extent of the current object

MyVariable = GraphicsBuilder.AttributeExtentX

AttributeExtentY
Retrieves the Y coordinate that represents the extent of the active object. For example, if
the active object were a line, it would be the end coordinate. This is a read only function.

This function applies to the selected object, which is typically the last placed object. By
using the PageSelectFirstObject() and PageSelectNextObject() functions, you can access
your objects and change or read their properties.

Syntax

AttributeExtentY(YPosition)

YPosition:

A value between 0 and 65536

Return Value

A value between 0 and 65536. If values are out of range on writing to the attribute, the
function will exit and report the error E_INVALIDARG. If there is no active object, they
will exit and report a return value of E_HANDLE.

Note: For details on handling return and error values, see Error Handling.

Related Functions

AttributeExtentX, AttributeAN

Example

' Retrieves the Y coordinate for the extent of the current object

MyVariable = GraphicsBuilder.AttributeExtentY

AttributeFillColour
Sets the fill color for an object, or retrieves a value representing the current fill color.

Chapter: 6 Graphics Builder Automation Interface

352



This function applies to the selected object, which is typically the last placed object. By
using the PageSelectFirstObject() and PageSelectNextObject() functions, you can access
your objects and change or read their properties.

Note: As this function does not support True Color functionality, it has been super-
seded by the functions AttributeFillOffColourEx and AttributeFillOnColourEx.

Syntax

AttributeFillColour(FillColour)

FillColour:

A value between 0 and 255 representing the fill color.

Return Value

If retrieving the current fill color, a value between 0 and 255. If applying a fill color, 0
(zero) if successful. In both cases, an error is returned if unsuccessful. If values are out of
range on writing to the attribute, the function will exit and report the error E_INVAL-
IDARG. If there is no active object, they will exit and report a return value of E_HAN-
DLE.

Note: For details on handling return and error values, see Error Handling.

Related Functions

AttributeSetFill

Example

' Sets the fill color for an object

GraphicsBuilder.AttributeFillColour = 125

' Retrieves the value of the fill color

MyVariable = GraphicsBuilder.AttributeFillColour

Note: This function is implemented in the C++ environment as two separate func-
tions: put_AttributeFillColour applies a fill color, and get_AttributeFillColour

retrieves the current fill color setting.

AttributeFillOffColourEx
Sets the fill color for an object, or retrieves a value representing the current fill color.

Chapter: 6 Graphics Builder Automation Interface

353



This function applies to the selected object, which is typically the last placed object. By
using the PageSelectFirstObject() and PageSelectNextObject() functions, you can access
your objects, and change or read their properties.

Syntax

AttributeFillOffColourEx(FillColour)

FillColour:

An RGB value.

Return Value

If retrieving the current fill color, an RGB value. If applying a fill color, 0 (zero) if suc-
cessful. In both cases, an error is returned if unsuccessful. If values are out of range on
writing to the attribute, the function will exit and report the error E_INVALIDARG. If
there is no active object, they will exit and report a return value of E_HANDLE.

Note: For details on handling return and error values, see Error Handling.

Related Functions

AttributeSetFill

Example

' Sets the fill color for an object

GraphicsBuilder.AttributeFillOffColourEx = &hFF0000

' Retrieves the value of the fill color

MyVariable = GraphicsBuilder.AttributeFillOffColourEx

This function is implemented in the C++ environment as two separate functions: put_
AttributeFillOffColourEx applies a fill color, and get_AttributeFillOffColourEx retrieves
the current fill color setting.

AttributeFillOnColourEx
Sets the fill color for an object, or retrieves a value representing the current fill color.

This function applies to the selected object, which is typically the last placed object. By
using the PageSelectFirstObject() and PageSelectNextObject() functions, you can access
your objects and change or read their properties.

Chapter: 6 Graphics Builder Automation Interface

354



Syntax

AttributeFillOnColourEx(FillColour)

FillColour:

An RGB value.

Return Value

If retrieving the current fill color, an RGB value. If applying a fill color, 0 (zero) if suc-
cessful. In both cases, an error is returned if unsuccessful. If values are out of range on
writing to the attribute, the function exits and reports the error E_INVALIDARG. If there
is no active object, they exit and report a return value of E_HANDLE.

Note: For details on handling return and error values, see Error Handling.

Related Functions

AttributeSetFill

Example

' Sets the fill color for an object

GraphicsBuilder.AttributeFillOnColourEx = &hFF0000

' Retrieves the value of the fill color

MyVariable = GraphicsBuilder.AttributeFillOnColourEx

This function is implemented in the C++ environment as two separate functions: put_
AttributeFillOnColourEx applies a fill color, and get_AttributeFillOnColourEx retrieves the
current fill color setting.

AttributeGradientMode
Sets or retrieves the direction of the gradient on the General| Appearance tab of the
Object Properties dialog for the current object.

This function is only supported on rectangle objects.

Syntax

AttributeGradientMode(Mode)

Mode:

Direction of the gradient:

Chapter: 6 Graphics Builder Automation Interface

355



0 - Off
1 - Left To Right
2 - Right To Left
3 - Top To Bottom
4 - Bottom To Top
5 - Horizontal Edge To Middle
6 - Middle To Horizontal Edge
7 - Vertical Edge To Middle
8 - Middle To Vertical Edge

Return Value

If retrieving the gradient mode, the direction of the gradient as specified above. If apply-
ing a gradient mode, 0 (zero) if successful. In both cases, an error is returned if unsuc-
cessful. If values are out of range on writing to the attribute, the function will exit and
report the error E_INVALIDARG. If there is no active object, they will exit and report a
return value of E_HANDLE.

AttributeGradientOffColour
Sets or retrieves the "Off" portion of the gradient color on the General| Appearance tab
of the Object Properties dialog for the current object.

This is only supported on rectangle objects.

Syntax

AttributeGradientOffColour(Color)

Color:

Off portion of the gradient color.

Return Value

If retrieving the gradient color, an RGB encoded color. If applying a gradient color, 0
(zero) if successful. In both cases, an error is returned if unsuccessful. If values are out of
range on writing to the attribute, the function exits and reports the error E_INVAL-
IDARG. If there is no active object, they exit and report a return value of E_HANDLE.

AttributeGradientOnColour
Sets or retrieves the "On" portion of the gradient color on the General | Appearance tab
of the Object Properties dialog for the current object.

This function is only supported on rectangle objects.

Chapter: 6 Graphics Builder Automation Interface

356



Syntax

AttributeGradientOnColour(Color)

Color:

On portion of the gradient color.

Return Value

If retrieving the gradient color, an RGB encoded color. If applying a gradient color, 0
(zero) if successful. In both cases, an error is returned if unsuccessful. If values are out of
range on writing to the attribute, the function will exit and report the error E_INVAL-
IDARG. If there is no active object, they will exit and report a return value of E_HAN-
DLE.

AttributeHiLightColour
Sets the highlight color applied to the 3D effects raised, lowered or embossed, or retrieves
the current highlight color setting.

This function applies to the selected object, which is typically the last placed object. By
using the PageSelectFirstObject() and PageSelectNextObject() functions, you can access
objects and change or read their properties.

Note: As this function does not support True Color functionality, it has been super-
seded by the functions AttributeHiLightOnColourEx and Attrib-
uteHiLightOffColourEx.

Syntax

AttributeHiLightColour(HiLightColour)

HiLightColour:

A value between 0 and 255 representing the highlight color.

Return Value

If retrieving the current highlight color setting, a value between 0 and 255. If applying a
highlight color, 0 (zero) if successful. In both cases, an error is returned if unsuccessful. If
values are out of range on writing to the attribute, the function will exit and report the
error E_INVALIDARG. If there is no active object, they will exit and report a return value
of E_HANDLE.

Note: For details on handling return and error values, see Error Handling.

Chapter: 6 Graphics Builder Automation Interface

357



Related Functions

Attribute3dEffects, Attribute3dEffectDepth, AttributeShadowColour, Attrib-
uteLoLightColour

Example

' Applies a highlight color to a 3D effect

GraphicsBuilder.AttributeHiLightColour = 125

' Retrieves a value representing a 3D effect's highlight color

MyVariable = GraphicsBuilder.AttributeHiLightColour

Note: This function is implemented in the C++ environment as two separate func-
tions: put_AttributeHiLightColour applies a highlight color setting, and get_Attrib-

uteHiLightColour retrieves the current highlight color setting.

AttributeHiLightOffColourEx
Sets the highlight color applied to the 3D effects raised, lowered or embossed, or retrieves
the current highlight color setting.

This function applies to the selected object, which is typically the last placed object. By
using the PageSelectFirstObject() and PageSelectNextObject() functions, you can access
your objects, and change or read their properties.

Syntax

AttributeHiLightOffColourEx(HiLightColour)

HiLightColour:

An RGB value.

Return Value

If retrieving the current highlight color setting, an RGB value. If applying a highlight
color, 0 (zero) if successful. In both cases, an error is returned if unsuccessful. If values
are out of range on writing to the attribute, the function exits and reports the error E_
INVALIDARG. If there is no active object, they exit and report a return value of E_HAN-
DLE.

Note: For details on handling return and error values, see Error Handling.

Chapter: 6 Graphics Builder Automation Interface

358



Related Functions

Attribute3dEffects, Attribute3dEffectDepth, AttributeShadowOffColourEx, Attrib-
uteShadowOnColourEx, AttributeLoLightOffColourEx, AttributeLoLightOnColourEx

Example

' Applies a highlight color to a 3D effect

GraphicsBuilder.AttributeHiLightOffColourEx = &hFF0000

' Retrieves a value representing a 3D effect's highlight color

MyVariable = GraphicsBuilder.AttributeHiLightOffColourEx

This function is implemented in the C++ environment as two separate functions: put_
AttributeHiLightOffColourEx applies a highlight color setting, and get_Attrib-

uteHiLightOffColourEx retrieves the current highlight color setting.

AttributeHiLightOnColourEx
Sets the highlight color applied to the 3D effects raised, lowered or embossed, or retrieves
the current highlight color setting.

This function applies to the selected object, which is typically the last placed object. By
using the PageSelectFirstObject() and PageSelectNextObject() functions, you can access
your objects, and change or read their properties.

Syntax

AttributeHiLightOnColourEx(HiLightColour)

HiLightColour:

An RGB value.

Return Value

If retrieving the current highlight color setting, an RGB value. If applying a highlight
color, 0 (zero) if successful. In both cases, an error is returned if unsuccessful. If values
are out of range on writing to the attribute, the function exits and reports the error E_
INVALIDARG. If there is no active object, they exit and report a return value of E_HAN-
DLE.

Note: For details on handling return and error values, see Error Handling.

Chapter: 6 Graphics Builder Automation Interface

359



Related Functions

Attribute3dEffects, Attribute3dEffectDepth, AttributeShadowOffColourEx, Attrib-
uteShadowOnColourEx, AttributeLoLightOffColourEx, AttributeLoLightOnColourEx

Example

' Applies a highlight color to a 3D effect

GraphicsBuilder.AttributeHiLightOnColourEx = &hFF0000

' Retrieves a value representing a 3D effect's highlight color

MyVariable = GraphicsBuilder.AttributeHiLightOnColourEx

This function is implemented in the C++ environment as two separate functions: put_
AttributeHiLightOnColourEx applies a highlight color setting, and get_Attrib-

uteHiLightOnColourEx retrieves the current highlight color setting.

AttributeLineColour
Applies a color to a line, or retrieves the current color setting.

This function applies to the selected object, which is typically the last placed object. By
using the PageSelectFirstObject() and PageSelectNextObject() functions, you can access
your objects and change or read their properties.

Note: This function, as it does not support True Color functionality, has been super-
seded by the functions AttributeLineOnColourEx and AttributeLineOffColourEx.

Syntax

AttributeLineColour(LineColour)

LineColour:

A value between 0 and 255 representing a particular color.

Return Value

If retrieving the current line color, a value between 0 and 255. If setting the line color, 0
(zero) if successful. In both cases, an error is returned if unsuccessful. If values are out of
range on writing to the attribute, the function will exit and report the error E_INVAL-
IDARG. If there is no active object, they will exit and report a return value of E_HAN-
DLE.

Note: For details on handling return and error values, see Error Handling.

Chapter: 6 Graphics Builder Automation Interface

360



Related Functions

AttributeLineWidth, AttributeLineStyle

Example

' Applies a color to the current line

GraphicsBuilder.AttributeLineColour = 125

' Retrieves the value of the color applied to the current line

MyVariable = GraphicsBuilder.AttributeLineColour

Note: This function is implemented in the C++ environment as two separate func-
tions: put_AttributeLineColour applies a particular color to a line, and get_Attrib-

uteLineColour retrieves the current color setting.

AttributeLineOffColourEx
Applies a color to a line, or retrieves the current "off" color setting. The function uses
RGB colors for each state of a color instead of a palette index.

This function applies to the selected object, which is typically the last placed object. By
using the PageSelectFirstObject() and PageSelectNextObject() functions, you can access
your objects, and change or read their properties.

Syntax

AttributeLineOffColourEx(LineColour)

LineColour:

An RGB value.

Return Value

If retrieving the current line color, an RGB value. If setting the line color, 0 (zero) if suc-
cessful. In both cases, an error is returned if unsuccessful. If values are out of range on
writing to the attribute, the function exits and reports the error E_INVALIDARG. If there
is no active object, they exit and report a return value of E_HANDLE.

Note: For details on handling return and error values, see Error Handling.

Related Functions

AttributeLineWidth, AttributeLineStyle

Chapter: 6 Graphics Builder Automation Interface

361



Example

' Applies a color to the current line

GraphicsBuilder.AttributeLineOffColourEx = &hFF0000

' Retrieves the value of the color applied to the current line

MyVariable = GraphicsBuilder.AttributeLineOffColourEx

This function is implemented in the C++ environment as two separate functions: put_
AttributeLineOffColourEx applies a particular color to a line, and get_Attrib-

uteLineOffColourEx retrieves the current color setting.

AttributeLineOnColourEx
Applies a color to a line, or retrieves the current "on" color setting. The function uses
RGB colors for each state of a color instead of a palette index.

This function applies to the selected object, which is typically the last placed object. By
using the PageSelectFirstObject() and PageSelectNextObject() functions, you can access
your objects, and change or read their properties.

Syntax

AttributeLineOnColourEx(LineColour)

LineColour:

An RGB value.

Return Value

If retrieving the current line color, an RGB value. If setting the line color, 0 (zero) if suc-
cessful. In both cases, an error is returned if unsuccessful. If values are out of range on
writing to the attribute, the function exits and reports the error E_INVALIDARG. If there
is no active object, they exit and report a return value of E_HANDLE.

Note: For details on handling return and error values, see Error Handling.

Related Functions

AttributeLineWidth, AttributeLineStyle

Example

' Applies a color to the current line

Chapter: 6 Graphics Builder Automation Interface

362



GraphicsBuilder.AttributeLineOnColourEx = &hFF0000

' Retrieves the value of the color applied to the current line

MyVariable = GraphicsBuilder.AttributeLineOnColourEx

This function is implemented in the C++ environment as two separate functions: put_
AttributeLineOnColourEx applies a particular color to a line, and get_Attrib-

uteLineOnColourEx retrieves the current color setting.

AttributeLineStyle
Applies a style to a line, or retrieves the current style setting. You can only apply a line
style if the line width is set to 1.

This function applies to the selected object, which is typically the last placed object. By
using the PageSelectFirstObject() and PageSelectNextObject() functions, you can access
your objects and change or read their properties.

Syntax

AttributeLineStyle(LineStyle)

LineStyle:

A value between 0 and 4 representing the style applied to a line. Line style only works if line width
is set to 1.

l 0 = solid
l 1 = dashed
l 2 = dot
l 3 = dash dot
l 4 = dash dot dot

Return Value

If retrieving the current line style, a value between 0 and 4 that represents a particular
style. If setting the line style, 0 (zero) if successful. In both cases, an error is returned if
unsuccessful. If values are out of range on writing to the attribute, the function will exit
and report the error E_INVALIDARG. If there is no active object, they will exit and report
a return value of E_HANDLE.

Note: For details on handling return and error values, see Error Handling.

Related Functions

AttributeLineWidth, AttributeLineColour

Chapter: 6 Graphics Builder Automation Interface

363



Example

' Applies a style (dash dot) to the current line

GraphicsBuilder.AttributeLineStyle = 3

' Retrieves the style applied to the current line

MyVariable = GraphicsBuilder.AttributeLineStyle

Note: This function is implemented in the C++ environment as two separate func-
tions: put_AttributeLineStyle applies a particular line style, and get_Attrib-

uteLineStyle retrieves the current style setting.

AttributeLineWidth
Sets the width of a line, or retrieves its current width.

This function applies to the selected object, which is typically the last placed object. By
using the PageSelectFirstObject() and PageSelectNextObject() functions, you can access
your objects and change or read their properties.

Syntax

AttributeLineWidth(LineWidth)

LineWidth:

A value between 0 and 32 representing the line width in pixels.

Return Value

If retrieving the current width of a line, a value between 1 and 32 (representing pixels) is
returned. If setting the line width, 0 (zero) if successful. In both cases, an error is returned
if unsuccessful. If values are out of range on writing to the attribute, the function will
exit and report the error E_INVALIDARG. If there is no active object, they will exit and
report a return value of E_HANDLE.

Note: For details on handling return and error values, see Error Handling.

Related Functions

AttributeLineStyle, AttributeLoLightColour

Chapter: 6 Graphics Builder Automation Interface

364



Example

' Sets the width for the current line

GraphicsBuilder.AttributeLineWidth = 1

' Retrieves the width of the current line

MyVariable = GraphicsBuilder.AttributeLineWidth

This function is implemented in the C++ environment as two separate functions: put_
AttributeLineWidth sets the value for the width of a line, and get_AttributeLineWidth

retrieves the current line width setting.

AttributeLoLightColour
Sets the lowlight color applied to the 3D effects raised, lowered or embossed, or retrieves
the current lowlight color setting.

This function applies to the selected object, which is typically the last placed object. By
using the PageSelectFirstObject() and PageSelectNextObject() functions, you can access
your objects and change or read their properties.

Syntax

AttributeLoLightColour(LoLightColour)

LoLightColour:

A value between 0 and 255 representing the lowlight color.

Return Value

If retrieving the current lowlight color setting, a value between 0 and 255. If applying a
lowlight color, 0 (zero) if successful. In both cases, an error is returned if unsuccessful. If
values are out of range on writing to the attribute, the function will exit and report the
error E_INVALIDARG. If there is no active object, they will exit and report a return value
of E_HANDLE.

Note: For details on handling return and error values, see Error Handling.

Related Functions

Attribute3dEffects, Attribute3dEffectDepth, AttributeShadowColour, Attrib-
uteHiLightColour

Chapter: 6 Graphics Builder Automation Interface

365



Example

' Applies a lowlight color to a 3D effect

GraphicsBuilder.AttributeLoLightColour = 45

' Retrieves a value representing a 3D effect's lowlight color

MyVariable = GraphicsBuilder.AttributeLoLightColour

This function is implemented in the C++ environment as two separate functions: put_
AttributeLoLightColour applies a lowlight color setting, and get_AttributeLoLightColour

retrieves the current lowlight color setting.

AttributeLoLightOffColourEx
Sets the lowlight color applied to the 3D effects raised, lowered or embossed, or retrieves
the current lowlight color setting.

This function applies to the selected object, which is typically the last placed object. By
using the PageSelectFirstObject() and PageSelectNextObject() functions, you can access
your objects and change or read their properties.

Syntax

AttributeLoLightOffColourEx(LoLightColour)

LoLightColour:

An RGB value.

Return Value

If retrieving the current lowlight color setting, an RGB value. If applying a lowlight color,
0 (zero) if successful. In both cases, an error is returned if unsuccessful. If values are out
of range on writing to the attribute, the function exits and reports the error E_INVAL-
IDARG. If there is no active object, they exit and report a return value of E_HANDLE.

Note: For details on handling return and error values, see Error Handling.

Related Functions

Attribute3dEffects, Attribute3dEffectDepth, AttributeShadowOffColourEx, Attrib-
uteShadowOnColourEx, AttributeHiLightOffColourEx, AttributeHiLightOnColourEx

Chapter: 6 Graphics Builder Automation Interface

366



Example

' Applies a lowlight color to a 3D effect

GraphicsBuilder.AttributeLoLightOffColourEx = &hFF0000

' Retrieves a value representing a 3D effect's lowlight color

MyVariable = GraphicsBuilder.AttributeLoLightOffColourEx

This function is implemented in the C++ environment as two separate functions: put_
AttributeLoLightOffColourEx applies a lowlight color setting, and get_Attrib-

uteLoLightOffColourEx retrieves the current lowlight color setting.

AttributeLoLightOnColourEx
Sets the lowlight color applied to the 3D effects raised, lowered or embossed, or retrieves
the current lowlight color setting.

This function applies to the selected object, which is typically the last placed object. By
using the PageSelectFirstObject() and PageSelectNextObject() functions, you can access
your objects and change or read their properties.

Syntax

AttributeLoLightOnColourEx(LoLightColour)

LoLightColour:

An RGB value.

Return Value

If retrieving the current lowlight color setting, an RGB value. If applying a lowlight color,
0 (zero) if successful. In both cases, an error is returned if unsuccessful. If values are out
of range on writing to the attribute, the function exits and reports the error E_INVAL-
IDARG. If there is no active object, they exit and report a return value of E_HANDLE.

Note: For details on handling return and error values, see Error Handling.

Related Functions

Attribute3dEffects, Attribute3dEffectDepth, AttributeShadowOffColourEx,Attrib-
uteShadowOnColourEx, AttributeHiLightOffColourEx, AttributeHiLightOnColourEx

Chapter: 6 Graphics Builder Automation Interface

367



Example

' Applies a lowlight color to a 3D effect

GraphicsBuilder.AttributeLoLightOnColourEx = &hFF0000

' Retrieves a value representing a 3D effect's lowlight color

MyVariable = GraphicsBuilder.AttributeLoLightOnColourEx

This function is implemented in the C++ environment as two separate functions: put_
AttributeLoLightOnColourEx applies a lowlight color setting, and get_Attrib-

uteLoLightOnColourEx retrieves the current lowlight color setting.

AttributeNodeCoordinatesFirst
Returns the coordinates of the first node of a free hand line, polygon or pipe.

This function applies to the selected object, which is typically the last placed object. By
using the PageSelectFirstObject() and PageSelectNextObject() functions, you can access
your objects and change or read their properties.

Syntax

AttributeNodeCoordinatesFirst(XPosition, YPosition)

XPosition:

Distance from the left-hand side of the page to the first node of an object, measured in pixels.

YPosition:

Distance from the top of the page to the first node of an object, measured in pixels.

Return Value

The coordinates of the current object's first node. If values are out of range on writing to
the attribute, the function will exit and report the error E_INVALIDARG. If there is no
active object, they will exit and report a return value of E_HANDLE.

Note: For details on handling return and error values, see Error Handling.

Related Functions

AttributeNodeCoordinatesNext

AttributeNodeCoordinatesNext

Chapter: 6 Graphics Builder Automation Interface

368



Returns the coordinates of any following nodes of a free hand line, polygon or pipe
when implemented after AttributeNodeCoordinatesFirst.

This function applies to the selected object, which is typically the last placed object. By
using the PageSelectFirstObject() and PageSelectNextObject() functions, you can access
your objects and change or read their properties.

Syntax

AttributeNodeCoordinatesNext(XPosition, YPosition)

XPosition:

Distance from the left-hand side of the page to the first node of an object, measured in pixels.

YPosition:

Distance from the top of the page to the first node of an object, measured in pixels.

The coordinates of the object's following nodes, or E_ABORT if no more nodes are left. If
values are out of range on writing to the attribute, the function will exit and report the
error E_INVALIDARG. If there is no active object, they will exit and report a return value
of E_HANDLE.

Note: For details on handling return and error values, see Error Handling.

Related Functions

AttributeNodeCoordinatesFirst

AttributePolygonOpen
Defines whether a polygon (polyline) is set to open mode (that is, its two end points are
not joined) or closed (its two ends are joined). It can also be used to retrieve the current
open mode setting.

This function applies to the selected object, which is typically the last placed object. By
using the PageSelectFirstObject() and PageSelectNextObject() functions, you can access
your objects and change or read their properties.

Syntax

AttributePolygonOpen(OpenClose)

OpenClose:

TRUE = Polygon is drawn in open mode; FALSE = Polygon is drawn in closed mode.

