Append/Hflush/Read Design

Hairong Kuang, Konstantin Shvachko, Nicholas Sze, Sanjay Radia, Robert Chansler
Yahoo! HDFS team
08/06/2009

1. Design challenges
With hflush, HDFS needs to make the last block of an unclosed file visible to readers.
This presents two challenges:

1. Read consistency. At a given time different replicas of the last block may have
different number of bytes. What read consistency should HDFS provide and
how to guarantee the consistency even in case of failures.

2. Data durability. When any error occurs, the recovery cannot simply throw
the last block away. Instead the recovery needs to preserve at least the
hflushed bytes while maintaining the read consistency.

2. Replica/Block States

This document will call a block at a DataNode a replica to differentiate it from a
block at the NameNode.

2.1.Need for new states

Pre-append/hflush a replica at a DataNode is either finalized or temporary.
When a replica is first created, it is in the temporary state on DataNode. A
temporary replica becomes finalized upon the close request of a client when no
more byte will be written to this replica. On a DataNode restart, temporary
replicas are removed. This is acceptable pre-append/hflush because HDFS
provides best effort durability for under-construction blocks. This is not
acceptable after append/hflush are supported. HDFS needs to support strong
durability for under-construction blocks that contain pre-append data and best
effort durability for hflushed data. So some temporary replicas need to be
preserved across DataNode restarts.

2.2.Replica states (DataNode)

At a DataNode, this design introduces a replica being written (rbw) state and
other states for handling errors. In a DataNode’s memory, a replica could be in
any of the following state:

Finalized: A finalized replica has finalized its bytes. No new byte will be written
to this replica unless it is reopened for append. Its data and meta data match.
The other replicas of the same block id have the same bytes as this replica. But
the generation stamp (GS) of a finalized replica does not remain constant. [t may
be bumped up as a result of error recovery.

Rbw (Replica Being Written to): Once a replica is created or appended, it is in the
rbw state. Bytes are being written to this replica. It is always a replica of the last
block of an unclosed file. Its length is not finalized yet. Its on-disk data and meta
data may not match. Other replicas of the same block id may have more or less
bytes than this one. Bytes (may not all) in an rbw replica are visible to readers.
In case of any failure, bytes in an rbw replica will try to be preserved.

Rwr (Replica Waiting to be Recovered): If a DataNode dies and restarts, all its
rbw replicas change to be in the rwr state. Rwr replicas will not be in any
pipeline and therefore will not receive any new bytes. They will either become
outdated or will participate in a lease recovery if the client also dies.

rur (Replica Under Recovery): A replica changes to be in the rur state when a
replica recovery starts as a result of lease expiration. More details will be
discussed in the lease recovery section.

Temporary: a temporary replica is also a replica under construction but is
created for the purpose of block replication or cluster balancing. It shares many
of the properties as an rbw replica, but its data are invisible to any reader. If the

replica construction fails or its DataNode restarts, a temporary replica will be
deleted.

On a DataNode’s disk, each data directory will have three subdirectories: current
contains finalized replicas, tmp contains temporary replicas, rbw contains rbw,
rwr, and rur replicas. When a replica is first created by a request from a DFS
client, it is put in the rbw directory. When a replica is first created for the
purpose of replication or cluster balancing, it is put in the tmp directory. Once a
replica is finalized, it is moved to the current directory. When a DataNode
restarts, the replicas in the tmp directory are removed, the replicas in the rbw
directory are loaded as rwr replicas, and the replicas in the current directory are
loaded as finalized replicas.

During DataNode upgrade, all replicas in directories current and rbw need to be
kept in a snapshot.

NameNode also introduces many new states for a block. A block could be in any
of the following state:

UnderConstruction: Once a block is created or appended, it is in the
UnderConstruction state. Bytes are being written to this block. It is the last block
of an unclosed file. Its length and GS has not finalized yet. Data (may not all) in a
block under construction are visible to readers. A block under construction
keeps track of its write pipeline (i.e., locations of valid rbw replicas) and the
locations of its rwr replicas if the client dies.

UnderRecovery: When a file’s lease expires, if the last block is UnderConstruction,
it is changed to be UnderRecovery state once block recovery starts.