Chapter: 6 Graphics Builder Automation Interface

369



Return Value

If retrieving the current open mode setting for a polygon, TRUE or FALSE is returned. If
setting the open mode, 0 (zero) is returned if successful. In both cases, an error is
returned if unsuccessful. If values are out of range on writing to the attribute, the func-
tion will exit and report the error E_INVALIDARG. If there is no active object, they will
exit and report a return value of E_HANDLE.

Note: For details on handling return and error values, see Error Handling.

Example

' Sets a polygon to Open mode

GraphicsBuilder.AttributePolygonOpen = TRUE

' Determines if the current polygon is defined as Open

MyVariable = GraphicsBuilder.AttributePolygonOpen

Note: This function is implemented in the C++ environment as two separate func-
tions: put_AttributePolygonOpen sets the open mode for a polygon, and get_Attrib-

utePolygonOpen retrieves the current open mode setting.

AttributeRectangleStyle
Sets the rectangle style, or retrieves the rectangle style setting.

This function applies to the selected object, which is typically the last placed object. By
using the PageSelectFirstObject() and PageSelectNextObject() functions, you can access
your objects and change or read their properties.

Syntax

AttributeRectangleStyle(Style)

Style:

0 = none

1 = border

2 = extra line

3 = border and an extra line

Chapter: 6 Graphics Builder Automation Interface

370



Return Value

If retrieving the current rectangle style setting, a value between 0 and 3. If applying a rec-
tangle style, 0 (zero) if successful. In both cases, an error is returned if unsuccessful. If
values are out of range on writing to the attribute, the function will exit and report the
error E_INVALIDARG. If there is no active object, they will exit and report a return value
of E_HANDLE.

Note: For details on handling return and error values, see Error Handling.

Related Functions

Attribute3dEffects, Attribute3dEffectDepth, AttributeShadowColour, Attrib-
uteHiLightColour

Example

' Applies a style to a rectangle

GraphicsBuilder.AttributeRectangleStyle = 1

' Retrieves a value representing a rectangle style

MyVariable = GraphicsBuilder.AttributeRectangleStyle

Note: This function is implemented in the C++ environment as two separate func-
tions: put_AttributeRectangleStyle applies a rectangle style, and get_Attrib-

uteRectangleStyle retrieves the current rectangle style setting.

AttributeSetFill
Displays the object as filled, or retrieves the current fill value.

This function applies to the selected object, which is typically the last placed object. By
using the PageSelectFirstObject() and PageSelectNextObject() functions, you can access
your objects and change or read their properties.

Syntax

AttributeSetFill(SetFill)

SetFill:

TRUE if the object drawn filled.

Chapter: 6 Graphics Builder Automation Interface

371



Return Value

If retrieving the current fill setting, TRUE if the object is displayed as filled. If applying a
fill setting, 0 (zero) if successful. In both cases, an error is returned if unsuccessful. If
values are out of range on writing to the attribute, the function will exit and report the
error E_INVALIDARG. If there is no active object, they will exit and report a return value
of E_HANDLE.

Note: For details on handling return and error values, see Error Handling.

Related Functions

AttributeFillColour

Example

' Displays an object as filled

GraphicsBuilder.AttributeSetFill = TRUE

' Retrieves the current fill setting

MyVariable = GraphicsBuilder.AttributeSetFill

Note: This function is implemented in the C++ environment as two separate func-
tions: put_AttributeSetFill applies a fill setting, and get_AttributeSetFill retrieves
the current fill setting.

AttributeShadowColour
Sets the shadow color when a shadowed 3D effect is used, or retrieves the current
shadow color setting.

This function applies to the selected object, which is typically the last placed object. By
using the PageSelectFirstObject() and PageSelectNextObject() functions, you can access
your objects and change or read their properties.

Note: As this function does not support True Color functionality, it has been super-
seded by the functions AttributeShadowOffColourEx and Attrib-
uteShadowOnColourEx.

Syntax

AttributeShadowColour(ShadowColour)

Chapter: 6 Graphics Builder Automation Interface

372



ShadowColour:

A value between 0 and 255 representing the shadow color.

Return Value

If retrieving the current shadow color setting, a value between 0 and 255. If applying a
shadow color, 0 (zero) if successful. In both cases, an error is returned if unsuccessful. If
values are out of range on writing to the attribute, the function will exit and report the
error E_INVALIDARG. If there is no active object, they will exit and report a return value
of E_HANDLE.

Note: For details on handling return and error values, see Error Handling.

Related Functions

Attribute3dEffects, Attribute3dEffectDepth, AttributeHiLightColour, Attrib-
uteLoLightColour

Example

' Applies a shadow color to a shadowed 3D effect

GraphicsBuilder.AttributeShadowColour = 125

' Retrieves the current shadow color

MyVariable = GraphicsBuilder.AttributeShadowColour

Note: This function is implemented in the C++ environment as two separate func-
tions: put_AttributeShadowColour applies a shadow color setting, and get_Attrib-

uteShadowColour retrieves the current shadow color setting.

AttributeShadowOffColourEx
Sets the shadow color when a shadowed 3D effect is used, or retrieves the current
shadow color setting.

This function applies to the selected object, which is typically the last placed object. By
using the PageSelectFirstObject() and PageSelectNextObject() functions, you can access
your objects and change or read their properties.

Syntax

AttributeShadowOffColourEx(ShadowColour)

ShadowColour:

Chapter: 6 Graphics Builder Automation Interface

373



An RGB value.

Return Value

If retrieving the current shadow color setting, an RGB value. If applying a shadow color,
0 (zero) if successful. In both cases, an error is returned if unsuccessful. If values are out
of range on writing to the attribute, the function exits and reports the error E_INVAL-
IDARG. If there is no active object, they exit and report a return value of E_HANDLE.

Note: For details on handling return and error values, see Error Handling.

Related Functions

Attribute3dEffects, Attribute3dEffectDepth, AttributeHiLightOffColourEx, Attrib-
uteHiLightOnColourEx, AttributeLoLightOffColourEx, AttributeLoLightOnColourEx

Example

' Applies a shadow color to a shadowed 3D effect

GraphicsBuilder.AttributeShadowOffColourEx = &hFF0000

' Retrieves the current shadow color

MyVariable = GraphicsBuilder.AttributeShadowOffColourEx

This function is implemented in the C++ environment as two separate functions: put_
AttributeShadowOffColourEx applies a shadow color setting, and get_Attrib-

uteShadowOffColourEx retrieves the current shadow color setting.

AttributeShadowOnColourEx
Sets the shadow color when a shadowed 3D effect is used, or retrieves the current
shadow color setting.

This function applies to the selected object, which is typically the last placed object. By
using the PageSelectFirstObject() and PageSelectNextObject() functions, you can access
your objects, and change or read their properties.

Syntax

AttributeShadowOnColourEx(ShadowColour)

ShadowColour:

An RGB value.

Chapter: 6 Graphics Builder Automation Interface

374



Return Value

If retrieving the current shadow color setting, an RGB value. If applying a shadow color,
0 (zero) if successful. In both cases, an error is returned if unsuccessful. If values are out
of range on writing to the attribute, the function will exit and report the error E_INVAL-
IDARG. If there is no active object, they will exit and report a return value of E_HAN-
DLE.

Note: For details on handling return and error values, see Error Handling.

Related Functions

Attribute3dEffects, Attribute3dEffectDepth, AttributeHiLightOffColourEx, Attrib-
uteHiLightOnColourEx, AttributeLoLightOffColourEx, AttributeLoLightOnColourEx

Example

' Applies a shadow color to a shadowed 3D effect

GraphicsBuilder.AttributeShadowOnColourEx = &hFF0000

' Retrieves the current shadow color

MyVariable = GraphicsBuilder.AttributeShadowOnColourEx

This function is implemented in the C++ environment as two separate functions: put_
AttributeShadowOnColourEx applies a shadow color setting, and get_Attrib-

uteShadowOnColourEx retrieves the current shadow color setting.

AttributeStartAngle
Sets the start angle of an arc or pie-slice, or retrieves the start angle.

This function applies to the selected object, which is typically the last placed object. By
using the PageSelectFirstObject() and PageSelectNextObject() functions, you can access
your objects and change or read their properties.

Syntax

AttributeStartAngle(Angle)

Angle:

A value between 0 and 360 representing the start angle (in degrees).

Chapter: 6 Graphics Builder Automation Interface

375



If retrieving the start angle, a value between 0 and 360. If applying a start angle, 0 (zero)
if successful. In both cases, an error is returned if unsuccessful. If values are out of range
on writing to the attribute, the function will exit and report the error E_INVALIDARG. If
there is no active object, they will exit and report a return value of E_HANDLE.

Note: For details on handling return and error values, see Error Handling.

Related Functions

AttributeEndAngle

Example

' Sets the start angle of an arc

GraphicsBuilder.AttributeStartAngle = 45

' Retrieves the start angle for an arc

MyVariable = GraphicsBuilder.AttributeStartAngle

This function is implemented in the C++ environment as two separate functions: put_
AttributeStartAngle applies a start angle setting, and get_AttributeStartAngle retrieves
the current start angle setting.

AttributeTransformationMatrixGet
Reads the elements of the transformation matrix. If A and D are both 1, and others are 0,
the object is not transformed (identity matrix).

This function applies to the selected object, which is typically the last placed object. By
using the PageSelectFirstObject() and PageSelectNextObject() functions, you can access
your objects and change or read their properties.

Syntax

AttributeTransformationMatrixGet(A, B, C, D, H, K)

A:

Element A of the transformation matrix

B:

Element A of the transformation matrix

C:

Element A of the transformation matrix

D:

Chapter: 6 Graphics Builder Automation Interface

376



Element A of the transformation matrix

H:

Element A of the transformation matrix

K:

Element A of the transformation matrix

Return Value

The elements of the transformation matrix. If values are out of range on writing to the
attribute, the function will exit and report the error E_INVALIDARG. If there is no active
object, they will exit and report a return value of E_HANDLE.

Note: For details on handling return and error values, see Error Handling.

Related Functions

AttributeTransformationMatrixPut

AttributeTransformationMatrixPut
Sets the elements of the transformation matrix.

This function applies to the selected object, which is typically the last placed object. By
using the PageSelectFirstObject() and PageSelectNextObject() functions, you can access
your objects and change or read their properties.

Syntax

AttributeTransformationMatrixPut(A, B, C, D, H, K)

A:

Element A of the transformation matrix

B:

Element A of the transformation matrix

C:

Element A of the transformation matrix

D:

Element A of the transformation matrix

H:

Chapter: 6 Graphics Builder Automation Interface

377



Element A of the transformation matrix

K:

Element A of the transformation matrix

Return Value

0 (zero) if successful, otherwise an error is returned. If values are out of range on writing
to the attribute, the function will exit and report the error E_INVALIDARG. If there is no
active object, they will exit and report a return value of E_HANDLE.

Note: For details on handling return and error values, see Error Handling.

Related Functions

AttributeTransformationMatrixGet

AttributeX
Retrieves the X coordinate of the active object. This is a read only function.

This function applies to the selected object, which is typically the last placed object. By
using the PageSelectFirstObject() and PageSelectNextObject() functions, you can access
your objects and change or read their properties.

Syntax

AttributeX(XPosition)

XPosition:

A value between 0 and 65536.

Return Value

A value between 0 and 65536. If values are out of range on writing to the attribute, the
function will exit and report the error E_INVALIDARG. If there is no active object, they
will exit and report a return value of E_HANDLE.

Note: For details on handling return and error values, see Error Handling.

Related Functions

AttributeY, AttributeAN

Chapter: 6 Graphics Builder Automation Interface

378



Example

' Retrieves the X coordinate for the current object

MyVariable = GraphicsBuilder.AttributeX

AttributeY
Retrieves the Y coordinate of the active object. This is a read-only function.

This function applies to the selected object, which is typically the last placed object. By
using the PageSelectFirstObject() and PageSelectNextObject() functions, you can access
your objects and change or read their properties.

Syntax

AttributeY(YPosition)

YPosition:

A value between 0 and 65536.

Return Value

A value between 0 and 65536. If values are out of range on writing to the attribute, the
function will exit and report the error E_INVALIDARG. If there is no active object, they
will exit and report a return value of E_HANDLE.

Note: For details on handling return and error values, see Error Handling.

Related Functions

AttributeX, AttributeAN

Example

' Retrieves the Y coordinate for the current object

MyVariable = GraphicsBuilder.AttributeY

DrawButton
Draws a button on the active page.

Chapter: 6 Graphics Builder Automation Interface

379



Syntax

DrawButton(FromXPosition, FromYPosition, ToXPosition, ToYPosition)

FromXPosition:

Distance from the left hand side of the page to top left hand corner of the button to be drawn, meas-
ured in pixels.

FromYPosition:

Distance from the top of the page to the top left hand corner of the button to be drawn, measured in
pixels.

ToXPosition:

Distance from the left hand side of the page to the bottom right hand corner of the button to be
drawn, measured in pixels.

ToYPosition:

Distance from the top of the page to the bottom right hand corner of the button to be drawn, meas-
ured in pixels.

Return Value

0 (zero) if successful; otherwise an error is returned.

Note: For details on handling return and error values, see Error Handling.

Related Functions

DrawLine, DrawEllipse, DrawRectangle, DrawPolygonStart, DrawPolygonLine, Draw-
PolygonEnd, DrawPipeStart, DrawPipeSection, DrawPipeEnd, DrawText, DrawNumber,
DrawSymbolSet, DrawTrend, DrawCicodeObject

Example

GraphicsBuilder.DrawButton 50, 70, 400, 200

DrawCicodeObject
Places a Cicode object on the page at the specified location.

Syntax

DrawCicodeObject(XPosition, YPosition)

Chapter: 6 Graphics Builder Automation Interface

380



XPosition:

Distance in pixels from the left of the page to the point where you would like the Cicode object to
be placed.

YPosition:

Distance in pixels from the top of the page to the point where you would like the Cicode object to
be placed.

Return Value

0 (zero) if successful, otherwise an error is returned.

Note: For details on handling return and error values, see Error Handling.

Related Functions

DrawButton, DrawLine, DrawEllipse, DrawRectangle, DrawPolygonStart, Draw-
PolygonLine, DrawPolygonEnd, DrawPipeStart, DrawPipeSection, DrawPipeEnd, Draw-
Text, DrawNumber, DrawSymbolSet, DrawTrend

Example

GraphicsBuilder.DrawCicodeObject 500, 100

DrawEllipse
Draws an ellipse on the active page.

Syntax

DrawEllipse(FromXPosition, FromYPosition, ToXPosition, ToYPosition)

FromXPosition:

Distance in pixels from the left hand side of the page to top left hand corner of the rectangle that
will enclose the ellipse.

FromYPosition:

Distance in pixels from the top of the page to the top left hand corner of the rectangle that will
enclose the ellipse.

ToXPosition:

Distance in pixels from the left hand side of the page to the bottom right hand corner of the rec-
tangle that will enclose the ellipse.

Chapter: 6 Graphics Builder Automation Interface

381



ToYPosition:

Distance in pixels from the top of the page to the bottom-right hand corner of the rectangle that will
enclose the ellipse.

Return Value

0 (zero) if successful, otherwise an error is returned.

Note: For details on handling return and error values, see Error Handling.

Related Functions

DrawButton, DrawLine, DrawRectangle, DrawPolygonStart, DrawPolygonLine, Draw-
PolygonEnd, DrawPipeStart, DrawPipeSection, DrawPipeEnd, DrawText, DrawNumber,
DrawSymbolSet, DrawTrend, DrawCicodeObject

Example

GraphicsBuilder.DrawEllipse 50, 70, 400, 200

DrawLine
Draws a line on the active page.

Syntax

DrawLine(FromXPosition, FromYPosition, ToXPosition, ToYPosition)

FromXPosition:

Distance in pixels from the left-hand side of the page to top left-hand corner of the rectangle that
will enclose the ellipse.

FromYPosition:

Distance in pixels from the top of the page to the top-left hand corner of the rectangle that will
enclose the ellipse.

ToXPosition:

Distance in pixels from the left-hand side of the page to the bottom right-hand corner of the rec-
tangle that will enclose the ellipse.

ToYPosition:

Distance in pixels from the top of the page to the bottom-right hand corner of the rectangle that will
enclose the ellipse.

Chapter: 6 Graphics Builder Automation Interface

382



Return Value

0 (zero) if successful, otherwise an error is returned.

Note: For details on handling return and error values, see Error Handling.

Related Functions

DrawButton, DrawEllipse, DrawRectangle, DrawPolygonStart, DrawPolygonLine, Draw-
PolygonEnd, DrawPipeStart, DrawPipeSection, DrawPipeEnd, DrawText, DrawNumber,
DrawSymbolSet, DrawTrend, DrawCicodeObject

Example

GraphicsBuilder.DrawLine 50, 70, 400, 70

DrawNumber
Places a number object on the page at the specified location.

Syntax

DrawNumber(XPosition, YPosition)

XPosition:

Distance in pixels from the left of the page to the point where you would like the number object to
be placed.

YPosition:

Distance in pixels from the top of the page to the point where you would like the number object to
be placed.

Return Value

0 (zero) if successful, otherwise an error is returned.

Note: For details on handling return and error values, see Error Handling.

Chapter: 6 Graphics Builder Automation Interface

383



Related Functions

DrawLine, DrawEllipse, DrawRectangle, DrawPolygonStart, DrawPolygonLine, Draw-
PolygonEnd, DrawPipeStart, DrawPipeSection, DrawPipeEnd, DrawText, DrawButton,
DrawSymbolSet, DrawTrend, DrawCicodeObject

Example

GraphicsBuilder.DrawNumber 500, 100

DrawPipeEnd
Terminates the drawing of a pipe on the active page. To work successfully, this function
needs to follow an instance of DrawPipeSection.

Syntax

DrawPipeEnd

Return Value

0 (zero) if successful, otherwise an error is returned.

Note: For details on handling return and error values, see Error Handling.

Related Functions

DrawPipeSection, DrawPipeStart

Example

GraphicsBuilder.DrawPipeStart 50, 290

GraphicsBuilder.DrawPipeSection 200, 350

GraphicsBuilder.DrawPipeSection 350, 250

GraphicsBuilder.DrawPipeSection 400, 350

GraphicsBuilder.DrawPipeEnd

DrawPipeSection
Draws a section of pipe on the active page. To work successfully, this function needs to
have a starting point defined by the function DrawPipeStart, or it needs to follow a pre-
vious incidence of itself.

Chapter: 6 Graphics Builder Automation Interface

384



Syntax

DrawPipeSection(XPosition, YPosition)

XPosition:

Distance in pixels from the left of the page to the point where you would like the section of pipe to
end.

YPosition:

Distance in pixels from the top of the page to the point where you would like the section of pipe to
end.

Return Value

0 (zero) if successful, otherwise an error is returned.

Note: For details on handling return and error values, see Error Handling.

Related Functions

DrawPipeStart, DrawPipeEnd

Example

GraphicsBuilder.DrawPipeStart 50, 290

GraphicsBuilder.DrawPipeSection 200, 350

GraphicsBuilder.DrawPipeSection 350, 250

GraphicsBuilder.DrawPipeSection 400, 350

GraphicsBuilder.DrawPipeEnd

DrawPipeStart
Initiates the process of drawing a pipe on the active page by defining a starting point
that DrawPipeSection can be applied to.

Syntax

DrawPipeStart(XPosition, YPosition)

XPosition:

Distance in pixels from the left of the page to the point where you would like the section of pipe to
start.

YPosition:

Chapter: 6 Graphics Builder Automation Interface

385



Distance in pixels from the top of the page to the point where you would like the section of pipe to
start.

Return Value

0 (zero) if successful, otherwise an error is returned.

Note: For details on handling return and error values, see Error Handling.

Related Functions

DrawPipeSection, DrawPipeEnd

Example

GraphicsBuilder.DrawPipeStart 50, 290

GraphicsBuilder.DrawPipeSection 200, 350

GraphicsBuilder.DrawPipeSection 350, 250

GraphicsBuilder.DrawPipeSection 400, 350

GraphicsBuilder.DrawPipeEnd

DrawPolygonEnd
Terminates the drawing of a polygon on the active page. To work successfully, this func-
tion needs to follow an instance of DrawPolygonLine.

Syntax

DrawPolygonEnd

Return Value

0 (zero) if successful, otherwise an error is returned.

Note: For details on handling return and error values, see Error Handling.

Related Functions

DrawPolygonLine, DrawPolygonStart

Example

GraphicsBuilder.DrawPolygonStart 50, 290

Chapter: 6 Graphics Builder Automation Interface

386



GraphicsBuilder.DrawPolygonLine 200, 350

GraphicsBuilder.DrawPolygonLine 350, 250

GraphicsBuilder.DrawPolygonLine 400, 350

GraphicsBuilder.DrawPolygonEnd

DrawPolygonLine
Draws a line on the active page that forms part of a polygon. To work successfully, this
function needs to have a starting point defined by the function DrawPolygonStart or a
previous incidence of itself.

Syntax

DrawPolygonLine(XPosition, YPosition)

XPosition:

Distance in pixels from the left of the page to the point where you would like the line to end.

YPosition:

Distance in pixels from the top of the page to the point where you would like the line to end.

Return Value

0 (zero) if successful, otherwise an error is returned.

Note: For details on handling return and error values, see Error Handling.

Related Functions

DrawPolygonStart, DrawPolygonEnd

Example

GraphicsBuilder.DrawPolygonStart 50, 290

GraphicsBuilder.DrawPolygonLine 200, 350

GraphicsBuilder.DrawPolygonLine 350, 250

GraphicsBuilder.DrawPolygonLine 400, 350

GraphicsBuilder.DrawPolygonEnd

DrawPolygonStart
Initiates the process of drawing a polygon on the active page by defining a starting point
that DrawPolygonLine can be applied to.

Chapter: 6 Graphics Builder Automation Interface

387



Syntax

DrawPolygonStart(XPosition, YPosition)

XPosition:

Distance in pixels from the left of the page to the point where you would like the start the polygon.

YPosition:

Distance in pixels from the top of the page to the point where you would like the start the polygon.

Return Value

0 (zero) if successful, otherwise an error is returned.

Note: For details on handling return and error values, see Error Handling.

Related Functions

DrawPolygonLine, DrawPolygonEnd

Example

GraphicsBuilder.DrawPolygonStart 50, 290

GraphicsBuilder.DrawPolygonLine 200, 350

GraphicsBuilder.DrawPolygonLine 350, 250

GraphicsBuilder.DrawPolygonLine 400, 350

GraphicsBuilder.DrawPolygonEnd

DrawRectangle
Draws a rectangle on the active page.

Syntax

DrawRectangle(FromXPosition, FromYPosition, ToXPosition, ToYPosition)

FromXPosition:

Distance from the left hand side of the page to top left hand corner of the rectangle to be drawn,
measured in pixels.

FromYPosition:

Distance from the top of the page to the top left hand corner of the rectangle to be drawn, measured
in pixels.

ToXPosition:

Chapter: 6 Graphics Builder Automation Interface

388



Distance from the left hand side of the page to the bottom right hand corner of the rectangle to be
drawn, measured in pixels.

ToYPosition:

Distance from the top of the page to the bottom right hand corner of the rectangle to be drawn, meas-
ured in pixels.

Return Value

0 (zero) if successful, otherwise an error is returned.

Note: For details on handling return and error values, see Error Handling.

Related Functions

DrawLine, DrawEllipse, DrawPolygonStart, DrawPolygonLine, DrawPolygonEnd, Draw-
PipeStart, DrawPipeSection, DrawPipeEnd, DrawText, DrawNumber, DrawButton, Draw-
SymbolSet, DrawTrend, DrawCicodeObject

Example

GraphicsBuilder.DrawRectangle 50, 70, 400, 200

DrawSymbolSet
Places a symbol set object on the page at the specified location.

Syntax

DrawSymbolSet(XPosition, YPosition)

XPosition:

Distance in pixels from the left of the page to the point where you would like the object to be
placed.

YPosition:

Distance in pixels from the top of the page to the point where you would like the object to be
placed.

Return Value

0 (zero) if successful, otherwise an error is returned.

Chapter: 6 Graphics Builder Automation Interface

389



Note: For details on handling return and error values, see Error Handling.

Related Functions

DrawLine, DrawEllipse, DrawPolygonStart, DrawPolygonLine, DrawPolygonEnd, Draw-
PipeStart, DrawPipeSection, DrawPipeEnd, DrawText, DrawNumber, DrawButton, Draw-
Trend, DrawCicodeObject, DrawRectangle

Example

GraphicsBuilder.DrawSymbolSet 500, 100

DrawText
Draws an alphanumeric string at the specified location.

Syntax

DrawText(Text, XPosition, YPosition)

Text:

The text to be pasted on to the active graphics page.

XPosition:

Distance in pixels from the left of the page to the point where you would like the text to be placed.

YPosition:

Distance in pixels from the top of the page to the point where you would like the text to be placed.

Return Value

0 (zero) if successful, otherwise an error is returned.

Note: For details on handling return and error values, see Error Handling.

Related Functions

DrawLine, DrawEllipse, DrawPolygonStart, DrawPolygonLine, DrawPolygonEnd, Draw-
PipeStart, DrawPipeSection, DrawPipeEnd, DrawNumber, DrawButton, DrawTrend,
DrawCicodeObject, DrawRectangle, DrawSymbolSet

Chapter: 6 Graphics Builder Automation Interface

390



Example

GraphicsBuilder.DrawText "My Text", 500, 100

DrawTrend
Draws a trend object on the active page.

Syntax

DrawTrend(FromXPosition, FromYPosition, ToXPosition, ToYPosition)

FromXPosition:

Distance from the left hand side of the page to top left hand corner of the trend object, measured in
pixels.

FromYPosition:

Distance from the top of the page to the top left hand corner of the trend object, measured in pixels.

ToXPosition:

Distance from the left hand side of the page to the bottom right hand corner of the trend object,
measured in pixels.

ToYPosition:

Distance from the top of the page to the bottom right hand corner of the trend object, measured in
pixels.

Return Value

0 (zero) if successful, otherwise an error is returned.

Note: For details on handling return and error values, see Error Handling.

Related Functions

DrawLine, DrawEllipse, DrawPolygonStart, DrawPolygonLine, DrawPolygonEnd, Draw-
PipeStart, DrawPipeSection, DrawPipeEnd, DrawNumber, DrawButton, Draw-
CicodeObject, DrawRectangle, DrawSymbolSet, DrawText

Example

GraphicsBuilder.DrawTrend 50, 70, 400, 200

Chapter: 6 Graphics Builder Automation Interface

391



Options Functions

These relate to the options found under the Graphics Builder's Tools menu. They do not
throw an exception in Visual Basic.

Option-
DisplayPropertiesOnNew

Simulates the option available on the Graphics Builder
Tools menu that automatically shows the properties for a
new object when inserted. You can use this function to
set this option, or you can retrieve its current setting.

OptionSnapToGrid Simulates the option available on the Graphics Builder
Tools menu that automatically snaps objects to a grid.
You can use this function to set this option, or you can
retrieve its current setting.

OptionSnapToGuidelines Simulates the option available on the Graphics Builder
Tools menu that automatically snaps objects to guide-
lines. You can use this function to set this option, or you
can retrieve its current setting.

For details and a VB example on handling return and error values, see Automation
Error Handling.

OptionDisplayPropertiesOnNew
Simulates the option available on the Graphics Builder Tools menu that automatically
shows the properties for a new object when inserted. You can use this function to set this
option, or you can retrieve its current setting.

Syntax

OptionDisplayPropertiesOnNew(OptionValue)

OptionValue:

TRUE activates the option, FALSE deactivates the option.

Return Value

If retrieving the current setting, TRUE or FALSE. If enabling or disabling the option, 0
(zero) if successful. In both cases, an error is returned if unsuccessful.

Note: For details on handling return and error values, see Error Handling.

Chapter: 6 Graphics Builder Automation Interface

392



Related Functions

OptionSnapToGrid, OptionSnapToGuidelines

Note: This function is implemented in the C++ environment as two separate func-
tions: put_OptionDisplayPropertiesOnNew enables or disables this option, and get_Option-

DisplayPropertiesOnNew retrieves the current option setting.

OptionSnapToGrid
Simulates the option available on the Graphics Builder Tools menu that automatically
snaps objects to a grid. You can use this function to set this option, or you can retrieve
its current setting.

Syntax

OptionSnapToGrid(OptionValue)

OptionValue:

TRUE activates the option, FALSE deactivates the option.

Return Value

If retrieving the current setting, TRUE or FALSE. If enabling or disabling the option, 0
(zero) if successful. In both cases, an error is returned if unsuccessful.

Note: For details on handling return and error values, see Error Handling.

Related Functions

OptionDisplayPropertiesOnNew, OptionSnapToGuidelines

Note: This function is implemented in the C++ environment as two separate func-
tions: put_OptionSnapToGrid enables or disables this option, and get_OptionSnapToGrid

retrieves the current option setting.

OptionSnapToGuidelines
Simulates the option available on the Graphics Builder Tools menu that automatically
snaps objects to guidelines. You can use this function to set this option, or you can
retrieve its current setting.

Chapter: 6 Graphics Builder Automation Interface

393



Syntax

OptionSnapToGuidelines(OptionValue)

OptionValue:

TRUE activates the option, FALSE deactivates the option.

Return Value

If retrieving the current setting, TRUE or FALSE. If enabling or disabling the option, 0
(zero) if successful. In both cases, an error is returned if unsuccessful.

Note: For details on handling return and error values, see Error Handling.

Related Functions

OptionDisplayPropertiesOnNew, OptionSnapToGrid

Note: This function is implemented in the C++ environment as two separate func-
tions: put_OptionSnapToGuidelines enables or disables this option, and get_Option-

SnapToGuidelines retrieves the current option setting.

Page Functions

Using the page functions, you can manipulate the pages in your project (for example,
open, close, save, delete), and select objects on those pages. This includes templates, sym-
bols, Genies, Super Genies.

PageActiveWindowHandle Retrieves the window handle of the active page.

PageClose Closes the current page. This function will also close an
unsaved page.

Page-
ConvertWindowCoordinates

Converts the raw window coordinates to page coor-
dinates which account for the scroll bar position.

PageDelete Deletes the specified page.

PageDeleteEx Deletes a specified symbol, Genie or Supergenie from a
library.

Chapter: 6 Graphics Builder Automation Interface

394



PageDeleteObject Deletes the currently selected object.

PageDeleteTemplate Deletes a specified graphics page template.

PageGroupSelectedObjects Groups the currently selected objects.

PageImport Imports a graphics file on to the page as a bitmap.

PageNew Creates a new CitectSCADA graphics page.

PageNewEx Creates a new symbol, Genie or Supergenie page.

PageNewLibrary Creates a new library. Does not succeed, if project is
read-only or not valid.

PageNewTemplate Creates a new CitectSCADA graphics page template.

PageOpen Opens an existing CitectSCADA graphics page.

PageOpenEx Opens the specified symbol, Genie or Supergenie page,
if it is found.

PageOpenTemplate Opens a specified graphics page template.

PagePrint Prints the current page.

PageUpdated The event fired when a Graphics Builder page is updated.

PageSave Saves the page using its current name.

PageSaveAs Saves the page with a new name within a specified
project.

PageSaveAsEx Saves a symbol, Genie, Supergenie or template page to
the specified location.

PageSelect Select an opened page.

PageSelectFirst Selects the first page currently open in the Graphics
Builder. Does not succeed if there are no pages open.

PageSelectFirstObject Selects the first object on the active page, based on its
z-order number. This will not succeed if no object
exists. Note that an object can also be a group object, in
which case this function will iterate through the items of
a group.

Chapter: 6 Graphics Builder Automation Interface

395



PageSelectFirstObjectEx Selects the first object on the active page, based on its
z-order number. This will not succeed if no object
exists. This function will not iterate through the items of
a group.

PageSelectFirstObjectInGenie Select the first sub-object in the currently selected genie

PageSe-
lectFirstObjectInGroup

Selects the first object in a group.

PageSelectNext Selects the next page currently open in the Graphics
Builder. Does not succeed if there are no pages open.

PageSelectNextObject Selects the next object on the active page, based on its
z-order number. This function will not succeed if no
object exists. Note that an object can also be a group
object, in which case this function will iterate through
the items of a group.

PageSelectNextObjectEx Selects the next object on the active page, based on its
z-order number. This function will not succeed if no
object exists. This function will not iterate through the
items of a group.

PageSelectNextObjectInGenie Select the next sub-object in the currently selected genie.

PageSe-
lectNextObjectInGroup

Selects the next object in a group.

PageSelectObject Selects an object using a specified AN number.

PageSelectObjectAdd Selects an additional object using a specified AN
number. This can be used to select multiple objects for
a succeeding PageGroupSelectedObjects operation.

PageTemplateSelectFirstObject Restart the template enumeration sequence.

PageTemplateSelectNextObject Select the next object in the template.

PageThumbnailToClipboard Creates a thumbnail image of the current page and
copies it to the clipboard.

PageUngroupSelectedObject Ungroups the currently selected grouped object.

For details and a VB example on handling return and error values, see Automation
Error Handling.

PageActiveWindowHandle
Retrieves the window handle of the active page.

Chapter: 6 Graphics Builder Automation Interface

396



Syntax

PageActiveWindowHandle(WindowHandle)

WindowHandle:

The active window handle. The handle is NULL if there is no active window. In VB, this is the
return value.

Return Value

The active window handle. The handle is NULL if there is no active window.

Note: For details on handling return and error values, see Error Handling.

Example

' Retrieves the window handle of the active page

MyVariable = GraphicsBuilder.PageActiveWindowHandle

PageClose
Closes the current page. This function will also close an unsaved page.

Syntax

PageClose

Return Value

0 (zero) if successful, otherwise an error is returned.

Note: For details on handling return and error values, see Error Handling.

Related Functions

PageNew, PageOpen, PageSaveAs, PageSave

Example

' Closes the current CitectSCADA graphics page

GraphicsBuilder.PageClose

Chapter: 6 Graphics Builder Automation Interface

397



PageConvertWindowCoordinates
Converts the raw window coordinates to page coordinates which account for the scroll
bar position.

Syntax

PageConvertWindowCoordinates(XPosition, YPosition)

XPosition:

The raw window X coordinate as input. The page X coordinates as output.

YPosition:

The raw window Y coordinate as input. The page Y coordinate as output.

Return Value

0 (zero) if successful, otherwise an error is returned.

Note: For details on handling return and error values, see Error Handling.

PageDelete
Deletes the specified page.

Syntax

PageDelete(Project, Page, Flag)

Project:

The name of the project where the page can be found.

Page:

The name of the page to be deleted.

Flag:

If the flag is set, associated records are deleted.

Return Value

0 (zero) if successful, otherwise an error is returned.

Note: For details on handling return and error values, see Error Handling.

Chapter: 6 Graphics Builder Automation Interface

398



Related Functions

PageNew, PageOpen, PageSaveAs, PageSave

Example

' Deletes the current CitectSCADA graphics page

GraphicsBuilder.PageDelete "Example", "TestPage", True

PageDeleteEx
Deletes a specified symbol, Genie or Supergenie from a library.

Syntax

PageDeleteEx(Project, Library, Element, PageType)

Project:

The name of the project where the element can be found.

Library:

The name of the library where the element can be found.

Element:

Name of the symbol, Genie or Supergenie.

PageType:
l 0 = Symbol
l 1 = Genie
l 2 = Supergenie

Return Value

0 (zero) if successful, otherwise an error is returned.

Note: For details on handling return and error values, see Error Handling.

Related Functions

PageNew, PageOpen, PageSaveAs, PageSave

Chapter: 6 Graphics Builder Automation Interface

399



Example

' Deletes the specified symbol

GraphicsBuilder.PageDeleteEx "Example", "TestLibrary", "TestObject", 0

' Deletes the specified Genie

GraphicsBuilder.PageDeleteEx "Example", "TestLibrary", "TestObject", 1

' Deletes the specified Supergenie

GraphicsBuilder.PageDeleteEx "Example", "TestLibrary", "TestObject", 2

PageDeleteObject
Deletes the currently selected object.

Syntax

PageDeleteObject

Return Value

0 (zero) if successful, otherwise an error is returned.

Note: For details on handling return and error values, see Error Handling.

Related Functions

PageSelectObject, PageSelectFirstObject, PageSelectNextObject

PageDeleteTemplate
Deletes a specified graphics page template.

Syntax

PageDeleteTemplate(Project, Style, Template, Resolution, Titlebar)

Project:

The name of the project that contains the template.

Style:

The style of the template you would like to delete.

Template:

The name of the template you would like to delete.

Resolution:

Chapter: 6 Graphics Builder Automation Interface

400



The resolution of the template.

l 0 = Default
l 1 = VGA
l 2 = SVGA
l 3 = XGA
l 4 = SXGA
l 5 = User

Titlebar:

Set to TRUE to select a titlebar.

Return Value

0 (zero) if successful, otherwise an error is returned.

Note: For details on handling return and error values, see Error Handling.

Related Functions

PageOpen, PageSave, PageSaveAs, PageClose

Example

' Deletes a graphics page template

GraphicsBuilder.PageDeleteTemplate "include", "standard", "blank", 2, True

PageGroupSelectedObjects
Groups the currently selected objects.

Syntax

PageGroupSelectedObjects

Return Value

0 (zero) if successful, otherwise an error is returned.

Note: For details on handling return and error values, see Error Handling.

Chapter: 6 Graphics Builder Automation Interface

401



Related Functions

PageSelectObject, PageSelectObjectAdd, PageSelectFirstObject, PageSelectNextObject,
PageUngroupSelectedObject

PageImport
Imports a graphics file on to the page as a bitmap.

Syntax

PageImport(FileName)

FileName:

The name of the graphic file, including the complete path.

Return Value

0 (zero) if successful, otherwise an error is returned.

Note: For details on handling return and error values, see Error Handling.

Example

' Imports the graphic file splash.bmp as a bitmap

GraphicsBuilder.PageImport "C:Program Files\Citect\CitectSCADA 7.10\Bin\splash.bmp"

PageNew
Creates a new CitectSCADA graphics page.

Syntax

PageNew(Project, Style, Template, Resolution, Titlebar, Linked)

Project:

The name of the project that contains the template you would like to apply to the page.

Style:

The style you would like to apply to your new CitectSCADA graphics page. CitectSCADA tem-
plates are grouped into styles.

Template:

Specifies the template you would like to apply to your new CitectSCADA graphics page.

Chapter: 6 Graphics Builder Automation Interface

402



Resolution:

Sets the appropriate resolution for the page being created.

l 0 = Default
l 1 = VGA
l 2 = SVGA
l 3 = XGA
l 4 = SXGA
l 5 = User

Titlebar:

Set to TRUE to include a titlebar on your new CitectSCADA graphics page.

Linked:

Set to TRUE to link the page to the library.

Return Value

0 (zero) if successful, otherwise an error is returned.

Note: For details on handling return and error values, see Error Handling.

Related Functions

PageOpen, PageSave, PageSaveAs, PageClose

Example

' Creates a new CitectSCADA graphics page

GraphicsBuilder.PageNew "include", "standard", "blank", 2, True, True

PageNewEx
Creates a new symbol, Genie or Supergenie page.

Syntax

PageNewEx(PageType)

PageType:

Specifies the type of page you would like to create:

Chapter: 6 Graphics Builder Automation Interface

403



l 0 = Symbol
l 1 = Genie
l 2 = Supergenie

Return Value

0 (zero) if successful, otherwise an error is returned.

Note: For details on handling return and error values, see Error Handling.

Related Functions

PageOpen, PageSave, PageSaveAs, PageClose

Example

' Creates a symbol as a new graphics page

GraphicsBuilder.PageOpenEx "Example", "boiler", "tubes1", 0

' Creates a Genie as a new graphics page

GraphicsBuilder.PageOpenEx "Example", "example", "dial", 1

' Creates a Supergenie as a new graphics page

GraphicsBuilder.PageOpenEx "Example", "utility", "!sysinfo", 2

PageNewLibrary
Creates a new library. Fails, if project is read-only or not valid.

Syntax

PageNewLibrary(Project, Library, LibraryType)

Project:

The name of the project where the library is created.

Library:

The new library name (or style for templates).

LibraryType:

Type:

l 0 = Symbol
l 1 = Genie

Chapter: 6 Graphics Builder Automation Interface

404



l 2 = Supergenie
l 3 = Template

Return Value

0 (zero) if successful, otherwise an error is returned.

Note: For details on handling return and error values, see Error Handling.

Related Functions

PageOpen, PageSave, PageSaveAs, PageClose

Example

' Creates a new symbol library

GraphicsBuilder.PageNewLibrary "Example", "newlibrary", 0

' Creates a new Genie library

GraphicsBuilder.PageNewLibrary "demo", "newlibrary", 1

' Creates a new Supergenie library

GraphicsBuilder.PageNewLibrary "Example", "newlibrary", 2

' Creates a new template style

GraphicsBuilder.PageNewLibrary "Example", "newstyle", 3

PageNewTemplate
Creates a new CitectSCADA graphics page template.

PageNewTemplate(Project, Style, Template, Resolution, Titlebar, Linked)

Project:

The name of the project that will contain the template.

Style:

The style you would like to apply to your new template.

Template:

The name you would like to give to your new template.

Resolution:

Sets the appropriate resolution for the template being created.

Chapter: 6 Graphics Builder Automation Interface

405



l 0 = Default
l 1 = VGA
l 2 = SVGA
l 3 = XGA
l 4 = SXGA
l 5 = User

Titlebar:

Set to TRUE to include a titlebar on the template.

Linked:

Set to TRUE to link the page to the library.

Return Value

0 (zero) if successful, otherwise an error is returned.

Note: For details on handling return and error values, see Error Handling.

Related Functions

PageOpen, PageSave, PageSaveAs, PageClose

Example

' Creates a new CitectSCADAgraphics page template

GraphicsBuilder.PageNewTemplate "include", "standard", "blank", 2, True, True

PageOpen
Opens an existing CitectSCADA graphics page.

Syntax

PageOpen(Project, Page)

Project:

The name of the project that contains the page you would like to open.

Page:

The name of the page you would like to open.

Chapter: 6 Graphics Builder Automation Interface

406



Return Value

0 (zero) if successful, otherwise an error is returned.

Note: For details on handling return and error values, see Error Handling.

Related Functions

PageNew, PageSave, PageSaveAs, PageClose

Example

' Opens an existing CitectSCADA graphics page

GraphicsBuilder.PageOpen "Example", "Genies"

PageOpenEx
Opens the specified symbol, Genie or Supergenie page, if it is found. See Bro-
kenLinkCancelEnabled for more information if a missing reference is encountered.

Syntax

PageOpenEx(Project, Library, Element, PageType)

Project:

The name of the project where the element can be found.

Library:

The name of the library where the element can be found.

Element:

The name of the symbol, Genie or Supergenie.

PageType:

Type:

l 0 = Symbol
l 1 = Genie
l 2 = Supergenie

Return Value

0 (zero) if successful, otherwise an error is returned.

Chapter: 6 Graphics Builder Automation Interface

407



Note: For details on handling return and error values, see Error Handling.

Related Functions

PageNew, PageSave, PageSaveAs, PageClose

Example

' Opens a symbol saved as a graphics page

GraphicsBuilder.PageOpenEx "Example", "boiler", "tubes1", 0

' Opens a Genie saved as a new graphics page

GraphicsBuilder.PageOpenEx "Example", "example", "dial", 1

' Opens a Supergenie saved as a graphics page

GraphicsBuilder.PageOpenEx "Example", "utility", "!sysinfo", 2

PageOpenTemplate
Opens a specified graphics page template.

Syntax

PageOpenTemplate(Project, Style, Template, Resolution, Titlebar)

Project:

The name of the project that contains the template.

Style:

The style of the template you would like to open.

Template:

The name of the template you would like to open.

Resolution:

The resolution of the template.

l 0 = Default
l 1 = VGA
l 2 = SVGA
l 3 = XGA
l 4 = SXGA
l 5 = User

Titlebar:

Chapter: 6 Graphics Builder Automation Interface

408



Set to TRUE to select a titlebar.

Return Value

0 (zero) if successful, otherwise an error is returned.

Note: For details on handling return and error values, see Error Handling.

Related Functions

PageOpen, PageSave, PageSaveAs, PageClose

Example

' Opens a graphics page template

GraphicsBuilder.PageOpenTemplate "include", "standard", "blank", 2, True

PagePrint
Prints the current page.

Syntax

PagePrint

Return Value

0 (zero) if successful, otherwise an error is returned.

Note: For details on handling return and error values, see Error Handling.

Related Functions

PageSelectFirstObject, PageSelectNextObject

PageSave
Saves the page using its current name.

Syntax

PageSave

Chapter: 6 Graphics Builder Automation Interface

409



Return Value

0 (zero) if successful, otherwise an error is returned.

Note: For details on handling return and error values, see Error Handling.

Related Functions

PageOpen, PageNew, PageSaveAs, PageClose

Example

' Saves an existing CitectSCADA graphics page

GraphicsBuilder.PageSave

PageSaveAs
Saves the page with a new name within a specified project.

Syntax

PageSaveAs(Project, Page)

Project:

The name of the project you would like to save the page to.

Page:

The name you would like to apply to the page.

Return Value

0 (zero) if successful, otherwise an error is returned.

Note: For details on handling return and error values, see Error Handling.

Related Functions

PageNew, PageOpen, PageSave, PageClose

See Also
"Page Properties - General" in the CitectSCADA User Guide

Chapter: 6 Graphics Builder Automation Interface

410



Example

' Saves a CitectSCADA graphics page

GraphicsBuilder.PageSaveAs "Example", "MyPage"

PageSaveAsEx
Saves a symbol, Genie, Supergenie or template page to the specified location.

Syntax

PageSaveAsEx(Project, Library, Element)

Project:

The name of the project where the element is to be saved.

Library:

The name of the library (or style for templates) where the element is to be saved.

Element:

The new name for the symbol, Genie, Supergenie, or template to be saved.

Return Value

0 (zero) if successful, otherwise an error is returned.

Note: For details on handling return and error values, see Error Handling.

Related Functions

PageNew, PageSave, PageSaveAs, PageClose

Example

' Renames and saves the currently selected element to the specified location

GraphicsBuilder.PageSaveAsEx "Example", "TestLibrary", "TestObject"

PageSelect
Selects an opened page.

Chapter: 6 Graphics Builder Automation Interface

411



Syntax

PageSelectFirst

sBase - Base name
sFile - File name

Return Value

N/A

Note: For details on handling return and error values, see Error Handling.

Example
Public Sub Example()

Dim gb As GraphicsBuilder.GraphicsBuilder

.

.

.

gb.PageSelect("BaseName", "Filename")

End Sub

Related Functions

PageSelectNext

PageSelectFirst
Selects the first page currently open in the Graphics Builder. Fails if there are no pages
open.

Syntax

PageSelectFirst

Return Value

0 (zero) if successful, otherwise an error is returned.

Note: For details on handling return and error values, see Error Handling.

Related Functions

PageSelectNext

Chapter: 6 Graphics Builder Automation Interface

412



Example

' Selects the first page in Graphics Builder

GraphicsBuilder.PageSelectFirst

If Err.Number <> 0 Then

Output.Print "PageSelectFirst Error" + "; Err.Number = " + Hex(Err.Number)

Else

Output.Print "PageSelectFirst OK"

End If

PageSelectFirstObject
Selects the first object on the active page, based on its z-order number. This will exit and
return an error if no object exists.

Syntax

PageSelectFirstObject

Return Value

0 (zero) if successful, otherwise an error is returned.

Note: For details on handling return and error values, see Error Handling.

Related Functions

PageSelectObject, PageSelectNextObject, PageDeleteObject, PageSelectFirstObjectEx

PageSelectFirstObjectEx
Selects the first object on the active page, based on its z-order number. This will exit and
return an error if no object exists. This function will not iterate through the items of a
group.

Syntax

PageSelectFirstObjectEx

Return Value

0 (zero) if successful, otherwise an error is returned.

Chapter: 6 Graphics Builder Automation Interface

413



Note: For details on handling return and error values, see Error Handling.

Related Functions

PageSelectObject, PageSelectNextObject, PageDeleteObject, PageSelectFirstObject

PageSelectFirstObjectInGenie
Select the first sub-object in the currently selected genie

Syntax

PageSelectFirstObjectInGenie

Return Value

N/A

Note: For details on handling return and error values, see Error Handling.