Committed: A committed block has finalized its bytes and generation stamp (GS),
but has not seen at least one GS/length matched finalized replica from
DataNodes yet. No new byte will be written to this block and its GS will not be
bumped unless it is reopened for append. In order to serve read requests, a
committed block still needs to keep the locations of rbw replicas. It also needs to
track the GS and length of its finalized replicas. An under construction block of
an unclosed file is committed when NN is asked by the client to add a new block
to the file or close the file. If the last block is in the committed state, the file
cannot be closed and the client has to retry. AddBlock and close will be extended
to include the last block’s GS and length.

Complete: A complete block is a block whose length and GS are finalized and
NameNode has seen a GS/len matched finalized replica of the block. A complete
block keeps only finalized replicas’ locations. Only when all blocks of a file
become complete, a file could be closed.

Different from replica’s states, a block’s state does not persist on any disk. When
NameNode restarts, the last block of an unclosed file is loaded as
UnderConstruction. All the rest of the blocks are loaded as Complete.

More details about above replica/block states will be discussed in the rest of the
document. A replica state transition diagram and a block state transition diagram
will be summarized in the last section.

3. Write/hflush

An HDFS file consists of multiple blocks.

client DNO DN1 DN2 Each block is constructed through a write
pipeline B —— setup _| pipeline. Bytes are pushed to the pipeline
sewp |] I packet by packet. If no error occurs, a
f “~___ | ot 0 block construction goes through three
packe T stages as shown in the following picture
P— packet1 | illustrated by a pipeline of 3 DataNodes
______ — (DN) and a block of 5 packets. In the
Data - T~ packet 2] icture, bold lines represent data
streaming E’ P P

___________ packets, dotted lines represent ack
packet 3 messages, and regular lines represent
— control messages (setup/close). From t0

le packet 4 to t1 is the pipeline setup stage. T1 to t2
—————— - is the data streaming stage, where t1 is

e e the time when the first data packet gets
wee ||] —— sent and t2 is the time that the ack to the
3 |le---""71 last packet gets received. Note packet 2 is
v v \4 Y anhflushed packet. T2 to t3 is the

pipeline close stage.

Stage 1. Set up a pipeline
A Write_Block request is sent by a client downstream along the pipeline. After the
last DataNode receives the request, an ack is sent by the DataNode upstream along
the pipeline back to the client. As a result of this, network connections along the
pipeline are set up and each DataNode has created or opened a replica for writing.

Stage 2. Data streaming
User data first buffer at the client side. After a packet is filled up, the data then get
pushed to the pipeline. Next packet can be pushed to the pipeline before receiving
the ack for the previous packet. The number of outstanding packets is limited by the
outstanding packets window size at the client side. If the user application explicitly
calls hflush, a packet is pushed to the pipeline before it is filled up. Hflush is a
synchronous operation and no data can be written before an acknowledgement for
the flushed packet comes back.

Stage 3. Close (finalize a block and shutdown pipeline)
The client sends a close request only after all packets have been acknowledged at
the client side. This ensures that if data streaming fails, the recovery does not need
to handle the case that some replicas have been finalized and some do not have all
the data.

3.2.Packet handling at a DataNode
1 1 1

-
r

cient [z DNO |2 DN1 DN2

3 12 3 2 3 V2

For each packet, a DataNode in the pipeline has to do 3 things.

1. Stream data
a. Receive data from the upstream DataNode or the client
b. Push the data to the downstream DataNode if there is any

2. Write the data/crc to its block file/meta file.

3. Stream ack
a. Receive an ack from the downstream DataNode if there is any
b. Send an ack to the upstream DataNode or the client

Y

N

Note that the numbers above do not indicate the order that the three things must be
executed in. Streaming ack (3) is done after streaming data (1) by the definition of a
pipeline. But in theory writing data to disk (2) could be done anytime after 1.a. This
algorithm chooses to do it right after 1.b and before receiving the next packet.

Each DataNode has two threads per pipeline. The data thread is responsible for data
streaming and disk writing. For each packet, it does 1.3, 1.b, and 2 in sequence. Once
a packet is flushed to the disk, it can be removed from the in-memory buffer. The
ack thread is responsible for ack streaming. For each packet, it does 3.a and 3.b in
sequence. Since the data thread and the ack thread run concurrently, there is no

guarantee on the order of (2) and (3). The ack of a packet might be sent before the
packet is flushed to the disk.