Example

Public Sub Example()

Dim gb As GraphicsBuilder.GraphicsBuilder

.

.

.

gb.PageSelectFirstObjectInGenie()

gb.PageSelectNextObjectInGenie()

gb.PageTemplateSelectFirstObject()

gb.PageTemplateSelectNextObject()

gb.UnLockObject()

End Sub

Related Functions

PageSelectNextObjectInGenie

PageSelectFirstObjectInGroup
Selects the first object in a group.

Syntax

PageSelectFirstObjectInGroup

Chapter: 6 Graphics Builder Automation Interface

414



Return Value

0 (zero) if successful, otherwise an error is returned.

Note: For details on handling return and error values, see Error Handling.

Related Functions

PageSelectObject, PageSelectNextObject, PageDeleteObject, PageSelectFirstObject

PageSelectNext
Selects the next page currently open in the Graphics Builder. Fails if there are no pages
open.

Syntax

PageSelectNext

Return Value

0 (zero) if successful, otherwise an error is returned.

Note: For details on handling return and error values, see Error Handling.

Related Functions

PageSelectFirst

Example

' Selects the next page in Graphics Builder

GraphicsBuilder.PageSelectNext

If Err.Number <> 0 Then

Output.Print "PageSelectNext Error" + "; Err.Number = " +

Hex(Err.Number)

Else

Output.Print "PageSelectNext OK"

End If

PageSelectNextObject

Chapter: 6 Graphics Builder Automation Interface

415



Selects the next object on the active page, based on its z-order number. This function will
exit and return an error if no object exists. An object can also be a group object, in which
case this function will iterate through the items of a group.

Syntax

PageSelectNextObject

Return Value

0 (zero) if successful, otherwise an error is returned.

Note: For details on handling return and error values, see Error Handling.

Related Functions

PageSelectObject, PageSelectFirstObject, PageDeleteObject, PageSelectNextObjectEx

PageSelectNextObjectEx
Selects the next object on the active page, based on its z-order number. This function will
exit and return an error if no object exists. This function will not iterate through the
items of a group.

Syntax

PageSelectNextObjectEx

Return Value

0 (zero) if successful, otherwise an error is returned.

Note: For details on handling return and error values, see Error Handling.

Related Functions

PageSelectObject, PageSelectFirstObject, PageDeleteObject, PageSelectNextObjectEx

PageSelectNextObjectInGenie
Select the next sub-object in the currently selected genie.

Syntax

PageSelectNextObjectInGenie

Chapter: 6 Graphics Builder Automation Interface

416



Return Value

N/A

Note: For details on handling return and error values, see Error Handling.

Example

Public Sub Example()

Dim gb As GraphicsBuilder.GraphicsBuilder

.

.

.

gb.PageSelectFirstObjectInGenie()

gb.PageSelectNextObjectInGenie()

gb.PageTemplateSelectFirstObject()

gb.PageTemplateSelectNextObject()

gb.UnLockObject()

End Sub

Related Functions

PageSelectFirstObjectInGenie

PageSelectNextObjectInGroup
Selects the next object in a group.

Syntax

PageSelectNextObjectInGroup

Return Value

0 (zero) if successful, otherwise an error is returned.

Note: For details on handling return and error values, see Error Handling.

Related Functions

PageSelectFirstObjectInGroup

PageSelectObject
Selects an object using a specified AN number.

Chapter: 6 Graphics Builder Automation Interface

417



Syntax

PageSelectObject(AN)

AN:

The AN number of the object you would like to select.

Return Value

0 (zero) if successful, otherwise an error is returned.

Note: For details on handling return and error values, see Error Handling.

Related Functions

PageSelectObjectAdd, PageSelectFirstObject, PageSelectNextObject, PageDeleteObject

PageSelectObjectAdd
Selects an additional object using a specified AN number. This can be used to select mul-
tiple objects for a succeeding PageGroupSelectedObjects operation.

Syntax

PageSelectObjectAdd(AN)

AN:

The AN number of the object you would like to select.

Return Value

0 (zero) if successful, otherwise an error is returned.

Note: For details on handling return and error values, see Error Handling.

Related Functions

PageSelectObject, PageSelectFirstObject, PageSelectNextObject, PageGroupSelectedObjects

PageTemplateSelectFirstObject
Restart the template enumeration sequence.

Chapter: 6 Graphics Builder Automation Interface

418



Syntax

PageTemplateSelectFirstObject

Return Value

N/A

Note: For details on handling return and error values, see Error Handling.

Example

Public Sub Example()

Dim gb As GraphicsBuilder.GraphicsBuilder

.

.

.

gb.PageSelectFirstObjectInGenie()

gb.PageSelectNextObjectInGenie()

gb.PageTemplateSelectFirstObject()

gb.PageTemplateSelectNextObject()

gb.UnLockObject()

End Sub

Related Functions

PageTemplateSelectNextObject

PageTemplateSelectNextObject
Select the next object in the template.

Syntax

PageTemplateSelectNextObject

Return Value

N/A

Note: For details on handling return and error values, see Error Handling.

Chapter: 6 Graphics Builder Automation Interface

419



Example

Public Sub Example()

Dim gb As GraphicsBuilder.GraphicsBuilder

.

.

.

gb.PageSelectFirstObjectInGenie()

gb.PageSelectNextObjectInGenie()

gb.PageTemplateSelectFirstObject()

gb.PageTemplateSelectNextObject()

gb.UnLockObject()

End Sub

Related Functions

PageTemplateSelectFirstObject

PageThumbnailToClipboard
Creates a thumbnail image of the current page and copies it to the clipboard.

Syntax

PageThumbnailToClipboard(Size)

Size:

The size of the thumbnail image in pixels.

Return Value

0 (zero) if successful, otherwise an error is returned.

Note: For details on handling return and error values, see Error Handling.

PageUngroupSelectedObject
Ungroups the currently selected grouped object.

Syntax

PageUngroupSelectedObject

Return Value

0 (zero) if successful, otherwise an error is returned.

Chapter: 6 Graphics Builder Automation Interface

420



Note: For details on handling return and error values, see Error Handling.

Related Functions

PageSelectObject, PageSelectObjectAdd, PageSelectFirstObject, PageSelectNextObject, Page-
GroupSelectedObjects

PageUpdated
The event fired when a Graphics Builder page is updated.

Syntax

PageUpdated(sProject, sPage)

sProject - the name of the project
sPage - the name of the page

Return Value

N/A

Note: For details on handling return and error values, see Error Handling.

Related Functions

PageSelectNext

Example
Sub PageUpdated(ByVal bstrProject As String, ByVal bstrPage As String, ByVal bLastPage As Boolean)

' Add your code here

End sub

Page Properties Functions

Using the page properties functions, you can manipulate the properties of the pages in
your project.

PageAddAssociation Adds a new association to the current page. This function
will return an error if an association with the specified name
already exists.

PageAssociationDefault Sets or retrieves the default for the currently selected page
association.

Chapter: 6 Graphics Builder Automation Interface

421



PageAssociationDescription Sets or retrieves the description for the currently selected
page association.

PageAssociationName Retrieves the name of the currently selected page asso-
ciation.

PageAssociationValueOnError Sets or retrieves the value-on-error for the currently selected
page association.

PageAppearanceGet Retrieves the appearance properties of a page. This func-
tion, since it does not support True Color functionality,
has been superseded by PageAppearanceGetEx.

PageAppearanceGetEx Retrieves the appearance properties of a page. This func-
tion supports True Color functionality and replaces
PageAppearanceGet.

PageArea Retrieves or sets the PageArea property for the current
graphics page.

PageClusterInherit Retrieves or sets the cluster context inherit flag setting for
current graphics page.

PageClusterName Retrieves or sets the cluster context name property for the
current graphics page.

PageDeleteAssociation Deletes the selected association from the current page. After
an item has been deleted, a call to PageSelectNextAssociation
will select the item immediately following the deleted item.

PageDescription Sets or retrieves the description attached to the active
CitectSCADA graphics page.

PageEnvironmentAdd Adds a new environment variable to the current page. This
function will return an error if an environment variable with
the specified name already exists.

PageEnvironmentFirst Retrieves the first environment variable in the current page.
This function will return an error if there are no environment
variables in the page.

PageEnvironmentNext Retrieves the next environment variable in the current page.
This function will return an error if there are no more envi-
ronment variables in the page.

PageEnvironmentRemove Removes an environment variable from the current page.
This function will return an error if an environment variable
with the specified name does not exist.

PageLogDevice Retrieves or sets the LogDevice property setting for the
current graphics page.

PageName Returns the name of the active page. This is a read only
attribute.

Chapter: 6 Graphics Builder Automation Interface

422



PageNext Retrieves the name of the page currently defined as "next"
for the active graphics page, or sets the page you would
like defined as next.

PagePrevious Retrieves the name of the page currently defined as "pre-
vious" to the active graphics page, or sets the page you
would like defined as previous to the current page.

PageScanTime Retrieves or sets the PageScanTime property for the cur-
rent graphics page.

PageSelectAssociationByName Selects the specified association in the current page.

PageSelectFirstAssociation Selects the first association in the current page.

PageSelectNextAssociation Selects the next association in the current page.

PageTitle Sets or retrieves the title of the active CitectSCADA graph-
ics page.

For details and a VB example on handling return and error values, see Error Handling.

PageAddAssociation
Adds a new association to the current page. This function will return an error if an asso-
ciation with the specified name already exists.

Syntax

PageAddAssociation(Name)

Name:

The name of the new association to be added to the current page.

Return Value

0 (zero) if successful, otherwise an error is returned.

Note: For details on handling return and error values, see Error Handling.

Example

Adding a new element and setting its properties:

GraphicsBuilder.PageAddAssociation("MyAssociation")

GraphicsBuilder.SelectAssociationByName("MyAssociation")

Chapter: 6 Graphics Builder Automation Interface

423



GraphicsBuilder.PageAssociationsDefault = "TAG0"

GraphicsBuilder.PageAssociationValueOnError = "Oops"

GraphicsBuilder.PageAssociationDescription = "My Association"

Related Functions

PageAssociationDefault,PageAssociationDescription

PageAppearanceGet
Retrieves the appearance properties of a page.

Note: As this function does not support True Color functionality, this function has
been superseded by the function PageAppearanceGetEx.

Syntax

PageAppearanceGet(Project, Style, Template, Resolution, Titlebar, Width, Height, Colour)

Project:

The name of the project that contains the template.

Style:

The style of the template.

Template:

The name of the template.

Resolution:

The resolution of the template.

l 0 = Default
l 1 = VGA
l 2 = SVGA
l 3 = XGA
l 4 = SXGA
l 5 = User

Titlebar:

TRUE if titlebar is selected.

Width:

The width of the page in pixels.

Chapter: 6 Graphics Builder Automation Interface

424



Height:

The height of the page in pixels.

Colour:

The color of the page background.

Return Value

The requested values, as a string

Note: For details on handling return and error values, see Error Handling.

Related Functions

PageOpen, PageSave, PageSaveAs, PageClose

PageAppearanceGetEx
Retrieves the appearance properties of a page.

Syntax

PageAppearanceGetEx(Project, Style, Template, Resolution, Titlebar, Width, Height, OnCo-
lour, OffColour)

Project:

Name of project that contains the template.

Style:

Style of template.

Template:

Name of template.

Resolution:

Resolution of template.

l 0 = Default
l 1 = VGA
l 2 = SVGA
l 3 = XGA
l 4 = SXGA
l 5 = User

Titlebar:

Chapter: 6 Graphics Builder Automation Interface

425



TRUE if titlebar is selected.

Width:

Width of the page in pixels.

Height:

Height of the page in pixels.

OnColour:

"On" color of the page background as an RGB value.

OffColour:

"Off" color of the page background as an RGB value.

Return Value

The requested values, as a string

Note: For details on handling return and error values, see Error Handling.

Related Functions

PageOpen, PageSave, PageSaveAs, PageClose

PageArea
Retrieves or sets the PageArea property for the current graphics page.

Syntax

PageArea(Area)

Area:

1... 255 as a string, or blank to assign the page to every area.

Return Value

If retrieving the current PageArea setting, 1... 255 is returned as a string if a numeric
value is used, or a group name is returned as a string if security has been set up using a
preconfigured group. A blank string is returned if the active page is assigned to every
area.

If you are using the function to apply an area setting, 0 (zero) is returned if successful, or
an E_INVALIDARG error if the value you want to apply is out of range.

Chapter: 6 Graphics Builder Automation Interface

426



Note: For details on handling return and error values, see Error Handling.

Related Functions

PageName, PageTitle, PageDescription, PagePrevious, ProjectNext, PageScanTime, Page-
LogDevice

See Also
"Page Properties - General" in the CitectSCADA User Guide

Example

' Assigns a page to one of the areas defined in a CitectSCADA project

GraphicsBuilder.PageArea = "1"

' Retrieves the name of the area the current page is assigned to

MyVariable = GraphicsBuilder.PageArea

Note: This function is implemented in the C++ environment as two separate func-
tions: put_PageArea applies an Area setting for active graphics page, and get_PageArea

retrieves the current Area setting.

PageAssociationDefault
Sets or retrieves the default for the currently selected page association.

Syntax

Def=PageAssociationDefault

PageAssociationDefault(Def)

Def:

Default substitution string to be used if the page association has not been performed using the
Ass(..) Cicode function at runtime. The default needs to be either a literal string enclosed in single
quotes (e.g. ‘a literal value’) or a valid tag name.

Return Value

The default for the currently selected association (as a string), or 0 (zero) if successfully
used to set the default. An error is returned if unsuccessful.

Related Functions

PageAddAssociation,PageAssociationDescription

Chapter: 6 Graphics Builder Automation Interface

427



PageAssociationDescription
Sets or retrieves the description for the currently selected page association.

Syntax

Description = PageAssociationDescription

PageAssociationDescription(Description)

Description:

Free text description of the association.

Return Value

The description of the currently selected association (as a string), or 0 (zero) if suc-
cessfully used to set the description. An error is returned if unsuccessful.

Related Functions

PageAddAssociation

PageAssociationName
Retrieves the name of the currently selected page association.

Syntax

Name = PageAssociationName

Return Value

The name of the currently selected association (as a string). An error is returned if unsuc-
cessful.

Related Functions

PageAddAssociation,PageAssociationDescription

PageAssociationValueOnError
Sets or retrieves the value-on-error for the currently selected page association.

Syntax

ValOnErr = PageAssociationValueOnError

PageAssociationValueOnError(ValOnErr)

Chapter: 6 Graphics Builder Automation Interface

428



ValOnErr:

Value to be used if the substitution was not performed and a default value was not defined, or a tag
name was specified that did not resolve.

Return Value

The value-on-error for the currently selected association (as a string), or 0 (zero) if suc-
cessfully used to set the value-on-error. An error is returned if unsuccessful.

Related Functions

PageAddAssociation,PageAssociationDescription

PageClusterInherit
Retrieves or sets the Cluster context inherit flag property setting for the current graphics
page.

Syntax

PageClusterInherit(bInherit)

bInherit:

The setting of the cluster context inherit flag as a boolean value.

Return Value

The cluster context inherit flag for the active graphics page (as a boolean value), or 0
(zero) if successfully used to set the inherit flag. In both cases, an error is returned if
unsuccessful.

Related Functions

PageClusterName

See Also
"Page Properties - General" in the CitectSCADA User Guide

Example

' Sets the cluster context inherit flag for current page

GraphicsBuilder.PageClusterInherit = "1"

' Retrieves the cluster context inherit flag for current page

MyVariable = GraphicsBuilder.PageClusterInherit

Chapter: 6 Graphics Builder Automation Interface

429



PageClusterName
Retrieves or sets the Cluster context name property setting for the current graphics page.

Syntax

PageClusterName(ClusterName)

ClusterName:

The name of the cluster as a string.

Return Value

The ClusterName setting for the active graphics page (as a string), or 0 (zero) if suc-
cessfully used to set the ClusterName. In both cases, an error is returned if unsuccessful.

Related Functions

PageClusterInherit

See Also
"Page Properties - General" in the CitectSCADA User Guide

Example

' Sets the cluster context name property setting for current page

GraphicsBuilder.PageClusterName = "Cluster1"

' Retrieves the cluster context name property setting for current page

MyVariable = GraphicsBuilder.PageClusterName

PageDeleteAssociation
Deletes the selected association from the current page.

After an item has been deleted, a call to PageSelectNextAssociation will select the item
immediately following the deleted item.

Syntax

PageDeleteAssociation()

Return Value

0 (zero) if successful, otherwise an error is returned.

Note: For details on handling return and error values, see Error Handling.

Chapter: 6 Graphics Builder Automation Interface

430



Example

Deleting any associations starting with “a”:

Dim name As String

On Error Resume Next

Err.Clear()

GraphicsBuilder.SelectFirstAssociation()

While (Err.Number = 0)

name = GraphicsBuilder.PageAssociationName

If (name.ToLower().StartsWith("a")) Then

GraphicsBuilder.PageDeleteAssociation()

End If

GraphicsBuilder.PageSelectNextAssociation()

End While

Related Functions

PageSelectNextAssociation

PageDescription
Sets or retrieves the description attached to the active CitectSCADA graphics page.

Syntax

PageDescription(Description)

Description:

The description applied to the active graphics page, as a string.

Return Value

The description of the active graphics page as a string, or 0 (zero) if successfully used to
apply a description to the active graphics page. In both cases, an error is returned if
unsuccessful.

Note: For details on handling return and error values, see Error Handling.

Related Functions

PageName, PageTitle, PagePrevious, ProjectNext, PageScanTime, PageLogDevice, PageN-
ext, PageArea

See Also
"Page Properties - General" in the CitectSCADA User Guide

Chapter: 6 Graphics Builder Automation Interface

431



Example

' Attaches a description to the active graphics page

GraphicsBuilder.PageDescription = "MyDescription"

' Retrieves the description for the active graphics page

MyVariable = GraphicsBuilder.PageDescription

Note: This function is implemented in the C++ environment as two separate func-
tions: put_PageDescription sets the title of the active graphics page, and get_PageDe-

scription retrieves the title of the active graphics page.

PageEnvironmentAdd
Adds a new environment variable to the current page.This function will return an error
if an environment variable with the specified name already exists

Syntax

PageEnvironmentAdd(name, value)

Name:

Specifies the name of the new environment variable.

Value:

Specifies the value to associate with the new environment variable

Return Value

0 (zero) if successful, otherwise an error is returned.

Example

Adding a new environment variable:

GraphicsBuilder.PageEnvironmentAdd("Foo", "Bar")

Related Functions

PageEnvironmentFirst

PageEnvironmentFirst

Chapter: 6 Graphics Builder Automation Interface

432



Retrieves the first environment variable in the current page. This function will return an
error if there are no environment variables in the page.

Syntax

PageEnvironmentFirst(name, value)

Name:

Receives the name of the first environment variable in the current page.

Value:

Receives the value associated with the first environment variable.

Return Value

0 (zero) if successful, otherwise an error is returned.

Example

Printing out environment variables

Dim name As String

Dim value As String

Dim prevName As String

On Error Resume Next

Err.Clear()

GraphicsBuilder.PageEnvironmentFirst(name, value)

While (Err.Number = 0)

Console.Out.WriteLine(name + "=" + value)

prevName = name

GraphicsBuilder.PageEnvironmentNext(prevName, name, value)

End While

Related Functions

PageEnvironmentAdd

PageEnvironmentNext
Retrieves the next environment variable in the current page. This function will return an
error if there are no more environment variables in the page.

Syntax

PageEnvironmentNext(currentName, nextName, nextValue)

currentName:

Specifies the name of the current environment variable.

Chapter: 6 Graphics Builder Automation Interface

433



nextName:

Receives the name of the next environment variable.

nextValue:

Receives the value associated with the next environment variable.

Return Value

0 (zero) if successful, otherwise an error is returned.

Related Functions

PageEnvironmentFirst

PageEnvironmentRemove
Removes an environment variable from the current page. This function will return an
error if an environment variable with the specified name does not exist.

Syntax

PageEnvironmentRemove(name)

name:

Specifies the name of the environment variable to be removed.

Return Value

0 (zero) if successful, otherwise an error is returned.

Example

Deleting an existing environment variable

GraphicsBuilder.PageEnvironmentRemove("Foo")

Updating an existing environment variable

GraphicsBuilder.PageEnvironmentRemove("Foo")

GraphicsBuilder.PageEnvironmentAdd("Foo", "Bar2")

Related Functions

PageEnvironmentFirst

PageLogDevice

Chapter: 6 Graphics Builder Automation Interface

434



Retrieves or sets the LogDevice property setting for the current graphics page.

Syntax

PageLogDevice(LogDevice)

LogDevice:

The name of the log device as a string.

Return Value

The LogDevice setting for the active graphics page (as a string), or 0 (zero) if successfully
used to set the LogDevice. In both cases, an error is returned if unsuccessful.

Note: For details on handling return and error values, see Error Handling.

Related Functions

PageName, PageTitle, PageDescription, PagePrevious, PageNext, PageScanTime

See Also
"Page Properties - General" in the CitectSCADA User Guide

Example

' Sets the LogDevice for the current graphics page

GraphicsBuilder.PageLogDevice = "MyDevice"

' Retrieves the name of the LogDevice for the current page

MyVariable = GraphicsBuilder.PageLogDevice

Note: This function is implemented in the C++ environment as two separate func-
tions: put_PageLogDevice applies an LogDevice setting for active graphics page, and
get_PageLogDevice retrieves the current LogDevice setting.

PageName
Returns the name of the active page. This is a read only attribute.

Syntax

PageName(PageName)

PageName:

Returns the name of the active page as a string.

Chapter: 6 Graphics Builder Automation Interface

435



Return Value

The name of the active CitectSCADA graphics page as a string.

Note: For details on handling return and error values, see Error Handling.

Related Functions

PageTitle, PageDescription, PagePrevious, PageNext, PageArea, PageScanTime, Page-
LogDevice

See Also
"Page Properties - General" in the CitectSCADA User Guide

Example

Debug.Print "PageName"; GraphicsBuilder.PageName

PageNext
Retrieves the name of the page currently defined as "next" for the active graphics page,
or sets the page you would like defined as next.

Syntax

PageNext(PageName)

PageName:

The name of the page defined as next for the active graphics page, as a string.

Return Value

The name of the page defined as next for the active graphics page (as a string), or 0
(zero) if successfully used to set the page that is defined as next. In both cases, an error is
returned if unsuccessful.

Note: For details on handling return and error values, see Error Handling.

Related Functions

PageName, PageTitle, PageDescription, PagePrevious, PageArea, PageScanTime, Page-
LogDevice

Chapter: 6 Graphics Builder Automation Interface

436



See Also
"Page Properties - General" in the CitectSCADA User Guide

Example

' Defines a page as the one that follows the current page in a browse sequence

GraphicsBuilder.PageNext = "MyPage3"

' Retrieves the name of the page that follows the current page in a browse sequence

MyVariable = GraphicsBuilder.PageNext

Note: This function is implemented in the C++ environment as two separate func-
tions: put_PageNext sets the page defined as next for the active graphics page, and
get_PageNext retrieves the name of the next graphics page.

PagePrevious
Retrieves the name of the page currently defined as "previous" to the active graphics
page, or sets the page you would like defined as previous to the current page.

Syntax

PagePrevious(PageName)

PageName:

The name of the page defined as previous for the active graphics page, as a string.

Return Value

The name of the page defined as previous to the active graphics page (as a string), or 0
(zero) if successfully used to set the page that is previous to the active graphics page. In
both cases, an error is returned if unsuccessful.

Note: For details on handling return and error values, see Error Handling.

Related Functions

PageName, PageTitle, PageDescription, PageNext, PageArea, PageScanTime, Page-
LogDevice

See Also
"Page Properties - General" in the CitectSCADA User Guide

Chapter: 6 Graphics Builder Automation Interface

437



Example

' Defines a page as previous to the current page in a browse sequence

GraphicsBuilder.PagePrevious = "MyPage1"

' Retrieves the name for the page defined as previous to the current page

MyVariable = GraphicsBuilder.PagePrevious

Note: This function is implemented in the C++ environment as two separate func-
tions: put_PagePrevious sets the page defined as previous to the active graphics page,
and get_PagePrevious retrieves the name of the previous graphics page.

PageScanTime
Retrieves or sets the PageScanTime property for the current graphics page.

Syntax

PageScanTime(ScanTime)

ScanTime:

A value between 1 and 60000 as a string, or blank to set to default.