This algorithm provides a tradeoff on the write performance, data durability, and
algorithm simplicity. It

1.

2.
3.

Improves data durability against failures by writing data to disk sooner than
later when the ack is received;

Parallelizes data/ack streaming in downstream pipeline and on-disk writing;
Simplifies buffer management since there is at most one packet in-memory
per pipeline.

* When a client reads bytes from an rbw replica, the DataNode that it reads
from may not make all the bytes that it received visible to the client.

* Each rbw replica maintains two counters:

1. BA: number of bytes that have been acknowledged by the
downstream DataNodes. Those are the bytes that the DataNode
makes visible to any reader. In the rest of the document, we may
interchangeably call it the replica’s visible length.

2. BR:number of bytes that have been received for this block,
including the bytes written to its block file and in-DataNode-buffer
bytes.

* Assume initially all DataNodes in the pipeline have (BA, BR) = (a, a). Then
a client pushes a packet of b bytes to the pipeline and no other packets
are pushed to the pipeline before the client receives an ack for the packet.

1. A DataNode changes its (BA, BR) to be (a, a+b) right after step 1.a.

2. A DataNode changes its (BA, BR) to be (a+b, a+b) right after step
2.a.

3. When a success ack is sent back to the client, all DataNodes in the
pipeline have (BA, BR) = (a+b, a+b).

e A pipeline of N DataNodes DNO, ..., DN}, ..., DNN-1, where DN is the first in
the pipeline, i.e., the closest to the writer, has the following property: at
any given time ¢,

BA" = BA = BA" " = BR""' < BR, < BR,

where BA; is BA of the block at DN at time t and BR; is BR of the

block at DNi at time ¢.

Note that this property guarantees that once a byte becomes visible all

DataNodes in the pipeline has the byte.

* Assume BS/ is the number of bytes that a client has sent to the pipeline
attime tand BA; is the number of bytes that the client has received ack
for. We have

BA‘ <BA’=<..<BA''<BR""'=<..<BR’=<BS’

4. Read

When an unclosed file is opened for read, the challenge is how to provide the
consistency guarantee if the last block is under construction. The algorithm
needs to make sure that a byte read at DataNode DN can also be read at
another DataNode DNj, even if BAi>BAI.

Algorithm 1:

When a reader reads an under construction block, it first asks one of the
replicas for its BA by sending a request to the DataNode.

If an application tries to read a byte beyond BA of the block, the dfs client
throws an EOFException.

Only a read request that read from a position less than the visible length
of the last block will be forwarded to a DataNode. When a DataNode gets
aread request from a range of bytes that are less than its BR, return the
bytes.

Assume that a read request is a triple (blck, off, len), where blck contains
a block id and its generation stamp, off is the starting offset in the block
from which to read the block, and len is the number of bytes to read.

A DataNode can serve the request if the DataNode has a replica with an
equal or newer GS.

The summation of off and len must be equal or less than BAJ, assuming
DN is the DataNode where the dfs client fetched the block length.
Assume that the read request is sent to DataNode DN! and the replica’s
state is (BA}, BR1).

1. If off+len<= BAl, DNi can safely send len bytes back to the dfs client
starting at off.

2. If off+len> BA}, because off+len<=BAj, BAi>=BAi. DNi must be in the
upstream in the pipeline to DNjJ, i.e., is closer to the writer than DNJ
is. So BRi>= BRi>=BAi. Thus BRi> BAJ, and therefore BRi>off+len.
This means DN! must have the bytes that the dfs client wants to
read. DN delivers the bytes to the client.

3. Off+len should never be greater than BRL If this ever happens, the
DataNode log the error and rejects the request.

If DNi goes down while serving the request, the dfs client can switch to
read from any other DataNode containing a replica of the block.

This algorithm is simple but it requires a reopen of a file to get new data
because the length of the last block is fetched before read and a dfs client
cannot read beyond the length of the last block.

Algorithm 2:

This algorithm lets a dfs client, i.e., a reader, perform the consistency
control, and DataNodes deliver bytes.