Return Value

If retrieving the current PageScanTime setting, the value returned is between 1 and
60000 as a string, or a blank string if set to default.

If you are using the function to apply a ScanTime setting, 0 (zero) is returned if suc-
cessful, or an E_INVALIDARG error if the value you want to apply is out of range.

Note: For details on handling return and error values, see Error Handling.

Related Functions

PageName, PageTitle, PageDescription, PagePrevious, PageNext, PageLogDevice

See Also
"Page Properties - General" in the CitectSCADA User Guide

Example

' Assigns a ScanTime value to the current graphics page

GraphicsBuilder.PageScanTime = "2000"

Chapter: 6 Graphics Builder Automation Interface

438



' Retrieves the ScanTime setting for the current page

MyVariable = GraphicsBuilder.PageScanTime

Note: This function is implemented in the C++ environment as two separate func-
tions: put_PageScanTime applies an ScanTime setting to active graphics page, and get_

PageScanTime retrieves the current ScanTime setting.

PageSelectAssociationByName
Selects the specified association in the current page.

Syntax

PageSelectAssociationByName(Name)

Name

The name of the association to be selected.

Return Value

0 (zero) if successful, otherwise an error is returned.

Example

Determining whether an association with a particular name exists:

On Error Resume Next

Err.Clear()

GraphicsBuilder.SelectAssociationByName("MyAssociation")

If (Err.Number <> 0)

' The association does not exist

End If

Related Functions

PageAddAssociation

PageSelectFirstAssociation
Selects the first association in the current page.

Syntax

PageSelectFirstAssociation()

Chapter: 6 Graphics Builder Automation Interface

439



Return Value

0 (zero) if successful, otherwise an error is returned.

Example

Determine whether the current page has associations in the page properties:

On Error Resume Next

Err.Clear()

GraphicsBuilder.SelectFirstAssociation()

If (Err.Number <> 0)

' The page has no associations

End If

Related Functions

PageAddAssociation,PageAssociationDescription

PageSelectNextAssociation
Selects the next association in the current page.

Syntax

PageSelectNextAssociation()

Return Value

0 (zero) if successful, otherwise an error is returned.

Example

Print associations in the current page’s properties:

On Error Resume Next

Err.Clear()

GraphicsBuilder.SelectFirstAssociation()

While (Err.Number = 0)

Console.Out.WriteLine(GraphicsBuilder.PageAssociationName)

GraphicsBuilder.SelectNextAssociation()

End While

Related Functions

PageAddAssociation,PageAssociationDescription

PageTitle

Chapter: 6 Graphics Builder Automation Interface

440



Sets or retrieves the title of the active CitectSCADA graphics page.

Syntax

PageTitle(Title)

Title:

The title of the active page as a string.

Return Value

The title of the active graphics page as a string, or 0 (zero) if successfully used to set the
title of the active graphics page. In both cases, an error is returned if unsuccessful.

Note: For details on handling return and error values, see Error Handling.

Related Functions

PageName, PageDescription, PagePrevious, PageNext, PageArea, PageScanTime, Page-
LogDevice

See Also
"Page Properties - General" in the CitectSCADA User Guide

Example

' Sets the title of the active graphics page

GraphicsBuilder.PageTitle = "MyTitle"

' Retrieves the title of the active graphics page

MyVariable = GraphicsBuilder.PageTitle

Note: This function is implemented in the C++ environment as two separate func-
tions: put_PageTitle sets the title of the active graphics page, and get_PageTitle

retrieves the title of the active graphics page.

Project Functions

These functions operate on the project level. Some are actually initiated within Citect
Project Editor or the Project Explorer. If they experience an error in Visual Basic, they
throw an exception with a return value E_FAIL.

Chapter: 6 Graphics Builder Automation Interface

441



ProjectCompile This function starts the CitectSCADA compiler with the current
project.

ProjectFirst Retrieves the name of the first project defined in CitectSCADA.

Pro-
jectFirstInclude

Retrieves the name of the first included project defined for the cur-
rent CitectSCADA project.

ProjectNext Retrieves the name of the next project defined in CitectSCADA.

Pro-
jectNextInclude

Retrieves the name of the next included project defined for the cur-
rent CitectSCADA project.

Pro-
jectPackDatabase

Packs the current project's database files.

Pro-
jectPackLibraries

Packs the library files for the current CitectSCADA project.

ProjectSelect Selects the passed project as the current project within Citect
Explorer.

ProjectSelected Retrieves the name of the project that is currently selected in Citect-
SCADA.

Pro-
jectUpdatePages

Updates the pages for the current CitectSCADA project.

ProjectUpgrade Performs a project upgrade on the current CitectSCADA project.

Pro-
jectUpgradeAll

Performs a project upgrade on the CitectSCADA projects.

For details and a VB example on handling return and error values, see Error Handling.

ProjectCompile
This function starts the CitectSCADA compiler with the current project. There are cur-
rently no functions to check errors or trigger the compiler's cancel function.

Syntax

ProjectCompile

Return Value

0 (zero) if successful, otherwise an error is returned.

Chapter: 6 Graphics Builder Automation Interface

442



Note: For details on handling return and error values, see Error Handling.

Related Functions

ProjectSelect, ProjectSelected, ProjectFirst, ProjectNext, ProjectFirstInclude, Pro-
jectNextInclude, ProjectUpgrade, ProjectUpgradeAll, ProjectPackLibraries, Pro-
jectUpdatePages, ProjectPackDatabase

Example

GraphicsBuilder.ProjectCompile

If Err.Number <> 0 Then

Debug.Print "Error in ProjectCompile"

Err.Clear

Else

Debug.Print "ProjectCompile OK"

End If

ProjectFirst
Retrieves the name of the first project defined in CitectSCADA. Can be used in con-
junction with ProjectNext to call the projects currently defined in CitectSCADA.

Syntax

ProjectFirst(Project)

Project:

The name of the project.

Return Value

The name of the first CitectSCADA project. If no project exists, an error is returned.

Note: For details on handling return and error values, see Error Handling.

Related Functions

ProjectSelect, ProjectSelected, ProjectNext, ProjectFirstInclude, ProjectNextInclude, Pro-
jectUpgrade, ProjectUpgradeAll, ProjectPackLibraries, ProjectUpdatePages, Pro-
jectPackDatabase, ProjectCompile

Chapter: 6 Graphics Builder Automation Interface

443



Example

On Error Resume Next

sProject = GraphicsBuilder.ProjectSelected

If Err.Number <> 0 Then

Debug.Print "Error in ProjectSelected"

Err.Clear

Else

Debug.Print "Selected project:", sProject

End If

Debug.Print "list of projects:"

sProject = GraphicsBuilder.ProjectFirst

While Err.Number = 0

Debug.Print sProject

sProject = GraphicsBuilder.ProjectNext

Wend

ProjectFirstInclude
Retrieves the name of the first included project defined for the current CitectSCADA
project. Can be used in conjunction with ProjectNextInclude to call the projects defined
as included for current CitectSCADA project.

Syntax

ProjectFirstInclude(Project)

Project:

The name of the project.

Return Value

The name of the first include project for the current CitectSCADA project. If no project
exists, an error is returned.

Note: For details on handling return and error values, see Error Handling.

Related Functions

ProjectSelect, ProjectSelected, ProjectFirst, ProjectNext, ProjectNextInclude,
ProjectUpgrade, ProjectUpgradeAll, ProjectPackLibraries, ProjectUpdatePages, Pro-
jectPackDatabase, ProjectCompile

ProjectNext

Chapter: 6 Graphics Builder Automation Interface

444



Retrieves the name of the next project defined in CitectSCADA. Can be used with Pro-
jectFirst to call projects currently defined in CitectSCADA.

Syntax

ProjectNext(Project)

Project:

The name of the project.

Return Value

The name of the next CitectSCADA project. If no project exists, an error is returned.

Note: For details on handling return and error values, see Error Handling.

Related Functions

ProjectSelect, ProjectSelected, ProjectFirst, ProjectFirstInclude, ProjectNextInclude, Pro-
jectUpgrade, ProjectUpgradeAll, ProjectPackLibraries, ProjectUpdatePages, Pro-
jectPackDatabase, ProjectCompile

Example

On Error Resume Next

sProject = GraphicsBuilder.ProjectSelected

If Err.Number <> 0 Then

Debug.Print "Error in ProjectSelected"

Err.Clear

Else

Debug.Print "Selected project:", sProject

End If

Debug.Print "list of projects:"

sProject = GraphicsBuilder.ProjectFirst

While Err.Number = 0

Debug.Print sProject

sProject = GraphicsBuilder.ProjectNext

Wend

ProjectNextInclude
Retrieves the name of the next included project defined for the current CitectSCADA
project. Can be used with ProjectFirstInclude to call the projects defined as included for
current CitectSCADA project.

Chapter: 6 Graphics Builder Automation Interface

445



Syntax

ProjectNextInclude(Project)

Project:

The name of the project.

Return Value

The name of the next include project for the current CitectSCADA project. If no project
exists, an error is returned.

Note: For details on handling return and error values, see Error Handling.

Related Functions

ProjectSelect, ProjectSelected, ProjectFirst, ProjectNext, ProjectFirstInclude, ProjectUpgrade,
ProjectUpgradeAll, ProjectPackLibraries, ProjectUpdatePages, ProjectPackDatabase, Pro-
jectCompile

ProjectPackDatabase
Packs the current project's database files.

Syntax

ProjectPackDatabase

Return Value

0 (zero) if successful, otherwise an error is returned.

Note: This function displays a cancel dialog. It will exit and report error code E_
ABORT, if the cancel button is pressed. For details on handling return and error
values, see Error Handling.

Related Functions

ProjectSelect, ProjectSelected, ProjectFirst, ProjectNext, ProjectFirstInclude, Pro-
jectNextInclude, ProjectUpgrade, ProjectUpgradeAll, ProjectPackLibraries, Pro-
jectUpdatePages, ProjectCompile

Chapter: 6 Graphics Builder Automation Interface

446



Example

GraphicsBuilder.ProjectPackDatabase

If Err.Number <> 0 Then

Debug.Print "Error in ProjectPackDatabase"

Err.Clear

Else

Debug.Print "ProjectPackDatabase OK"

End If

ProjectPackLibraries
Packs the library files for the current CitectSCADA project.

Syntax

ProjectPackLibraries

Return Value

0 (zero) if successful, otherwise an error is returned.

Note: This function displays a cancel dialog. It will exit and report error code E_
ABORT, if the cancel button is pressed. For details on handling return and error
values, see Error Handling.

Related Functions

ProjectSelect, ProjectSelected, ProjectFirst, ProjectNext, ProjectFirstInclude, Pro-
jectNextInclude, ProjectUpgrade, ProjectUpgradeAll, ProjectUpdatePages, Pro-
jectPackDatabase, ProjectCompile

ProjectSelect, ProjectSelected, ProjectFirst, ProjectNext, ProjectFirstInclude, Pro-
jectNextInclude, ProjectUpgrade, ProjectUpgradeAll, ProjectUpdatePages, Pro-
jectPackDatabase, ProjectCompile

Example

GraphicsBuilder.ProjectPackLibraries

If Err.Number <> 0 Then

Debug.Print "Error in ProjectPackLibraries"

Err.Clear

Else

Debug.Print "ProjectPackLibraries OK"

End If

Chapter: 6 Graphics Builder Automation Interface

447



ProjectSelect
Selects the passed project as the current project within Citect Explorer.

Syntax

ProjectSelect(Project)

Project:

The name of the project.

Return Value

0 (zero) if successful, otherwise an error is returned.

Note: For details on handling return and error values, see Error Handling.

Related Functions

ProjectSelected, ProjectFirst, ProjectNext, ProjectFirstInclude, ProjectNextInclude, Pro-
jectUpgrade, ProjectUpgradeAll, ProjectPackLibraries, ProjectUpdatePages, Pro-
jectPackDatabase, ProjectCompile

Example

GraphicsBuilder.ProjectSelect "Example"

ProjectSelected
Retrieves the name of the project that is currently selected in CitectSCADA.

Syntax

ProjectSelected(Project)

Project:

The name of the project.

Return Value

0 (zero) if successful, otherwise an error is returned.

Note: For details on handling return and error values, see Error Handling.

Chapter: 6 Graphics Builder Automation Interface

448



Related Functions

ProjectSelect, ProjectFirst, ProjectNext, ProjectFirstInclude, ProjectNextInclude, Pro-
jectUpgrade, ProjectUpgradeAll, ProjectPackLibraries, ProjectUpdatePages, Pro-
jectPackDatabase, ProjectCompile

Example

On Error Resume Next

sProject = GraphicsBuilder.ProjectSelected

If Err.Number <> 0 Then

Debug.Print "Error in ProjectSelected"

Err.Clear

Else

Debug.Print "Selected project:", sProject

End If

Debug.Print "list of projects:"

sProject = GraphicsBuilder.ProjectFirst

While Err.Number = 0

Debug.Print sProject

sProject = GraphicsBuilder.ProjectNext

Wend

ProjectUpdatePages
Updates the pages for the current CitectSCADA project. If you encounter missing ref-
erences during the update, see BrokenLinkCancelEnabled.

Syntax

ProjectUpdatePages(FastUpdate)

FastUpdate:

Set to TRUE to enable a fast update.

Return Value

0 (zero) if successful, otherwise an error is returned.

Note: This function displays a cancel dialog. It will exit and report error code E_
ABORT, if the cancel button is pressed. For details on handling return and error
values, see Error Handling.

Chapter: 6 Graphics Builder Automation Interface

449



Related Functions

ProjectSelect, ProjectSelected, ProjectFirst, ProjectNext, ProjectFirstInclude, Pro-
jectNextInclude, ProjectUpgrade, ProjectUpgradeAll, ProjectPackLibraries, Pro-
jectPackDatabase, ProjectCompile

Example

GraphicsBuilder.ProjectUpdatePages True

If Err.Number <> 0 Then

Debug.Print "Error in ProjectUpdatePages"

Err.Clear

Else

Debug.Print "ProjectUpdatePages OK"

End If

ProjectUpgrade
Performs a project upgrade on the current CitectSCADA project.

Syntax

ProjectUpgradeAll

Return Value

0 (zero) if successful, otherwise an error is returned.

Note: This function displays a cancel dialog. It will exit and report error code E_
ABORT, if the cancel button is pressed. For details on handling return and error
values, see Error Handling.

Related Functions

ProjectSelect, ProjectSelected, ProjectFirst, ProjectNext, ProjectFirstInclude, Pro-
jectNextInclude, ProjectUpgradeAll, ProjectPackLibraries, ProjectUpdatePages, Pro-
jectPackDatabase, ProjectCompile

Example

On Error Resume Next

Err.Clear

GraphicsBuilder.ProjectUpgrade

If Err.Number <> 0 Then

Chapter: 6 Graphics Builder Automation Interface

450



Debug.Print "Error in ProjectUpgrade"

Err.Clear

Else

Debug.Print "ProjectUpgrade OK"

End If

ProjectUpgradeAll
Performs a project upgrade on CitectSCADA projects. This function produces the same
result as setting Upgrade=1 in the Citect.ini file.

Syntax

ProjectUpgradeAll

Return Value

0 (zero) if successful, otherwise an error is returned.

Note: For details on handling return and error values, see Error Handling.

Related Functions

ProjectSelect, ProjectSelected, ProjectFirst, ProjectNext, ProjectFirstInclude, Pro-
jectNextInclude, ProjectUpgrade, ProjectPackLibraries, ProjectUpdatePages, Pro-
jectPackDatabase, ProjectCompile

Example

On Error Resume Next

Err.Clear

GraphicsBuilder.ProjectUpgrade

If Err.Number <> 0 Then

Debug.Print "Error in ProjectUpgrade"

Err.Clear

Else

Debug.Print "ProjectUpgrade OK"

End If

Text Property Functions

These functions allow you to read and modify the properties of the text objects in your
project.

Chapter: 6 Graphics Builder Automation Interface

451



AttributeText Sets the text for a text object, or retrieves the current text.

AttributeTextColour Applies a color to the selected text, or retrieves the current font
color setting.

Attrib-
uteTextOffColourEx

Applies the "off" color to the selected text, or retrieves the cur-
rent font color setting.

Attrib-
uteTextOnColourEx

Applies the "on" color to the selected text, or retrieves the cur-
rent font color setting.

AttributeTextFont Applies a specific font to the selected text, or retrieves the font
setting.

AttributeTextFontSize Applies a font size to the selected text, or retrieves the current
font size.

Attrib-
uteTextJustification

Applies a specific justification setting to selected text, or
retrieves the current text justification value.

AttributeTextStyle Sets a specific text style, or retrieves the current text style set-
ting.

The following object functions are also valid for text objects:

Attribute3dEffects Applies a 3D effect to an object, or retrieves the current 3D effect
setting.

Attrib-
ute3dEffectDepth

Applies a level of depth to a 3D effect, or retrieves the current
depth setting.

Attrib-
uteHiLightColour

Sets the highlight color applied to the 3D effects raised, lowered
or embossed, or retrieves the current highlight color setting.

Attrib-
uteLoLightColour

Sets the lowlight color applied to the 3D effects raised, lowered
or embossed, or retrieves the current lowlight color setting.

Attrib-
uteShadowColour

Sets the shadow color when a shadowed 3D effect is used, or
retrieves the current shadow color setting.

For details and a VB example on handling return and error values, see Error Handling.

AttributeText
Sets the text for a text object, or retrieves the current text.

Chapter: 6 Graphics Builder Automation Interface

452



Syntax

AttributeText(Text)

Text:

The text object's text as a string.

Return Value

If retrieving the current text for the object, the text is returned as a string. If setting the
text, a 0 (zero) is returned if successful. In both cases, an error is returned if unsuccessful.
If values are out of range on writing to the attribute, the function will exit and report the
error E_INVALIDARG. If there is no active text object, these functions throw an excep-
tion with a return value of E_HANDLE.

Note: For details on handling return and error values, see Error Handling.

Related Functions

AttributeTextStyle, AttributeTextJustification, AttributeTextFont, AttributeTextFontSize,
AttributeTextColour

Example

' Sets the text for the currently text object

GraphicsBuilder.AttributeText = "TestText"

' Retrieves text for the current text object

MyVariable = GraphicsBuilder.AttributeText

This function is implemented in the C++ environment as two separate functions: put_
AttributeText sets the text for the currently selected text object, and get_AttributeText

retrieves the text for the current text object.

AttributeTextColour
Applies a color to the selected text, or retrieves the current font color setting.

Note: As this function does not support True Color functionality, it has been super-
seded by the functions AttributeTextOnColourEx and AttributeTextOffColourEx.

Syntax

AttributeTextColour(TextColour)

Chapter: 6 Graphics Builder Automation Interface

453



TextColour:

A value between 0 and 255 representing the font color.

Return Value

If retrieving the current font color, a value between 0 and 255. If applying a particular
font color, 0 (zero) if successful. In both cases, an error is returned if unsuccessful. If
values are out of range on writing to the attribute, the function exits and reports the error
E_INVALIDARG. If there is no active text object, these functions throw an exception with
a return value of E_HANDLE.

Note: For details on handling return and error values, see Error Handling.

Related Functions

AttributeText, AttributeTextStyle, AttributeTextJustification, AttributeTextFont, Attrib-
uteTextFontSize

Example

' Applies a color to the selected text

GraphicsBuilder.AttributeTextColour = 255

`Retrieves the current font color setting

MyVariable = GraphicsBuilder.AttributeTextColour

This function is implemented in the C++ environment as two separate functions: put_
AttributeTextColour applies a color to the currently selected text, and get_Attrib-

uteTextColour retrieves the current text color.

AttributeTextOffColourEx
Applies the "off" color to the selected text, or retrieves the current font color setting.

Syntax

AttributeTextOffColourEx(TextColour)

TextColour:

An RGB value.

Chapter: 6 Graphics Builder Automation Interface

454



Return Value

If retrieving the current font color, an RGB value. If applying a particular font color, 0
(zero) if successful. In both cases, an error is returned if unsuccessful. If values are out of
range on writing to the attribute, the function exits and reports the error E_INVAL-
IDARG. If there is no active text object, these functions throw an exception with a return
value of E_HANDLE.

Note: For details on handling return and error values, see Error Handling.

Related Functions

AttributeText, AttributeTextStyle, AttributeTextJustification, AttributeTextFont, Attrib-
uteTextFontSize

Example

' Applies a color to the selected text

GraphicsBuilder.AttributeTextOffColourEx = &hFF0000

`Retrieves the current font color setting

MyVariable = GraphicsBuilder.AttributeTextOffColourEx

This function is implemented in the C++ environment as two separate functions: put_
AttributeTextOffColourEx applies a color to the currently selected text, and get_Attrib-

uteTextOffColourEx retrieves the current text color.

AttributeTextOnColourEx
Applies the "on" color to the selected text, or retrieves the current font color setting.

Syntax

AttributeTextOnColourEx(TextColour)

TextColour:

An RGB value.

Chapter: 6 Graphics Builder Automation Interface

455



Return Value

If retrieving the current font color, an RGB value. If applying a particular font color, 0
(zero) if successful. In both cases, an error is returned if unsuccessful. If values are out of
range on writing to the attribute, the function exits and reports the error E_INVAL-
IDARG. If there is no active text object, these functions throw an exception with a return
value of E_HANDLE.

Note: For details on handling return and error values, see Error Handling.

Related Functions

AttributeText, AttributeTextStyle, AttributeTextJustification, AttributeTextFont, Attrib-
uteTextFontSize

Example

' Applies a color to the selected text

GraphicsBuilder.AttributeTextOnColourEx = &hFF0000

`Retrieves the current font color setting

MyVariable = GraphicsBuilder.AttributeTextOnColourEx

This function is implemented in the C++ environment as two separate functions: put_
AttributeTextOnColourEx applies a color to the currently selected text, and get_Attrib-

uteTextOnColourEx retrieves the current text color.

AttributeTextFont
Applies a specific font to the selected text, or retrieves the font setting.

Syntax

AttributeTextFont(TextFont)

TextFont:

The font name as a string.

Chapter: 6 Graphics Builder Automation Interface

456



Return Value

If retrieving the current font, the name of the font as a string, for example "courier". If
applying a particular font, 0 (zero) if successful. In both cases, an error is returned if
unsuccessful. If values are out of range on writing to the attribute, the function will exit
and report the error E_INVALIDARG. If there is no active text object, these functions
throw an exception with a return value of E_HANDLE.

Note: For details on handling return and error values, see Error Handling.

Related Functions

AttributeText, AttributeTextStyle, AttributeTextJustification, AttributeTextFontSize, Attrib-
uteTextColour

Example

' Applies the font Courier to the selected text

GraphicsBuilder.AttributeTextFont = "Courier"

' Retrieves the font setting

MyVariable = GraphicsBuilder.AttributeTextFont

Note: This function is implemented in the C++ environment as two separate func-
tions: put_AttributeTextFont applies a font to the currently selected text, and get_

AttributeTextFont retrieves the current font setting.

AttributeTextFontSize
Applies a font size to the selected text, or retrieves the current font size.

Syntax

AttributeTextFontSize(TextFontSize)

TextFontSize:

A value between 0 and 65535 representing the font size.

Chapter: 6 Graphics Builder Automation Interface

457



Return Value

If retrieving the current font size, a value between 0 and 65535. If applying a particular
font size, 0 (zero) if successful. In both cases, an error is returned if unsuccessful. If
values are out of range on writing to the attribute, the function will exit and report the
error E_INVALIDARG. If there is no active text object, these functions throw an excep-
tion with a return value of E_HANDLE.

Note: For details on handling return and error values, see Error Handling.

Related Functions

AttributeText, AttributeTextStyle, AttributeTextJustification, AttributeTextFont, Attrib-
uteTextColour

Example

' Applies the font size to the selected text

GraphicsBuilder.AttributeTextFontSize = 12

' Retrieves the font size

MyVariable = GraphicsBuilder.AttributeTextFontSize

Note: This function is implemented in the C++ environment as two separate func-
tions: put_AttributeTextFontSize sets the font size, and get_AttributeTextFontSize

retrieves the current font size.

AttributeTextJustification
Applies a specific justification setting to selected text, or retrieves the current text jus-
tification value.