A read request is a triple (blck, off, len), where blck contains a block id
and its generation stamp, off is the starting offset in a block from which to
read the block, and len is the number of bytes to read.

* A DataNode can serve the request if the DataNode has a replica with an
equal or newer GS.

* Assume that the block has a state (BA}, BRi), DNi sends bytes [off,
MIN((off+len, BR)) to the client along with its BAL

* The client receives and buffers the data. It also keeps track of the
maximum BA that it has seen and only delivers bytes to the application up
to the maximum BA.

* Ifthe read from DN fails, the dfs client can switch to read from any other
DataNode containing a replica of the block.

* How read consistency is guaranteed?

Assume we have a pipeline of N DataNodes DN, ..., DNi, ..., DNN-1, where
DNO is the first in the pipeline. Assume that the number of bytes that a
client delivers to an application at time tis BR®. We have

BR® = BA"™ = BR"™ < BR; < BR;

So no matter which DataNode it reads from, the DataNode should have
the byte it read before.

e This algorithm requires a change of the read protocol and a dfs client is
more complicated since it needs to control read consistency. But the
algorithm does not require a reopen in order to read the new data.

For HADOOP 0.21, we are still discussing whether to implement algorithm 1 or
algorithm 2.

5. Append

5.1.Append API support

1. Client sends an append request to NN.

2. NN checks the file and makes sure that it is closed. Then NN checks the
file’s last block. If it is not full and has no replica, fail append. Otherwise,
change the file to be under construction. If the last block is full, NN
allocates a new last block. If the last block is not full, NN changes this
block to be an under construction block, with its finalized replicas as its
initial pipeline. It returns the block id, generation stamp, length, and its
locations. If the last block is not full, it also needs to return a new
generation stamp.

3. Setup a pipeline for append if last block is not full. Otherwise set up a
pipeline for create. Check pipeline set up section for more details.

4. If the last block does not end at a checksum chunk boundary, read the last
partial crc chunk. This is for the purpose of calculating checksums.

5. Therestis the same as a regular write.

5.2. Durability support
* NN makes sure that the number of replicas for the Complete blocks that
contain pre-append data meets the file’s replication factor.

* The durability of an UnderConstruction block that contains pre-append
data is omitted in this design for now.

6. Error Handling

6.1.Pipeline Recovery
When a block is under construction, error may occur at Stage 1 when a pipeline is
being set up, at Stage 2 when data are streaming to the pipeline, or Stage 3 when the
pipeline is being closed. The pipeline recovery handles the case when one of
DataNodes in the pipeline has an error.

6.1.1. Recover from pipeline setup failure
If a DataNode detects a failure when a pipeline is being set up, a DataNode closes the
block file and closes all its tcp/ip connections after a failure acknowledgement is
sent to the upstream DataNode. Once the client detects the failure, it handles the
failure differently depending on the purpose of setting up the pipeline.

* [fthe pipeline was built for creating a new block, the client simply abandons
the block and asks NameNode for a new block. It then starts to build a
pipeline for the new block.

* [fthe pipeline was built for appending to a block, it rebuilds a pipeline with
the remaining DataNodes and bumps the block’s generation stamp. See
section 7 (pipeline setup) for more details.

One special case of pipeline setup failures is access token error: one of the DataNode
complains that the access token is invalid when using an access token to set up a
pipeline. If a pipeline set up failure is caused by an expired access token, the dfs
client should rebuild the pipeline with all the DataNodes in the previous pipeline.
Current trunk (0.21) avoids this special handling by always fetching a new access
token from NameNode right before setting up a pipeline. This document will keep
the same design.

6.1.2. Recover from data streaming failure

* AtaDataNode an error may occur at either 1.a, 1.b, 2, 3.3, or 3.b as explained
in Section 3.2. Whenever an error occurs, a DataNode takes itself out of the
write pipeline: it closes all the tcp/ip connections, writes all buffered bytes
onto disk if the error does not occur at 3, and closes the on-disk files.

* When the dfs client detects a failure, stops sending data to the pipeline.

* The dfs client reconstructs a write pipeline using the remaining DataNodes.
See section 7 (pipeline setup) for more details. As a result of this, all replicas
of the block are bumped to a new generation stamp.

* The dfs client resumes sending data with the new generation stamp starting
from BAc. Note an optimization could be that the client resumes sending
bytes starting at MIN(BR|, for all DataNodes DNi in the new pipeline).

* When a DataNode receives a packet, if it already has the packet, the data
stream simply pushes the data downstream without writing it to the disk.

This recovery algorithm has a nice property: any bytes that were visible to any
client, even from a down DataNode with the largest BA of the old pipeline, continue
to be visible to any reader during and after a pipeline recovery. This is because the
pipeline recovery does not decrease any DataNode’s BA and BR. Furthermore any
time during the pipeline recovery the new pipleline maintains the property
described in section 3.3 (consistency support).

6.1.3. Recover from a close failure
Once the client detects the failure, it rebuilds a pipeline with the remaining
DataNodes. Each DataNode bumps the block’s generation stamp and finalizes the
replica if it is not finalized yet. The network connection is torn down after an ack is
sent. See section 7 (pipeline setup) for more details.

6.2.DataNode Restart

* When a DataNode restarts, it reads each replica under directory rbw and
loads the replica in memory as WaitingToBeRecovered. Its length is set to
be the maximum number of bytes that match its crc.

* Any WaitingToBeRecovered replica does not serve any read and does not
participate in a pipeline recovery.

* A WaitingToBeRecovered replica will either become outdated and be
deleted by NN if the client is still alive or be changed to be finalized as a
result of lease recovery if the client dies.

6.3.NameNode Restart

* None of block states are persisted on disk. So when NameNode restarts, it
needs to restore each block’s state. The last block of an unclosed file
becomes UnderConstruction no matter what its pre-life state was. Other
blocks become Complete.

* Ask each DataNode to register and send its block report including
finalized, rbw, rwr, and rur replicas.

* NameNode does exit safemode unless the number of complete and under
construction blocks that have received at least one replica reaches the
pre-defined threshold.

6.4.Lease Recovery
When a file’s lease is expired, NN needs to close the file for the sake of the client.
There are two issues: (1) Concurrency control: what if a lease recovery is performed
while the client is still alive either in the process of setting up pipeline, writing,
close, or recovery. What if there are multiple concurrent lease recoveries? (2)
Consistency guarantee: If the last block is under construction, all its replicas need to
roll back to a consistent state: all replicas have the same on-disk length and the
same new generation stamp.

1. NN renews lease, changes the file’s leaseholder to be dfs and persists the
change to its editlog. So if the client is still alive, any of the write-related
requests like asking for a new generation stamp, getting a new block, or
closing the file, will be rejected because the client is not the lease holder any

more. This prevents the client from concurrently changing an unclosed file if
it ever contacts the NameNode.
NN checks the state of the last two blocks of its file. Other blocks should be in

the complete state. The following table shows all the possible combinations
and the action to take for each combination.

Penultimate | Last block Actions

block

Complete Complete Close the file

Complete Committed Retry closing the file when lease expires

Committed | Complete next time; Force to close the file after a

Committed | Committed certain number of retries

Complete UnderConstruction | Starts block recovery for the last block

Committed | UnderConstruction

Complete UnderRecovery Starts a new block recovery for the last

Committed | UnderRecovery block; stop recovery after a certain
number of retries

6.5.Block Recovery

1. NN chooses a primary DataNode (PD) to work as the proxy of NameNode to
perform block recovery. PD could be a DataNode where one of its replicas
resides. If none of its replicas are known, block recovery aborts.

2. NN gets a new GS, which marks the generation that the block is going to be
bumped to when the recovery successfully finishes. It then changes the last
block, if it is UnderConstruction, to be UnderRecovery. The UnderRecovery
block is stamped with a unique recovery id, which is new GS that the block is
going to be bumped to. Any communications from a PD to NN needs to match
this recovery id. This is how concurrent block recoveries are handled. The
basic rule is that the latest recovery always preempts previous recoveries.

3. NN then asks PD to recover the block. NN sends PD the new GS, block id and
its generation stamp, and all its replica locations including finalized replicas,
replicas being written to, and replicas waiting to be recovered.