Syntax

AttributeTextJustification(TextJustification)

TextJustification:

A value depicting the type of justification used:

l 0 = left justified
l 1 = right justified
l 2 = centered

Chapter: 6 Graphics Builder Automation Interface

458



Return Value

If retrieving the current text justification, a value between 0 and 2 depicting the type of
justification used. If applying justification, 0 (zero) if successful. In both cases, an error is
returned if unsuccessful. If values are out of range on writing to the attribute, the func-
tion will exit and report the error E_INVALIDARG. If there is no active text object, these
functions throw an exception with a return value of E_HANDLE.

Note: For details on handling return and error values, see Error Handling.

Related Functions

AttributeText, AttributeTextStyle, AttributeTextFont, AttributeTextFontSize, Attrib-
uteTextColour

Example

' Applies right justification to the selected text

GraphicsBuilder.AttributeTextJustification = 1

' Retrieves the current text justification value

MyVariable = GraphicsBuilder.AttributeTextJustification

Note: This function is implemented in the C++ environment as two separate func-
tions: put_AttributeTextJustification applies justification to the currently selected
text, and get_AttributeTextJustification retrieves the current justification setting.

AttributeTextStyle
Sets a specific text style, or retrieves the current text style setting.

Syntax

AttributeTextStyle(TextStyle)

TextStyle:

A value depicting text style:

l 0 = normal
l 1 = bold
l 2 = italic
l 4 = underline
l 8 = strikeout

Chapter: 6 Graphics Builder Automation Interface

459



You can superimpose styles by adding the above values.

Return Value

If retrieving the current text style, a value between 0 and 8 depicting the applied style. If
applying a text style, 0 (zero) if successful. In both cases, an error is returned if unsuc-
cessful. If values are out of range on writing to the attribute, the function will exit and
report the error E_INVALIDARG. If there is no active text object, these functions throw
an exception with a return value of E_HANDLE.

Note: For details on handling return and error values, see Error Handling.

Related Functions

AttributeText, AttributeTextJustification, AttributeTextFont, AttributeTextFontSize, Attrib-
uteTextColour

Example

' Sets the normal text style

GraphicsBuilder.AttributeTextStyle = 0

' Retrieves the current text style setting

MyVariable = GraphicsBuilder.AttributeTextStyle

Note: This function is implemented in the C++ environment as two separate func-
tions: put_AttributeTextStyle applies a style to the currently selected text, and get_

AttributeTextStyle retrieves the current text style setting.

Chapter: 6 Graphics Builder Automation Interface

460



Chapter: 7 Frequently Asked Questions

This section contains answers to some commonly asked questions about CitectSCADA
functionality. The FAQs have been divided into several categories:

l Pages

l Graphics

l Runtime

l Trends

l Controls

l Alarms

l Miscellaneous

Pages

Q: How do I open a page on startup?

A:CitectSCADA searches for a page called "Startup" when it starts up. If CitectSCADA
locates this page, it is opened automatically. You can change the name of the default
startup page with the Computer Setup Wizard, run in Custom mode. See "General
Options Setup" in the CitectSCADA User Guide for details.

Q: How do I get the Page Next and Page Previous buttons to work on new graphics
pages?

A: Use the page Properties (File menu in the Graphics Builder) to define the next page
and previous page.

Q: How do I display pages starting with '!'?

A: Turn on the List system pages option, under Options in the Tools menu of the Graph-
ics Builder.

Q: What does the '!' mean when it is the first character in a page name?

A: The '!' means the page is a System page. Pages that begin with '!' will not appear on
the default menu page or in the Page Select combo box.

Q: Is it possible to associate more than 8 variable tags to a Super Genie. I am using
theAssPopup()function but it only allows me to use 8?

461



A: You can use the AssVarTags function to associate up to 256 variable tags, or use
arrays.

Q: I have just created a Genie and want to add a privilege to it. In versions 3 and 4, I
was able to hold down CTRL and double-click, but it doesn't seem to work in this ver-
sion?

A: This is an effect of the addition of version 5 property-based objects. To add a privilege
field, you need to add another field to the Genie form by adding %privilege% in the Priv-
ilege field of the Genie.

Graphics

Q: With the version 4 graphic objects, you could display the on/off state of strings in
different colors. How can I do this with the new objects?

A: You can create the same effect by using the On/Off type in the Fill tab of a text object.
Just add the digital tag again and specify the colors you want.

Q: Why are there dots displayed everywhere on my bar graphs and symbols?

A: The dots indicate a communication error for this object display. If the I/O Device asso-
ciated with the data is offline, then it is displayed with dots over it.

Runtime

Q: How do I run a Cicode function on startup?

A: Specify the Cicode function with the Computer Setup Wizard - run in Custom mode.
Use the Startup FunctionsSetup page. See "Startup Functions Configuration" in the Citect-
SCADA User Guide for details.

Q: How do I run a report on startup?

A:CitectSCADA searches for a report called "Startup" when it starts up. If CitectSCADA
locates this report, it is run automatically. You can change the name of the default
startup report with the Computer Setup Wizard - run in Custom mode. Use the Startup
report field on the Reports Setup page. See "Reports Configuration" in the CitectSCADA
User Guide for details.

Q: How do I disable operator reboot?

A: You can disable the Ctrl+Alt+Del command by using a third-party utility. See the
Citect knowledge base or contact Technical Support for this product. to obtain the latest
recommended software.

Q: How do I remove the Cancel button from the Startup Message Box?

Chapter: 7 Frequently Asked Questions

462



A: Use the Computer Setup Wizard - run in Custom mode. De-select the DisplayCancel
button on startup option on the Security Setup - Miscellaneous page. See "Miscellaneous
Security Configuration" in the CitectSCADA User Guide for details.

Q: How do I remove the Shutdown command from the Control menu?

A: Use the Computer Setup Wizard - run in Custom mode. De-select the Shutdown on
menu option on the Security Setup - Control Menu page. See "Control Menu Security
Configuration" in the CitectSCADA User Guide for details.

Q: How do I remove the Project Editor and Graphics Builder commands from the Con-
trol Menu?

A: Use the Computer Setup Wizard - run in Custom mode. De-select the Project
Editor/Graphics Builder on menu option on the Security Setup - Control Menu page. See
"Control Menu Security Configuration" in the CitectSCADA User Guide for details.

Trends

Q: How do I get trend data into a dBASE database?

A: Display the trend on screen and select the File Save/As tool. This tool displays a
Save/As dialog box for you to enter the name of the file, and calls the TrnExportDBF func-
tion to save the data. (For more complex procedures, call this function directly.)

Q: How do I get trend data into Excel?

A: You can get data into Excel in three ways:

l Display the trend on the screen, select the Clipboard tool to copy the data, and use
the Excel paste command to paste the data into Excel.

l Display the trend on the screen and select the File Save/As tool. Save the data in CSV
format, and open the CSV file in Excel.

l Display the trend on the screen and select the File Save/As tool. Save the data in DBF
format and open the DBF file in Excel.

(For other procedures, call the TrnExportCSV or TrnExportDBF function.)

Q: How do I get trend data into MS Access?

A: You can get data into Access in three ways:

l Display the trend on the screen, select the Clipboard tool to copy the data, and use
the Access Paste command to paste the data into Access.

l Display the trend on the screen and select the File Save/As tool. Save the data in CSV
format, and open the CSV file in Access.

l Display the trend on the screen and select the File Save/As tool. Save the data in DBF
format and open the DBF file in Access.

Chapter: 7 Frequently Asked Questions

463



(For other procedures, call the TrnExportCSV or TrnExportDBF function.)

Q: How do I update trend data?

A: Use the TrnSetTable function to write data back to the trend system.

Q: How do I archive trend data?

A: Use the trend archive Cicode functions from the Examples database. Use the Find
Function command to search for the TrendArchive() function.

Q: How do I restore archived trend data to the system?

A: Use the trend archive Cicode functions from the "Examples" database. Use the Find
Function command to search for the TrendArchive() function.

Q: How do I get trend data into a report?

A: Use the TrnGetTable function.

Controls

Q: How do I start a motor with the keyboard?

A: Define a Page Keyboard command that sets the value of the digital variable to 1, for
example:

l Key Sequence: ENTER or F5

l Command: Conv_Motor = 1

Q: How do I start a motor with a button?

A: Define a Button command that sets the value of the digital variable to 1 (for example
Conv_Motor = 1).

Q: How do I adjust a setpoint from a keyboard entry?

A: Define a Page Keyboard command to set the setpoint to a new value, for example:

l Key Sequence: #### ENTER

l Command: SP1 = Arg1

Q: How do I enter a command that is bigger than the width of the field?

A: Use an Include file or write a Cicode function and call that function. For details, see
Using Include (Text) Files and Writing Functions respectively.

Alarms

Q: How do I allow the operator to go to the alarm page from any page in the system
using the keyboard?

Chapter: 7 Frequently Asked Questions

464



A: Define a Global keyboard command (for example, the F3 key) to display the page with
the PageAlarm function, or use a page template that has an Alarm Page button. Global
keyboard commands are defined in System Keyboard Commands.

Q: How do I call a function when an alarm trips?

A: Define alarms as an alarm category, and call the function in the Alarm Action field.

Q: How do I send alarms to a dBASE file?

A: Specify the dBASE file in the Log Device field on the Alarm Category form.

Q: How do I display alarms?

A: Use the PageAlarm function to display the standard alarm page. Alternatively, for
more control, draw your own alarm page and use the AlarmDsp function.

Q: How do I create a standard alarm page?

A:When you configure the project, create a default alarm page (with the Graphic
Builder) based on the alarm template. Save the page with the name "Alarm". Alarms
will automatically display on this page.

Q: How do I display the alarm summary?

A: Use the PageSummary function to display the standard alarm summary page. Alter-
natively, for more control, draw your own alarm summary page and use the AlarmDsp
function.

Q: How do I get alarms into a report?

A: You can do either of the following:

l Read the alarm log (.DBF) files (logged for the alarm category).

l Use alarm functions such as AlarmFirstCatRec. (You can only use these functions if
the alarms server and Reports server are on the same computer.)

Q: How do I disable groups of alarms from the I/O Device?

A: Program the I/O Device to set a bit when it wants to disable alarms. Use an event to
monitor this bit (Trigger is Bit = 1), and call the AlarmDisable function as the Action
(when the bit is set).

Q: How do I display alarm summaries?

A:When you configure the project, create a default alarm summary page (with the
Graphic Builder) based on the alarm template. Save the page with the name "Summary".
Alarms will display on this page.

Q: How do I acknowledge alarms?

A: Display the standard alarm page and click the left mouse button over the alarm, or
use the AlarmAckRec function.

Q: How do I set up alarm redundancy?

Chapter: 7 Frequently Asked Questions

465



A: Use the Computer Setup Wizard (run in Custom mode) to set up a second Alarm
Server. No project reconfiguration is necessary.

Q: How do I attach comments to alarms at runtime?

A: Define a Page Keyboard command that calls the AlarmComment function.

Q: How do I sound a bell when alarm occurs?

A: Define the alarm in an Alarm Category and call the Beep function in the Alarm
Action field.

Q: How do I display the last alarm on every page?

A: Define a continuous animation on each page (or template) - a standard feature of
alarm templates.

Q: How do I advise operators that alarms are active?

A: If you are using standard templates, the clock animates. Alternatively, for more con-
trol, call the AlarmActive function.

Q: How do I change the analogue alarms limits at runtime?

A: Define a Page Keyboard command that calls the AlarmSetThreshold function.

Miscellaneous

Q: Why is #COM displayed on my pages?

A: The #COM indicates a communication error for this animation. If the I/O Device asso-
ciated with the data is offline, #COM is displayed.

Q: I'm getting communication errors with my PLC (hardware alarms, #COMS, missing
symbols or missing trend data on my pages). What do I do now?

A: Use the CitectSCADA Kernel window. (See "Using the CitectSCADA Kernel" in the
CitectSCADA User Guide for details.)

1. Once the project is started, invoke the Kernel window on the client process.

2. In the Kernel Main window, type page table CSAtoPSI.Subs to bring up the list of
client tag subscriptions.

3. Find the tag(s) that are causing #COM on the screen and look at the quality column
to determine the error(s) involved.

Q: I get the error "Citect low on Physical memory" when I startup CitectSCADA. What
can I do about this error?

Chapter: 7 Frequently Asked Questions

466



A: On startup, CitectSCADA checks that you have enough available physical memory
(real physical memory not virtual memory) to run your system. If CitectSCADA starts to
use lots of virtual memory your system performance will be seriously affected. Under
some conditions CitectSCADA cannot correctly detect the amount of physical memory
and this alert message displays when in fact you do have enough memory. See the alert
message Low physical memory for details.

Q: Why is my menu in VGA on an XGA resolution?

A: The default menu is a simple menu that puts buttons to every one of your pages on a
VGA size page. If you want a better menu, configure your own page using the menu tem-
plates.

Q: I have a spare dongle but I do not know what type, point count or how many users
it supports.

A:When running CitectSCADA, start the kernel and type PAGE GENERAL and view
the bottom of the screen. There is information on the above questions.

Q: I have configured a few Events that are not running, but run on another machine
with exactly the same project. What am I doing wrong?

A:CitectSCADA computers will only run Events if they are set up to do so. Use the Com-
puter Setup Wizard to enable or disable events on each computer.

Q: How do I reset accumulators. I tried writing to the tag directly but it just keeps
counting up?

A: Use the AccControl function.

Q: I have deleted a lot variable tags from my project but the number of records remain
the same. It seems that even though I have deleted them they still exist?

A: This is true. You need to pack your database by selecting Pack from the File menu in
the Project Editor. This deletes records marked for deletion and reindexes those that
remain. pack regularly if you have been deleting or editing the Variables database file
using third-party database editors (like MS-Excel).

Q: I want to set up a file server, but I would like the client connections to be as robust
as possible if the server experiences an outage. What steps can I take?

A: Use the Computer Setup Wizard - run in Custom mode. Enter a standby location in
the Backup project path field of the General Options Setup page. See "General Options
Setup" in the CitectSCADA User Guide for details.

Q: How do I quickly set up communications to an I/O Device?

A: Use the Express Communications Wizard to select the I/O Server, manufacturer, then
the I/O Device, then the communication method. This quickly sets up the basic options
necessary, but does not set up advanced features. See "Using the Communications
Express Wizard" in the CitectSCADA User Guide for details.

Chapter: 7 Frequently Asked Questions

467



Chapter: 7 Frequently Asked Questions

468



Glossary

1
10base2
Ethernet implementation on thin coaxial cable. Typically uses a BNC connection.

10base5
Ethernet implementation on thick coaxial cable.

10baseT
Ethernet implementation on unshielded twisted pair. Typically uses as RJ45 connection.

A
Accredited - Level 1
Drivers developed under the CiTDriversQA96 Driver Quality and Accreditation System, which
ensures the driver was designed, coded, and tested to the highest possible standards.

Accredited - Level 2
Drivers developed using the CiTDriversQA92 Driver Quality and Accreditation System.

accumulator
A facility that allows you to track incremental runtime data such as motor run hours, power con-
sumption, and downtime.

active alarm
An active alarm is an alarm in one of the following states: ON and unacknowledged; ON and
acknowledged; OFF and unacknowledged.

advanced alarm
Triggered when the result of a Cicode expression changes to true. Use advanced alarms only when
alarm functionality cannot be obtained with the other alarm types. If you configure too many
advanced alarms, your system performance can be affected.

alarm categories
You can assign each alarm to a category, and then process each category as a group. For example, for
each category, you can specify the display characteristics, the action to be taken when an alarm in the
category is triggered, and how data about the alarm is logged. You can also assign a priority to the
category, which can be used to order alarm displays, filter acknowledgments, and so on.

Glossary

469



alarm display page
The alarm display page displays alarm information in the following format: Alarm Time, Tag Name,
Alarm Name, Alarm Description.

alarm summary page
Displays alarm summary information in the following format: alarm name, time on, time off, delta
time, comment.

Alarms Server
Monitors all alarms and displays an alarm on the appropriate control client(s) when an alarm con-
dition becomes active.

analog alarms
Triggered when an analog variable reaches a specified value. supports four types of analog alarms:
high and high high alarms; low and low low alarms; deviation alarms; and rate of change alarms.

animation number files (.ANT)
ASCII text files that contain a list of animation points (ANs) and the coordinate location (in pixels) of
each point.

animation point
The points on a graphics page where an object displays. When you add an object to your page, auto-
matically allocates a number (AN) to the animation point, (i.e., the location of the object).

area
A large application can be visualized as a series of discrete sections or areas. Areas can be defined
geographically (where parts of the plant are separated by vast distances) or logically (as discrete proc-
esses or individual tasks).

arguments
Values (or variables) passed in a key sequence to a keyboard command in runtime (as operator
input). Arguments can also be the values (or variables) passed to a Cicode function when it executes.

Association
An association is the name or number you use when defining a Super Genie substitution, the value
or values of which are dynamically generated at runtime.

attachment unit interface (AUI)
Typically used to interface to a transceiver through what is often known as a drop cable.

automation component (ActiveX object)
ActiveX objects typically consist of a visual component (which you see on your screen) and an auto-
mation component. The automation component allows the interaction between the container object
and the ActiveX object.

Glossary

470



B
baud rate
The number of times per second a signal changes in a communication channel. While the baud rate
directly affects the speed of data transmission, the term is often erroneously used to describe the data
transfer rate. The correct measure for the data rate is bits per second (bps).

BCD variable (I/O device)
BCD (Binary Coded Decimal) is a two-byte (16-bit) data type, allowing values from 0 to 9,999. The
two bytes are divided into four lots of four bits, with each lot of four bits representing a decimal
number. For example the binary number 0010 represents decimal 2. Thus the BCD 0010 0010 0010
0010 represents 2,222.

bottleneck
A bottleneck occurs when too many requests are being sent to a PLC communication link/data high-
way. It can occur with all types of protocols, and is dependent on several factors, including the
frequency of requests, the number of duplicated (and hence wasteful) requests, whether the protocol
supports multiple outstanding requests, as well as other network traffic.

browse sequence
A series of graphics pages linked by a browse sequence, which is a linear navigation sequence within
your runtime system that uses Page Previous and Page Next commands.

byte variable (I/O device)
Byte is a one-byte data type, allowing values from 0 to 255. One byte consists of 8 bits. Each ASCII
character is usually represented by one byte.

C
cache (I/O device data cache)
When caching is enabled, all data read from a I/O device is stored temporarily in the memory of the
I/O server. If another request is made (from the same or another control client) for the same data
within the cache time, the I/O server returns the value in its memory, rather than read the I/O device
a second time.

callback function
A function that is passed as an argument in another function. Callback functions must be user-
written functions.

Cicode
Programming language designed for plant monitoring and control applications. Similar to languages
such as Pascal.

Glossary

471



Cicode blocking function
A Cicode function that blocks, or waits, for an asynchronous event to complete before returning.

CiNet
CiNet is no longer supported. CiNet was designed as a low speed wide area network (for remote mon-
itoring applications). If you have a widely-distributed application where computers are separated by
vast distances, using a LAN to connect your control clients can be expensive. To connect control
clients in this instance, use Microsoft's remote access server (RAS) or a Microsoft-approved solution,
such as Shiva LanRover.

citect.ini file
A text file that stores information about how each computer (servers and control clients) operates in
the configuration and runtime environments. The Citect.INI file stores parameters specific to each
computer and therefore cannot be configured as part of the project.

CiUSAFE
CiUSAFE is the application used to manage the hardware key that authorizes use of your software
within the agreed limitations.

client
A computer that accesses shared network resources provided by another computer called a server. 's
client-server based architecture is designed to distribute the processing tasks and optimize per-
formance.

cluster
A discrete group of alarms servers, trends servers, reports servers, and I/O servers. It would usually
also possess local control clients. For a plant comprising several individual sections or systems, mul-
tiple clusters can be used, one cluster for each section.

command
A command performs a particular task or series of tasks in your runtime system. A command is built
from Cicode and can consist of just a function or a statement.

communications link
A connection between computers and peripheral devices, enabling data transfer. A communications
link can be a network, a modem, or simply a cable. .

communications port
PC port used for sending and receiving serial data (also called serial or COM ports).

computer
A computer running . Other common industry terms for this computer could be node, machine or
workstation.

Glossary

472



Control Client
The interface between the runtime system and an operator. If you are using on a network, all com-
puters (on the network) are control clients.

control inhibit mode
Prohibits writing to the Field VQT tag element of a tag extension.

custom alarm filter
Custom alarm filters provide a way to filter and display active alarms. Up to eight custom filter
strings can be assigned to a configured alarm. In conjunction with a user-defined query function, the
custom filters enable operators to identify and display active alarms of interest.

D
data acquisition board
Data acquisition boards communicate directly with field equipment (sensors, controllers, and so on).
You can install a data acquisition board in your server to directly access your field equipment.

data bits
Group of binary digits (bits) used to represent a single character of data in asynchronous trans-
mission.

data communications equipment (DCE)
Devices that establish, maintain, and terminate a data transmission connection. Normally referred to
as a modem.

data terminal equipment (DTE)
Devices acting as data source, data sink, or both.

data transfer
Transfer of information from one location to another. The speed of data transfer is measured in bits
per second (bps).

data type (I/O device)
Type of I/O device variable. I/O devices may support several data types that are used to exchange
data with . You must specify the correct data type whenever I/O device variables are defined or ref-
erenced in your system.

DB-15
Often called a `D' type connector due to the vague D shape of the casing. Has 15 pins arranged in
two rows of 8 and 7 pins. While not as common as DB-9 or DB-25 they may be found on some com-
puters and data communication equipment. Comes in both male (pins protruding) and female (pin
sockets) configurations.

Glossary

473



DB-25
Often called a `D' type connector due to the vague D shape of the casing. Has 25 pins arranged in
two rows of 13 and 12 pins. This kind of connection is a part of the standard for RS-232-D and is
found on many computers, modems and other data communication equipment. Comes in both male
(pins protruding) and female (pin sockets) configurations.

DB-9
Often called a `D' type connector due to the vague D shape of the casing. Has 9 pins arranged in two
rows of 5 and 4 pins. This kind of connection is common and is often used as the serial (com) port in
computers. Often used in modems and other data communication equipment. Comes in both male
(pins protruding) and female (pin sockets) configurations.

debug.log
The debug.log file stores information about an unexpected system shut down or other internal issues.
If an unexpected shutdown occurs, it will identify the version and path of each DLL being used at
the time.

deviation alarm
Triggered when the value of a variable deviates from a setpoint by a specified amount. The alarm
remains active until the value of the variable falls (or rises) to the value of the deadband. .

dial-back modem
Only returns calls from remote I/O devices.

dial-in modem
Only receives calls from remote I/O devices, identifies the caller, then hangs up immediately so it can
receive other calls. then returns the call using a dial-back modem.

dial-out modem
Makes calls to remote I/O devices in response to a request; e.g., scheduled, event-based, operator
request, and so on. Also returns calls from remote I/O devices.

Digiboard
A high-speed serial board manufactured by the Digiboard Corporation.

digital alarms
Triggered by a state change in a digital variable. Use these alarms when a process has only one of
two states. You can use either the on (1) state or off (0) state (of a digital variable) to trigger the alarm.

digital variable (I/O device)
Usually associated with discrete I/O in your I/O device, a digital variable can only exist in one of two
states: on (1) or off (0). Allowed values for the digital data type are therefore 0 or 1. Discrete inputs

Glossary

474



(such as limit switches, photoelectric cells, and emergency stop buttons) and discrete outputs are
stored as digital variables.

disk I/O device
A disk file that resides on the hard disk of a computer and emulates a real I/O device. The value of
each variable in the disk I/O device is stored on the computer hard disk. The disk I/O device is not
connected to any field equipment in the plant.

display period
Defines the rate at which trend data is displayed on the trend page.

distributed processing
For large applications with large amounts of data, you can distribute the data processing to reduce
the load on individual computers.

distributed servers
If your plant consists several sections or systems, you can assign a cluster to each individual section,
and then monitor all sections using one control client.Note: Don't use distributed servers to split up a
single section or process into discrete areas. A single cluster system with distributed processing
would be better used here since it would not be hampered by the maintenance overhead of a dis-
tributed server system (such as extra project compilations, and so on).

dither (imported bitmaps)
A method of approximating colors in imported or pasted bitmaps that involves combining pixels of
different or colors from a color palette.

domain name server (DNS)
Database server that translates URL names into IP addresses.

dot notation
Used for Internet addresses. Dot notation consists of four fields (called octets), each containing a dec-
imal number between 0 and 255 and separated by a full stop (.).

driver
A driver is used to communicate with control and monitoring devices, allowing the run-time system
to interact directly with different types of equipment. Communication with an I/O device requires a
device driver which implements the communication protocol(s).

driver logs
Driver logs relate to the operation of a particular driver and are named accordingly. For example, the
OPC driver is logged in 'OPC.dat'.

duplex
The ability to send and receive data over the same communication line.

Glossary

475



dynamic data exchange (DDE)
A Microsoft Windows standard protocol set of messages and guidelines that enables communication
between Windows applications on the same Windows computer.

dynamic data exchange (DDE) Server
A Windows standard communication protocol supported by . The I/O server communicates with the
DDE server using the Windows standard DDE protocol. DDE servers are appropriate when data com-
munication is not critical as DDE servers are not designed for high-speed data transfer.

E
empty value
Indicates that the variant has not yet been initialized (assigned a value). Variants that are empty
return a VarType of 0. Variables containing zero-length strings (" ") aren't empty, nor are numeric var-
iables having a value of 0.

Ethernet
Widely used type of local area network based on the CSMA/CD bus access method (IEEE 802.3).

Event data displayed by time
As an alternative to viewing event trend data by event number, it is possible to see event trends
across a timeline. When event trends are shown by time, the trend graph includes a start and end
time and enables operators to see both the time of a triggered event, and the elapsed period between
events. This data can also be displayed on the same graph as a periodic trend.

event trend/SPC
To construct an event trend/SPC, takes a sample when a particular event is triggered (in the plant).
This sample is displayed in the window. The event must then reset and trigger again, before the next
sample is taken. Events are identified by the event number. .

expression
A statement (or group of statements) that returns a value. An expression can be a single variable, a
mathematical formula, or a function.

F
Field element
The latest tag field data received from a device.

file server
A computer with a large data storage capacity dedicated to file storage and accessed by other client
computers via a network. On larger networks, the file server runs a special network operating system.
On smaller installations, the file server may run a PC operating system supplemented by peer-to-peer
networking software.

Glossary

476



full duplex
Simultaneous two-way (in both directions) independent transmission (4 Wires).

G
generic protocol
A pseudo-protocol supported by disk I/O devices that provides a convenient way to represent disk
data. The generic protocol is not a real protocol (communicates with no physical I/O device).

Genie
If you have numerous devices of the same type (e.g., 100 centrifugal pumps), the display graphics for
each will behave in much the same way. Using Genies, you only have to configure common behav-
ior once. The graphics can then be saved as a Genie and pasted once for each device.

global Cicode variable
Can be shared across all Cicode files in the system (as well as across include projects).

global client
A control client used to monitor information from several systems or sections (using clusters).

graphics bounding box
A faint (grayed) dotted rectangular box outline defining the exterior boundary region of a graphic
object. Only visible and active when the graphics object is selected and being resized. Contains sizing
handles in each corner and (if sized large enough to display) one in the centre of each side.

graphics page
A drawing (or image) that appears on a workstation to provide operators with control of a plant, and
display a visual representation of conditions within the plant.

group (of objects)
allows you to group multiple objects together. Each group has a unique set of properties, which deter-
mine the runtime behavior of the group as a whole.

H
half duplex
Transmission in either direction, but not simultaneously.

hardware alarm
A hardware alarm indicates that an error has been detected in your system. Typically displayed on a
dedicated hardware alarms page, this type of alarm may indicate that a loss of communication has
occurred, that Cicode can not execute, that a graphics page is not updating correctly, or that a server
has become inoperative. A description and error code are provided to help decipher the cause of the
problem.

Glossary

477



histogram
A bar graph that shows frequency of occurrence versus value. Quite often the data is fitted to a dis-
tribution such as a normal distribution. .

I
I/O Device
An item of equipment that communicates with plant-floor control or monitoring equipment (sensors,
controllers, and so on). The most common I/O devices are PLCs (programmable logic controllers);
however, supports a wide range of I/O devices, including loop controllers, bar code readers, scientific
analyzers, remote terminal units (RTUs), and distributed control systems (DCS). can communicate
with any I/O device that has a standard communications channel or data highway.

I/O device address
The (logical) location of the I/O device in the system. Each I/O device must have a unique address in
the system, unless the I/O device is defined in other servers (to provide redundancy). If redundancy
is used, the I/O device must then have the same I/O device name, number, and address for each
server.

I/O device variable
A unit of information used in . Variables are stored in memory registers in an I/O device. exchanges
information with an I/O device by reading and writing variables. refers to I/O device variables by
their register addresses. I/O devices usually support several types of variables; however, the most
common are digital variables and integer variables.

I/O server
A dedicated communications server that exchanges data between I/O devices and control clients. No
data processing is performed by the I/O server (except for its local display). Data is collected and
passed to the control clients for display, or to another server for further processing. All data sent to
an I/O device from any computer is also channelled through the I/O server. If data traffic is heavy,
you can use several I/O servers to balance the load.

imestamp (T)
The timestamp of when the element was last updated on a tag extension.

include file (.CII)
There is a maximum number of characters that you can type in a Command or Expression field
(usually 128). If you need to include many commands (or expressions) in a property field, you can
define a separate include file that contains commands or expressions. An include file is a separate
and individual ASCII text file containing only one sequence of commands or expressions that would
otherwise be too long or complicated to type into the command or expression field within . The
include file name is entered instead, and the whole file is activated when called.

Glossary

478



integer variable (Cicode)
A 4-byte (32-bit) data type allowing values from 2,147,483,648 to 2,147,483,647.

integer variable (I/O device)
A 2-byte data type, allowing values from -32,768 to 32,767, that is used to store numbers (such as tem-
perature or pressure). Some I/O devices also support other numeric variables, such as real (floating
point) numbers, bytes, and binary-coded decimals.

Internet Display Client
Allows you to run projects over the Internet from a remote location. It is basically a "runtime-only"
version of : you can run your project from that computer, just as you would from any normal client.

interrupt
An external event indicating that the CPU should suspend its current task to service a designated
activity.

IP address
A unique logical address used by the Internet Protocol (IP). Contains a network and host ID. The for-
mat is called dotted decimal notation, and is written in the form: w.x.y.z.

K
Kernel
The Kernel allows you to perform low-level diagnostic and debugging operations for runtime anal-
ysis of your system. A set of diagnostic windows display low-level data structures, runtime data-
bases, statistics, debug traces, network traffic, I/O device traffic and so on.

keyboard command
Consist of a key sequence that an operator enters on the keyboard, and an instruction (or series of
instructions) that executes when the key sequence is entered. Keyboard commands can be assigned to
an object or page, or they can be project-wide.

knowledge base
Provides high-level technical information beyond the scope of standard technical documentation that
is updated regularly and available at http://www.citect.com.

kurtosis
An index indicating the degree of peakedness of a frequency distribution (usually in relation to a nor-
mal distribution). Kurtosis < 3 indicates a thin distribution with a relatively high peak. Kurtosis > 3
indicates a distribution that is wide and flat topped.

Glossary

479



L
language database
When a project is compiled, creates a language database (dBASE III format) consisting of two fields:
native and local. Any text marked with a language change indicator is automatically entered in the
native field. You can then open the database and enter the translated text in the local field.

link
A copy of a library item, possessing the properties of the library original. Because it is linked, the
copy is updated whenever the original is changed.

local area network (LAN)
A system that connects computers to allow them to share information and hardware resources. With
real-time LAN communication, you can transfer data, messages, commands, status information, and
files easily between computers.

local Cicode variable
Only recognized by the function within which it is declared, and can only be used by that function.
Local variables must be declared before they can be used. Any variable defined within a function (i.e.,
after the function name) is a local variable, therefore no prefix is needed. Local variables are
destroyed when the function exits and take precedence over global and module variables.

local language
The language of the end user. Runtime display items such as alarm descriptions, button text, key-
board/alarm logs, graphic text, Cicode strings and so on can be displayed in the local language, even
though they may have been configured in the language of the developer (native language).

local variable
Local variables allow you to store data in memory when you start your runtime system. They are
created each time the system starts, and therefore do not retain their values when you shut down.

log files
Log files are a record of time-stamped system data that can be analyzed to determine the cause of a
problem. The available log files include syslog.dat, tracelog.dat, debug.log, kernel.dat, and dedicated
driver logs.

long BCD variable (I/O device)
A 4-byte (32-bit) data type, allowing values from 0 to 99,999,999. The four bytes are divided into eight
lots of four bits, with each lot of four bits representing a decimal number. For example the binary
number 0011 represents decimal 3. Thus the BCD 0011 0011 0011 0011 0011 0011 0011 0011 rep-
resents 33,333,333.

Glossary

480



long variable (I/O device)
A 4-byte (32-bit) data type allowing values from 2,147,483,648 to 2,147,483,647.

low and low low alarms
Defined by specifying the values of the variable that trigger each of these alarms. As a low alarm
must precede a low low alarm, the low alarm no longer exists when the low low alarm is triggered.
Note that the variable must rise above the deadband before the alarm becomes inactive. .

M
maximum request length
The maximum number of data bits that can be read from the I/O device in a single request. For exam-
ple, if the maximum request length is 2048 bits, the maximum number of integers that can be read is:
2048/16 = 128.

Metadata
Metadata is a list of names with corresponding values that is attached to an objects animation point.

millisecond trending
Allows you to use a trends sample period of less than one second.

mimic
A visual representation of a production system using an organised set of graphical pages. .

minimum update rate
A pre-defined period of time after which tag update value notifications are sent to subscription
clients

module Cicode variable
Specific to the file in which the variable is declared. This means that it can be used by any function
in that file, but not by functions in other files. By default, Cicode variables are defined as module,
therefore prefixing is not required (though a prefix of MODULE could be added if desired). Module
variables should be declared at the start of the file.

multi-digital alarms
Use combinations of values from three digital variables to define eight states. For each state, you spec-
ify a description (e.g., healthy or stopped), and whether or not the state triggers an alarm.

N
native language
Generally the language of the project developer. Display items such as alarm descriptions, button
text, keyboard/alarm logs, graphic text, Cicode strings and so on can be configured in the native lan-
guage, and displayed, at runtime, in the language of the end-user (local language).

Glossary

481



network
A group of computers and peripheral devices, connected through a communications link. Data and
services (e.g., printers, file servers, and modems) can be shared by computers on the network. A local
network of PCs is called a LAN.

network computer
A computer running that is connected to a LAN through a network adaptor card and network soft-
ware. .

Network Dynamic Data Exchange (NetDDE)
Enables communication between Windows applications on separate computers connected across a
common network.

nodes
A structural anchor point for a graphic object, usually visible as a small square box superimposed
over a graphic. Nodes will be located separately at the start, at the end, and at every change in direc-
tion within a graphic object. .

normal distribution
Also known as a `bell' curve, the normal distribution is the best known and widely applicable dis-
tribution. The distribution is symmetrical and popularly represents the laws of chance. 68.27% of the
area lies between -1 sigma and +1 sigma, 95.45% between -2 sigma and+2 sigma, and 99.73%
between -3 sigma and +3 sigma. The values of skewness and kurtosis are used to provide quan-
titative measures for normality. Assuming that at least 20 samples are used to construct a dis-
tribution, a good rule of thumb is to accept the data as a normal distribution when, -1.0 = skewness =
1.0 2 = kurtosis = 4.

null value
Indicates that a variant contains no valid data. Variants that are null return a VarType of 1. Null is
not the same as empty, which indicates that a variant has not yet been initialized. It is also not the
same as a zero-length string (" "), which is sometimes referred to as a null string. Null is not equiv-
alent to zero or blank. A value of null is not considered to be greater than, less than, or equivalent to
any other value, including another value of null. A boolean comparison using a null value will
return false.

O
object
Basic building blocks of a graphics page. Most objects possess properties that allow them to change
dynamically under user-definable runtime conditions allowing them to provide animated display of
conditions within the plant.

Glossary

482



object ID (OID)
An object ID associated with every tag in a project that uniquely identifies the tag for use by tag-
based drivers, automatically generated at compile. It is used instead of the actual address of the reg-
ister (which is what most other drivers use to read from and write to I/O devices).

object variable (Cicode)
An ActiveX control that can only be declared with local, module, or global scope.

open database connectivity (ODBC)
Allows applications to access data in database management systems using structured query lan-
guage (SQL) to access data.

override mode
A state where an invalid tag quality value is overridden by a manually added value.

P
pack
Packing a database re-indexes database records and deletes records marked for deletion. If you edit
your databases externally to , you should pack the database afterwards.

page environment variable
A read-only variable associated with a particular page When you make the association, you name
the variable, and assign it a value. When the page is opened during runtime, creates the variable. Its
value can then be read. When the page is closed, the environment variable memory is freed (dis-
carded).

parity
A communications error-checking procedure. The number of 1's must be the same (even or odd) for
each group of bits transmitted without error.

periodic trend
A trend that is sampled continuously at a specified period. You can also define a trigger (an event) to
stop and start the trend (when a specified condition occurs in the plant).

persistence cache
Cache data saved to a computer hard disk that allows an I/O server to be shut down and restarted
without having to re-dial each I/O device to get its current values. This cache consists of all the I/O
device's tag values.

PLC interface board
You can sometimes install a PLC interface board in your server. A proprietary interface board is
usually supplied by your PLC manufacturer, and you can connect it to a PLC or a PLC network. You
can only use proprietary interface boards with the same brand of PLC.

Glossary

483



point limit
An individual digital (or analog) variable read from an I/O device. only counts physical points (and
counts them only once, no matter how many times they are used). The point limit is the maximum
number of I/O device addresses that can be read and is specified by your license. When you run the
point count of your project is checked against the point limit specified by your Hardware Key.

port(s)
Provide the communication gateway to your I/O device(s).

primary Alarms Server
The server that normally processes alarms.

primary Reports Server
The server that normally processes reports.

primary Trends Server
The server that normally processes trends.

Privileges
Level of access applied to system elements within your project. A user assigned a role that possesses
the matching privilege can control it.

project
The elements of a monitoring and control system, such as graphics pages, objects, and so on. These
elements are stored in files of various types; for example, graphics files for graphics pages, databases
for configuration records, and so on. You use the compiler to compile the project into a runtime sys-
tem.

properties, object
Describes the appearance of an object (size, location, color, and so on.) and its function (the command
or expression executed by the object, the privilege required to gain access to the object, and so on).

protocol
Messaging format consisting of a set of messages and guidelines used for communication between
the server and an I/O device. The communication protocol determines how and the I/O device com-
municate; the type of data to exchange; rules governing communication initiation and termination;
and error detection.

proxi/proxy server
Caches internet transactions to improve performance by reducing the average transaction times by
storing query and retrieved information for re-use when the same request is made again. When an
Internet display client (IDC) connects to a proxy server, that server provides the TCP/IP addresses nec-
essary to access report server session information.

Glossary

484



PSTN
A public switched telephone network is the network of all the world's public switched telephone net-
works. It is now primarily digital and includes mobile as well as fixed telephones.

Q
qualified tag reference
Referencing tag data by using the tag name, element name and the item name.

Quality (Q)
The quality of the value of a tag extension.

QualityTimestamp (QT)
The timestamp of when the quality last changed on a tag extension

R
rate of change alarms
Triggered when the value of the variable changes faster than a specified rate. The alarm remains
active until the rate of change falls below the specified rate. Deadband does not apply to a rate of
change alarm.

real variable (Cicode)
Real (floating point) is a 4-byte (32-bit) data type allowing values from 3.4E38 to 3.4E38. Use a real
variable to store numbers that contain a decimal place.

real variable (I/O device)
Real (floating point) is a 4-byte (32-bit) data type, allowing values from 3.4E38 to 3.4E38. Use a real
variable to store numbers that contain a decimal place.

record name
Usually the primary property of a database record, referenced in system through its name. Database
record names must be unique for each type of database record. Sometimes you can use identical
names for different record types. However, to avoid confusion, you should use a unique name for
each database record in your application.When you specify a name for a database record, the name
must begin with an alphabetic character (A-Z, a-z) and cn only include alphanumeric characters (A-
Z, a-z, 0-9) and the underscore character (_). For example, "Pressure," "Motor_10," and "SV122_Open"
are all valid database record names. Each database record name can contain up to 16 char-
acters.Database record names are not case-sensitive, so "MOTOR_1," "Motor_1" and "motor_1" are all
identical database record names. For this reason use a meaningful name for any database record as
well as the necessary naming conventions.

Glossary

485



redundancy
A method of using the hardware in a system such that if one component in the system becomes
inoperative, control of the system is maintained, and no data is lost.

remote communications
Interaction between two computers through a modem and telephone line.

remote terminal
A terminal remote from the computer that controls it. The computer and remote terminal com-
municate via a modem and telephone line.

report
A statement or account of plant-floor conditions. reports can be requested when required, on a peri-
odic basis, or when an event occurs.

report format file
Controls the layout and content of reports. The format file is edited using a text editor and can be in
either ASCII or RTF format.

Reports Server
Controls report processing. You can request reports at any time or when specific events occur.

reserved words
Words that cannot be used as a name for any database record or Cicode function.

RJ11
A type of IDC plug commonly used in data communications. Recognizable as the style of data plug
used in phone line and handset connectors. RJ11 is a 6/4 plug with 6 contacts but only 4 loaded.

RJ12
A type of IDC plug commonly used in data communications. Recognizable as the style of data plug
used in phone line and handset connectors. RJ12 is a 6/6 plug with 6 contacts.

RJ45
A type of IDC plug commonly used in data communications. Recognizable as the style of data plug
used in phone line and handset connectors. RJ45 is often used with 10baseT and is an 6/8 plug with
8 contacts.

Roles
A defined set of permissions (privileges and areas) that are assigned to users.

RS-232
An industry standard for serial communication. The standard specifies the lines and signal char-
acteristics that are used to control the serial transfer of data between devices.

Glossary

486



RS-422
An industry standard for serial communication. The standard specifies the lines and signal char-
acteristics that are used to control the serial transfer of data between devices. RS-422 uses balanced
voltage interface circuits.

RS-485
An industry standard for serial communication. The standard specifies the lines and signal char-
acteristics that are used to control the serial transfer of data between devices. RS-485 uses balanced
voltage interface circuits in multi-point systems.

runtime system
The system that controls and monitors your application, process, or plant. The runtime system is
sometimes called the Man-Machine Interface (MMI), and is compiled from a project.

S
scalable architecture
A system architecture that can be resized without having to modify existing system hardware or soft-
ware. lets you re-allocate tasks as more computers are added, as well as distribute the processing
load.

schedule period
Determines how often the I/O server contacts a scheduled I/O device to read data from it. .

serial communication
Uses the communication port on your computer or a high speed serial board (or boards) installed
inside your computer.

server
A computer connected to an I/O device (or number of I/O devices). When is running, the server
exchanges data with the I/O device(s) and distributes information to the other control clients as
required. A local area network (LAN) computer that perform processing tasks or makes resources
available to other client computers. In , client-server architecture distributes processing tasks to opti-
mize performance.

simplex transmission
Data transmission in one direction only.

skewness
An index indicating the degree of asymmetry of a frequency distribution (usually in relation to a nor-
mal distribution). When a distribution is skewed to the left (for example), then the tail is extended on
that side, and there is more data on the left side of the graph than would be expected from a normal

Glossary

487



distribution. Positive skew indicates the distribution's mean (and tail) is skewed to the right. Neg-
ative skew indicates the distribution's mean (and tail) is skewed to the left.

slider control
Allow an operator to change the value of an analog variable by dragging an object (or group) on the
graphics page. Sliders also move automatically to reflect the value of the variable tag.

soft PLC
A pure software (virtual) PLC created by software and existing only within the computer memory.
Usually provides a software interface for communication (READ and WRITE) operations to take
place with the soft PLC. Also known as a `virtual field unit' or `virtual I/O device'.

software protection
uses a hardware key that plugs into the printer port of your computer to protect against license
infringement. The hardware key contains the details of your user license. When you run , the point
count in your project is checked against the point limit specified in the hardware key.

staleness period
Represents the total number of seconds that will elapse after the last update before extended quality
of the tag element is set to “Stale”.

standby Alarms Server
The Server that processes alarms if the primary alarms server is unavailable.

standby Reports Server
The server that processes reports if the primary reports server is unavailable.

standby Trends Server
The server that processes trends if the primary trends server is unavailable.

stop bits
The number of bits that signals the end of a character in asynchronous transmission. The number is
usually 1 or 2. Stop bits are required in asynchronous transmissions because the irregular time gaps
between transmitted characters makes it impossible for the server or I/O device to determine when
the next character should arrive.

substatus value
The underlying details of a QUALITY tag.

Substitution
A Super Genie substitution is comprised of the data type (optional) and association that you use to
define an object or group of object’s properties when creating a Super Genie.

Glossary

488



Super Genies
Dynamic pages (usually pop-ups), to which you pass information when the page displays at run-
time. You can use Super Genies for pop-up type controllers (to control a process, or a single piece of
plant floor equipment).

symbol
An object (or group of objects) stored in a library for later retrieval and use. By storing common
objects in a library, you reduce the amount of disk space required to store your project, and reduce the
amount of memory required by the run-time system.

syslog.dat
Syslog.dat is the primary log file. It contains useful system information, from low-level driver traffic
and Kernel messages, to user defined messages. Trace options (except some CTAPI traces) are sent to
this file.

T
tag extension
Additional information for a tag that represents data as a collection of elements, and a collection of
items in a tag.

task
Includes operations such as I/O processing, alarm processing, display management, and Cicode
execution. Any individual `instance' of Cicode is also a `task'.

template
A base drawing or time-saving pattern used to shape a graphics page. Each template contains base
information for the page, such as borders and common control buttons. provides templates for all
common page types.

text box
When text is added to a graphics page, it is placed in a text box. A text box has a number of handles,
which can be used to manipulate the text object.

thread
Used to manage simultaneous execution of tasks in multitasking operating systems, enabling the
operating system to determine priorities and schedule CPU access.

timeout
The period of time during which a task must be completed. If the timeout period is reached before a
task completes, the task is terminated.

Glossary

489



time-stamped alarms
An alarm triggered by a state change in a digital variable. Time-stamped alarms have an associated
register in the I/O device to record the exact time when the alarm changes to active. Use time-
stamped alarms when you need to know the exact order in which alarms occur.

time-stamped analog alarms
Time stamped analog alarms work in the same way as analog alarms except that they are time
stamped (with the Alarm On and Alarm Off times) using millisecond precision from the time kept by
the field device (i.e. the RTU or PLC). The configuration details for time stamped analog alarms are
exactly the same as for analog alarms.

time-stamped digital alarms
Time stamped digital alarms work in the same way as digital alarms except that they are time
stamped (with the Alarm On and Alarm Off times) using millisecond precision from the time kept by
the field device (i.e. the RTU or PLC). The configuration details for time stamped digital alarms are
exactly the same as for digital alarms.

tool tip
A help message that displays in a pop-up window when an operator holds the mouse stationary
over an object.

touch (object at runtime)
An object is considered touched if an operator clicks it.

Touch command
Can be assigned to objects on graphics pages. Touch commands allow you to send commands to the
runtime system by clicking an object.

tracelog.dat
The tracelog.dat file contains managed code logging, mainly in relation to data subscriptions and
updates. Note that field traces and requests to native drivers go to the syslog.dat or a specific driver
log file.

trend
A graphical representation of the changing values of a plant-floor variable (or expression), or a
number of variables. .

trend line
The actual line on a trend that represents the changing values of a plant-floor variable (or expres-
sion). .

trend plot
Consists of a trend (or a number of trends), a title, a comment, scales, times and so on.

Glossary

490



Trends Server
Controls the accumulation and logging of trend information. This information provides a current and
historical view of the plant, and can be processed for display on a graphics page or printed in a
report.

U
UAC
User Account Control. Security technology introduced in Windows Vista to enable users to run with
standard user rights more easily. .

unqualified tag reference
Reference to tag data by using only the tag name.

unsigned integer variable (I/O device)
A 2-byte (16 bit) data type, representing an integer range from 0 to 65,535. This is supported for all
I/O devices that can use INT types. This means you can define any integer variable as an unsigned
integer to increase the positive range.

Users
A person or group of persons that require access to the runtime system

V
Valid element
The last field data which had “Good” quality in a tag extension.

Value (V)
The value of the extension of a tag.

ValueTimestamp (VT)
The timestamp of when the value last changed on a tag extension

variable type (Cicode)
The type of the variable (INT (32 bits), REAL (32 bits), STRING (256 bytes), OBJECT (32 bits)).

view-only client
A computer configured with manager-only access to the runtime system. No control of the system is
possible, but full access to data monitoring is permitted.

virtual
Behavioral identification rather than a physical one. For example, Windows 95 is a virtual desktop.

Glossary

491



W
wizard
A facility that simplifies an otherwise complex procedure by presenting the procedure as a series of
simple steps.

Glossary

492



Index

A
alarm display fields 70
alarm summary fields 73
AlmQuery CtAPI function 147
Animation Point (AN) 27
ANs, reserved 27
ANSI character codes 58
array support 101
ASCII character codes 58
B
bit shifting 101
C
character codes 58
character sets

predefined 35
Cicode files, predefined 39
CitectSCADA API 97
color codes, predefined 40
color names, predefined 40
command fields 75
commands

predefined 32
comments in citect.ini 22
configuring

parameters 11
CSV_Alarms_Ack function 162
CSV_Alarms_AckHardware function 162
CSV_Alarms_AckPage function 162
CSV_Alarms_AckRec function 163
CSV_Alarms_AdvFilter function 163
CSV_Alarms_AdvFilterConfig function 164
CSV_Alarms_AdvFilterQuery function 164
CSV_Alarms_AdvFilterSetDateTime function 165
CSV_Alarms_CheckSound function 166
CSV_Alarms_ClearGroupFilter function 167
CSV_Alarms_Disable function 167
CSV_Alarms_DisableRec function 167
CSV_Alarms_DspGroupFilter function 168

Index

493



CSV_Alarms_DspGroupList function 168
CSV_Alarms_DspInfo function 169
CSV_Alarms_DspInfoRec function 169
CSV_Alarms_DspLast function 169
CSV_Alarms_Enable function 170
CSV_Alarms_EnableRec function 170
CSV_Alarms_GetAckPrivilege() function 171
CSV_Alarms_GetDisablePrivilege() function 171
CSV_Alarms_GetGroupFilter function 171
CSV_Alarms_GetGroupFilterID function 172
CSV_Alarms_GetUniqueGroupName function 172
CSV_Alarms_GroupAdd function 173
CSV_Alarms_GroupConfig() function 173
CSV_Alarms_GroupEdit function 174
CSV_Alarms_GroupFilter function 175
CSV_Alarms_GroupRemove function 174
CSV_Alarms_GroupSelect function 176
CSV_Alarms_GroupsInit() function 176
CSV_Alarms_Help function 177
CSV_Alarms_HelpRec function 177
CSV_Alarms_ListHeading function 177
CSV_Alarms_ListHeadingFont() function 178
CSV_Alarms_PopupMenu function 178
CSV_Alarms_Silence() function 179
CSV_Alarms_Sound() function 179
CSV_Alarms_SoundActive() function 179
CSV_DB_BOF function 179
CSV_DB_Close function 180
CSV_DB_EOF() function 180
CSV_DB_Execute function 180
CSV_DB_GetExecuteError function 182
CSV_DB_GetFieldCount function 182
CSV_DB_GetFieldIndex function 182
CSV_DB_GetFieldName function 183
CSV_DB_GetFieldText function 183
CSV_DB_GetRowCount function 184
CSV_DB_GetRowCurrent function 184
CSV_DB_GetRowFieldText function 184
CSV_DB_MoveFirst function 184
CSV_DB_MoveLast function 185
CSV_DB_MoveNext function 185
CSV_DB_MoveOffset function 185
CSV_DB_MovePrev function 185
CSV_DB_StandbyConnectionActive function 186

Index

494



CSV_DB_StrToSQL function 186
CSV_Display_Logo function 187
CSV_Display_ServicePack() function 187
CSV_Display_Title() function 187
CSV_Display_Version() function 187
CSV_File_Display function 187
CSV_File_Print function 188
CSV_File_Save function 189
CSV_Form_Centre function 189
CSV_Form_Login() function 189
CSV_Form_NumPad function 189
CSV_Form_Position function 190
CSV_Form_Shutdown() function 191
CSV_Form_UserCreate() function 191
CSV_Form_UserPassword() function 191
CSV_Include citect.ini parameters 157
CSV_Include functions 157
CSV_ListBox_AddItem function 191
CSV_ListBox_Clear function 192
CSV_ListBox_Create() function 192-193
CSV_ListBox_Destroy function 193
CSV_ListBox_GetCategory function 193
CSV_ListBox_GetItem function 194
CSV_ListBox_GetItemID function 194
CSV_ListBox_GetSelectedItem function 194
CSV_ListBox_GetSelectedItemCategory function 195
CSV_ListBox_GetSelectedItemID function 195
CSV_ListBox_GetTagComment function 195
CSV_ListBox_GetTagDescFromTag function 196
CSV_ListBox_GetTagName function 196
CSV_ListBox_GetTrendDescFromTag() function 196
CSV_ListBox_Hide function 197
CSV_ListBox_RemoveItem function 197
CSV_ListBox_SelectCategories function 198
CSV_ListBox_SelectTags() function 198
CSV_ListBox_SelectTrends() function 198
CSV_ListBox_SetText function 198
CSV_ListBox_Show function 199
CSV_ListBox_TagFormat function 200
CSV_ListBox_Visible function 200
CSV_Math_RoundDown function 200
CSV_Math_Truncate function 201
CSV_MenuConfig_Close() function 201
CSV_MenuConfig_Display() function 201

Index

495



CSV_MenuConfig_LoadDflt() function 202
CSV_MenuConfig_UserPages() function 202
CSV_MessageBox function 202
CSV_Misc_CheckNumPadValue function 204
CSV_Misc_IntRange function 205
CSV_Misc_MouseOver function 205
CSV_MM_BackEmpty() function 206
CSV_MM_ConfigInit() function 206
CSV_MM_FwdEmpty() function 206
CSV_MM_GetMonitor() function 207
CSV_MM_GetMonitors() function 207
CSV_MM_GetMouseX function 207
CSV_MM_GetMouseY function 207
CSV_MM_GetOffset function 208
CSV_MM_GetScreenWidth() function 208
CSV_MM_ListLastPages function 208
CSV_MM_MonitorFromPoint function 208
CSV_MM_MonitorFromWindow function 209
CSV_MM_MonitorGoto function 209
CSV_MM_NextEmpty() function 209
CSV_MM_PageDisplay function 210
CSV_MM_PageLast function 210
CSV_MM_PageNext() function 211
CSV_MM_PagePrev() function 211
CSV_MM_PagesInit() function 211
CSV_MM_PreviousEmpty() function 211
CSV_MM_StoreLastPage function 212
CSV_MM_WinDrag() function 212
CSV_MM_WinDragEnd() function 212
CSV_MM_WinFree() function 213
CSV_MM_WinNewAt function 213
CSV_MM_WinPopup function 213
CSV_MM_WinTitle function 214
CSV_Nav_Alarms() function 214
CSV_Nav_AlarmsDisabled() function 215
CSV_Nav_AlarmsHardware() function 215
CSV_Nav_AlarmsSummary() function 215
CSV_Nav_CloseWindow() function 215
CSV_Nav_DisableMenuItem function 216
CSV_Nav_DisplayMenuBar function 216
CSV_Nav_DisplayPopupMenu function 217
CSV_Nav_File function 217
CSV_Nav_GetEngToolsPrivilege() function 218
CSV_Nav_Help() function 218

Index

496



CSV_Nav_Home() function 218
CSV_Nav_Login() function 219
CSV_Nav_LoginMenu() function 219
CSV_Nav_MenuBar_MenuClick function 219
CSV_Nav_Network() function 219
CSV_Nav_NetworkBtnEnabled() function 220
CSV_Nav_PageExists function 220
CSV_Nav_PagePrint() function 220
CSV_Nav_Parent() function 220
CSV_Nav_ParentBtnEnabled() function 221
CSV_Nav_Report() function 221
CSV_Nav_ReportBtnEnabled() function 221
CSV_Nav_ReportMenu function 221
CSV_Nav_TickMenuItem function 223
CSV_Nav_Tools() function 222
CSV_Nav_ToolsBtnEnabled() function 222
CSV_Nav_ToolsMenu() function 222
CSV_Nav_Trend() function 222
CSV_Nav_TrendBtnEnabled() function 222
CSV_Nav_TrendMenu() function 223
CSV_Nav_TrendX() function 223
CSV_Sec_ShowLoginMenu function 224
CSV_String_GetField function 224
CSV_String_GetLines function 225
CSV_String_Replace function 225
CSV_Tag_Debug function 226
CSV_Trend_AutoScale function 226
CSV_Trend_DspGroup function 226
CSV_Trend_DspGroupList function 227
CSV_Trend_DspPopupMenu function 228
CSV_Trend_DspScaleRange function 228
CSV_Trend_DspTrendText function 228
CSV_Trend_GetCursorPos function 229
CSV_Trend_GetCursorTypeStr function 229
CSV_Trend_GetCursorValueStr function 229
CSV_Trend_GetDate function 234
CSV_Trend_GetGroup function 230
CSV_Trend_GetMode function 230
CSV_Trend_GetPen function 231
CSV_Trend_GetPenFocus function 231
CSV_Trend_GetSettings function 231
CSV_Trend_GetSpan function 233
CSV_Trend_GetTime function 233
CSV_Trend_GroupConfig() function 234

Index

497



CSV_Trend_Page function 234
CSV_Trend_Popup function 235
CSV_Trend_ScaleDigital function 236
CSV_Trend_SelectGroup function 236
CSV_Trend_SelectPen function 237
CSV_Trend_SetCursor function 237
CSV_Trend_SetDate function 238
CSV_Trend_SetDateTime function 238
CSV_Trend_SetPens function 238
CSV_Trend_SetRange function 239
CSV_Trend_SetScale function 239
CSV_Trend_SetSpan function 239
CSV_Trend_SetTime function 240
CSV_Trend_SetTimebase function 240
CSV_Trend_UpdatePens function 241
CSV_Trend_Win function 241
CSV_TrendX_AddVariable function 242
CSV_TrendX_AgeTrends() function 243
CSV_TrendX_ClearTrend function 243
CSV_TrendX_Close function 244
CSV_TrendX_DeletePen() function 244
CSV_TrendX_Display() function 244
CSV_TrendX_DspPopupMenu function 244
CSV_TrendX_GenericToTagStr function 245
CSV_TrendX_GetComment function 246
CSV_TrendX_GetDuration() function 246
CSV_TrendX_GetSamplePeriod function 246
CSV_TrendX_GetScale function 247
CSV_TrendX_GetTrendName function 247
CSV_TrendX_GetTrigger function 248
CSV_TrendX_GetVal function 248
CSV_TrendX_InitClient() function 248
CSV_TrendX_InitSrvr() function 249
CSV_TrendX_MapTrendTags() function 249
CSV_TrendX_RefreshTrendPage function 249
CSV_TrendX_SetDuration function 249-250
CSV_TrendX_SetPen() function 250
CSV_TrendX_SetSamplePeriod function 250
CSV_TrendX_SetScale function 251
CSV_TrendX_TagSelect function 251
CSV_TrendX_TagSelectFrmCursor() function 252
CSV_TrendX_TagToGeneric function 252
CSV_TrendX_TrendTimeout function 252
CSV_WinUtl_DestroyCursor() function 253

Index

498



CSV_WinUtl_GetColourRes() function 253
CSV_WinUtl_GetCpuUsage function 253
CSV_WinUtl_GetSystemDir() function 253
CSV_WinUtl_GetTotalCpuUsage() function 253
CSV_WinUtl_GetWindowsDir() function 254
CSV_WinUtl_GetWinMode() function 254
CSV_WinUtl_LoadCursor function 254
CSV_WinUtl_LockWindowUpdate function 254
CSV_WinUtl_NormalCursor function 255
CSV_WinUtl_ShellExec function 255
CSV_WinUtl_UpdateTotalCpuUsage() function 257
CSV_WinUtl_WaitCursor function 257
CtAPI error codes 101
CtAPIAlarm CtAPI function 154
CtAPITrend CtAPI function 155
ctCancelIO CtAPI function 106
CtCicode CtAPI function 107
ctClientCreate CtAPI function 109
CtClientDestroy CtAPI function 110
ctClose CtAPI function 111
ctCloseEx CtAPI function 112
ctEngToRaw CtAPI function 113
ctFindClose CtAPI function 114
ctFindFirst CtAPI function 115
ctFindFirstEx CtAPI function 118
ctFindNext CtAPI function 121
ctFindPrev CtAPI function 122
ctFindScroll CtAPI function 123
ctGetOverlappedResult CtAPI function 125
ctGetProperty CtAPI function 127
ctHasOverlappedIoCompleted CtAPI function 129
ctListAdd CtAPI function 130
ctListAddEx CtAPI function 131
ctListDelete CtAPI function 132
ctListEvent CtAPI function 133
ctListFree CtAPI function 134
ctListRead CtAPI function 135
ctOpen CtAPI function 137
CtOpenEx CtAPI function 139
ctRawToEng CtAPI function 140
ctStrToPoint CtAPI function 144
ctTagGetProperty CtAPI function 141
ctTagRead CtAPI function 100, 144
ctTagToPoint CtAPI function 145

Index

499



ctTagWrite CtAPI function 145
ctTagWriteEx CtAPI function 146
D
data

reading using CtAPI 100
debug tracing 103
devices

predefined 38
driver errors, standard 91
drivers

generic errors 84
E
errors 77

generic driver 84
F
fields

alarm display 70
alarm summary 73
command 75

files
Cicode, predefined 39

fonts
predefined 36

G
generic driver errors 84
generic errors 77
Graphics Builder

automation 259
error handling 260
function categories 262

Graphics Builder automation interface functions
arrange and position functions 264
Attribute3dEffectDepth 345
Attribute3dEffects 344
AttributeAN 346
AttributeBaseCoordinates 347
AttributeClass 348
AttributeCornerRadius 348
AttributeEllipseStyle 349
AttributeEndAngle 350
AttributeExtentX 351
AttributeExtentY 352
AttributeFillColour 352

Index

500



AttributeFillOffColourEx 353
AttributeFillOnColourEx 354
AttributeGradientMode 355
AttributeGradientOffColour 356
AttributeGradientOnColour 356
AttributeHiLightColour 357
AttributeHiLightOffColourEx 358
AttributeHiLightOnColourEx 359
AttributeLineColour 360
AttributeLineOffColourEx 361
AttributeLineOnColourEx 362
AttributeLineStyle 363
AttributeLineWidth 364
AttributeLoLightColour 365
AttributeLoLightOffColourEx 366
AttributeLoLightOnColourEx 367
AttributeNodeCoordinatesFirst 368
AttributeNodeCoordinatesNext 368
AttributePolygonOpen 369
AttributeRectangleStyle 370
AttributeSetFill 371
AttributeShadowColour 372
AttributeShadowOffColourEx 373
AttributeShadowOnColourEx 374
AttributeStartAngle 375
AttributeText 452
AttributeTextColour 453
AttributeTextFont 456
AttributeTextFontSize 457
AttributeTextJustification 458
AttributeTextOffColourEx 454
AttributeTextOnColourEx 455
AttributeTextStyle 459
AttributeTransformationMatrixGet 376
AttributeTransformationMatrixPut 377
AttributeX 378
AttributeY 379
automation events 262
BrokenLink 270
BrokenLinkCancelEnabled 337
ClipboardCopy 338
ClipboardCut 338
ClipboardPaste 339
ConvertToBitmap 339

Index

501



DrawButton 379
DrawCicodeObject 380
DrawEllipse 381
DrawLine 382
DrawNumber 383
DrawPipeEnd 384
DrawPipeSection 384
DrawPipeStart 385
DrawPolygonEnd 386
DrawPolygonLine 387
DrawPolygonStart 387
DrawRectangle 388
DrawSymbolSet 389
DrawText 390
DrawTrend 391
dynamic properties functions 273
events functions 270
library functions 321
LibraryObjectFirstProperty 322
LibraryObjectFirstPropertyEx 323
LibraryObjectHotspotGet 324
LibraryObjectHotspotPut 325
LibraryObjectName 325
LibraryObjectNextProperty 326
LibraryObjectNextPropertyEx 327
LibraryObjectPlace 328
LibraryObjectPlaceEx 329
LibraryObjectPutProperty 330
LibraryShowPasteDialog 331
LibSelectionHooksEnabled 331
miscellaneous functions 337
object drawing and property functions 340
OptionDisplayPropertiesOnNew 392
options functions 392
OptionSnapToGrid 393
OptionSnapToGuidelines 393
page functions 394
page properties functions 421
PageActiveWindowHandle 396
PageAppearanceGet 423-424
PageAppearanceGetEx 425
PageArea 426
PageAssociationDefault 427
PageAssociationDescription 428

Index

502



PageAssociationName 428
PageAssociationValueOnError 428
PageClose 397
PageClusterInherit 429
PageClusterName 430
PageConvertWindowCoordinates 398
PageDelete 398
PageDeleteAssociation 430
PageDeleteEx 399
PageDeleteObject 400
PageDeleteTemplate 400
PageDescription 431
PageEnvironmentAdd 432
PageEnvironmentFirst 432
PageEnvironmentNext 433
PageEnvironmentremove 434
PageGroupSelectedObjects 401
PageImport 402
PageLogDevice 434
PageName 435
PageNew 402
PageNewEx 403
PageNewLibrary 404
PageNewTemplate 405
PageNext 437
PageOpen 406
PageOpenEx 407
PageOpenTemplate 408
PagePrevious 437
PagePrint 409
PageSave 409
PageSaveAs 410
PageSaveAsEx 411
PageScanTime 438
PageSelect 411
PageSelectAssociationByName 439
PageSelectFirst 412
PageSelectFirstAssociation 439
PageSelectFirstObject 413
PageSelectFirstObjectEx 413
PageSelectFirstObjectInGenie 414
PageSelectFirstObjectInGroup 414
PageSelectNext 415
PageSelectNextAssociation 440

Index

503



PageSelectNextObject 415
PageSelectNextObjectEx 416
PageSelectNextObjectInGenie 416
PageSelectNextObjectInGroup 417
PageSelectObject 417
PageSelectObjectAdd 418
PageTemplateSelectFirstObject 418
PageTemplateSelectNextObject 419
PageThumbnailToClipboard 420
PageTitle 440
PageUngroupSelectedObject 420
PageUpdated 421
PasteGenie 271
PasteSymbol 271
PositionAt 264
PositionBringForwards 265
PositionBringToFront 266
PositionMirrorHorizontal 266
PositionMirrorVertical 267
PositionRotate 268
PositionSendBackwards 268
PositionSendToBack 269
project functions 441
ProjectChange 271
ProjectCompile 442
ProjectFirst 443
ProjectFirstInclude 444
ProjectNext 444
ProjectNextInclude 445
ProjectPackDatabase 446
ProjectPackLibraries 447
ProjectSelected 448
ProjectUpdatePages 449
ProjectUpgrade 450
ProjectUpgradeAll 451
PropertiesAccessDisableGet 277
PropertiesAccessDisablePut 277
PropertiesAccessGeneralGet 278
PropertiesAccessGeneralPut 279
PropertiesButtonGet 280
PropertiesButtonPut 281
PropertiesCicodeObjectGet 282
PropertiesCicodeObjectPut 282
PropertiesDeleteMetadata 333

Index

504



PropertiesDisplayValueGet 283
PropertiesDisplayValuePut 284
PropertiesDisplayValueTextGet 285
PropertiesDisplayValueTextPut 286
PropertiesFillColourColourGet 287
PropertiesFillColourColourGetEx 288
PropertiesFillColourColourPut 289
PropertiesFillColourColourPutEx 290
PropertiesFillColourGet 291
PropertiesFillColourPut 292
PropertiesFillLevelGet 293
PropertiesFillLevelGetEx 295
PropertiesFillLevelPut 296
PropertiesFillLevelPutEx 297
PropertiesInputKeyboardGet 298
PropertiesInputKeyboardPut 299
PropertiesInputTouchGet 300
PropertiesInputTouchPut 301
PropertiesMetadataName 334
PropertiesMetadataValue 334
PropertiesSelectFirstMetadata 335
PropertiesSelectMetadataByName 335
PropertiesSelectNextMetadata 336
PropertiesShowDialog 302
PropertiesSymbolSetGet 302
PropertiesSymbolSetPut 303
PropertiesSymbolSetSymbolGet 305
PropertiesSymbolSetSymbolPut 306
PropertiesTransCentreOffsetExpressGet 307
PropertiesTransCentreOffsetExpressPut 308
PropertiesTransformationGet 309
PropertiesTransformationPut 311
PropertiesTrendGet 312
PropertiesTrendGetEx 314
PropertiesTrendPut 316
PropertiesTrendPutEx 318
PropertyVisibility 320
Quit 339
Selection 272
SelectionEventEnabled 339
specific functions 272
SwapObject 272
text property functions 451
UnLockObject 340

Index

505



Visible 273
graphics specifications 24
I
I/O Device data type specifications 26
I/O point count 98
K
keyboard key codes, predefined 41
keyboard keys, predefined 33
L
labels

predefined 50
list functions 100
N
network

using parameters on 12
P
parameters 11

on networks 12
Parameters dialog box 13
predefined

character sets 35
Cicode files 39
color codes and names 40
commands 32
devices 38
fonts 36
keyboard key codes 41
keyboard keys 33
labels 50

predefined templates 29
projects specifications 24
PropertiesAddMetadata 332
protocol generic errors 77
R
reserved ANs 27
S
specifications

graphics 24
I/O Device data types 26
projects 24

standard driver errors 91
SV_Form_UserEdit() function 191

Index

506



SV_Trend_GetSettings function 232
SV_TrendX_GenericToTag function 245
SV_TrendX_GetCursor function 246
synchronous operation, API 98
system commands (predefined) 32
T
tag functions 100
templates

predefined 29
TrnQuery CtAPI function 150

Index

507



Index

508


	Legal Notice
	Contents
	Safety Information
	Technical Reference
	Chapter: 1 Parameters
	Rules for using parameters
	Using parameters on a network
	Parameters Dialog
	Parameter Properties


	Chapter: 2 Configuration Parameters
	Parameter Syntax
	Setting Parameter Values
	Parameter Precedence
	Hierarchical Parameters
	Comments in Citect.ini

	Chapter: 3 Reference Information
	Specifications
	Graphics
	I/O Device data types
	Reserved ANs
	Predefined Templates
	Predefined Commands
	Predefined Character Sets
	Predefined Fonts
	Predefined Devices
	Predefined Cicode Files
	Predefined Color Names and Codes
	Predefined Keyboard Key Codes
	Predefined Labels
	ASCII/ANSI Character Code Listings

	Format Fields
	Alarm display fields
	Alarm summary fields

	Using Command Fields
	Error Messages
	Protocol Generic Errors
	Generic driver errors
	Protocol-Specific Errors
	Standard driver errors


	Chapter: 4 CtAPI Functions
	I/O Point Count
	CtAPI Synchronous Operation
	Reading Data Using the CTAPI Functions
	I/O tags interface
	The Tag functions
	List functions
	Array support
	Bit shifting when reading digital arrays

	CTAPI from CitectSCADA or CitectSCADA Driver
	Error Codes
	Debug Tracing
	Function Reference

	Chapter: 5 CSV_Include Reference
	CSV_Include Parameters
	CSV_Include Functions

	Chapter: 6 Graphics Builder Automation Interface
	Error Handling
	Automation Events
	Function Categories
	Arrange and Position Functions
	Events Functions
	PasteGenie
	PasteSymbol

	Specific Functions
	Visible

	Dynamic Properties Functions
	PropertiesInputTouchGet
	PropertiesInputTouchPut
	PropertiesShowDialog
	PropertiesSymbolSetGet
	PropertiesSymbolSetPut
	PropertiesSymbolSetSymbolGet
	PropertiesSymbolSetSymbolPut
	PropertiesTransCentreOffsetExpressGet
	PropertiesTransCentreOffsetExpressPut
	PropertiesTransformationGet
	PropertiesTransformationPut

	Library Object Functions
	Metadata Functions
	Miscellaneous Functions
	Object Drawing and Property Functions
	Options Functions
	Page Functions
	Page Properties Functions
	Project Functions
	Text Property Functions

	Chapter: 7 Frequently Asked Questions
	Pages
	Graphics
	Runtime
	Trends
	Controls
	Alarms
	Miscellaneous

	Glossary
	Index