4. PD performs block recovery:

a. PD asks each DataNode, where one replica is located, to perform
replica recovery.

i. PD sends each DataNode the recovery id, block id and

generation stamp;

ii. Each DataNode checks its replica state:

1. Check existence: If the DataNode does not have the
replica or the replica is older than the block’s GS in the
request, or newer than the recovery id (this is not
supposed to happen), throws a
ReplicaNotExistsException.

2. Stop writer: If it is a replica being written to and there is
an ongoing writer thread, interrupts the writer and

10

waits for the writer to exit. When a writer thread is
interrupted, if the thread is in the middle of receiving a
packet, stops and throws away the partial packet.
Before the thread exits, it makes sure that on-disk bytes
are the same as BR and then closes the block and crc
files. This handles concurrent client writes and block
recovery at DataNodes. Block recovery preempts client
writes, resulting in pipeline failure. Subsequent pipeline
recovery will fail because the dfs client cannot get a new
generation stamp from NN for a block under recovery.
Stop previous block recovery: If the replica is already in
the rur state, throws a RecoverylnProgressException if
its recovery id is greater than or equal to the new
recovery id. If the new GS is greater, stamp the rur
replica’s recovery id to be the new one.

State change: Otherwise, change the replica to be rur.
Set its recovery id to be the new recovery id and a
reference to its old state. Any communications from a
PD to itself needs to match this recovery id. Note 3 and
4 handle concurrent block recoveries at DataNodes. The
latest recovery always preempts previous recovery and
no two recoveries can be interleaved.

Crc check: Then perform a CRC check for the block file.
If there is a mismatch, throws
CorruptedReplicaException if the replica is rbw or
finalized. If replica is rwr, truncate the block file to the
last matched byte.

iii. If no exception is thrown, each DataNode returns PD its replica
status <replica id, replica GS, replica on-disk len, pre-recovery

state>.

b. After receiving a reply from each DataNode, PD decides the block
length that all replicas should agree on.
i. If one DataNode throws RecoverylnProgressException, PD
aborts block recovery.
ii. If all DataNodes throw an exception, aborts block recovery.
iii. If max(Len; for all reported DN;) ==0, asks NN to remove this

block.

iv. Otherwise, check returned state of the replicas with non-zero
length. The following table shows all the possible combination
of states in an example of two replicas and the length to agree
on for each combination.

Cases | Replical Replica 2 Length to be agreed on
state state
1 Finalized Finalized Two replicas should have the
same length; If not the same,

11

there is an error, logs it and
aborts block recovery

2 Finalized rbw Two replicas should have the
same length because the client
must have died when pipeline
is being set up or torn down. If
they are not the same, exclude
the rbw replica.

3 Finalized r'wr Set new length to be the
length of the finalized replica
and exclude the rwr replica.

4 rbw rbw Set new length to be MIN(len;,
lenz) where len; is the length
of replica i.

5 rbw r'wr Exclude rwr replica. This
becomes the same as case 4.
6 rwr rwr Set the new length to be

MIN(len, lenz). In this case,
len; may not equal to BRj, so
no guarantee of visible bytes
since both DataNodes died.

c. Recover replicas that participated in length agreement in step b.iv.

i. PD asks each DataNode to recover the replica. PD sends the
block id, new GS, new length.

ii. If the DataNode does not have the replica in the rur state or its
recovery id does not match the new GS, fail the replica
recovery at the DataNode.

iii. Otherwise, the DataNode changes the replica’s GS to be the
new GS both on disk and in memory. It then updates in
memory replica length to be the new length and truncates the
block file size to the new length and change crc file accordingly
(may cause truncation and/or modification of last 4 crc bytes).
It finalizes the replica if the replica has not finalized yet. The
replica recovery succeeds.

d. PD checks the result of c. If no DataNode succeeds, block recovery
fails. If some succeed and some fail, PD gets a new generation stamp
from NN and repeats block recovery with the successful DataNodes. If
all DataNodes succeed, PD notifies NN the new GS and length. NN
finalizes the block and closes the file if all blocks of the file change to
Complete state. NN forces the file to close after a limited number of
close retries.

This lease recovery algorithm also guarantees that any bytes that were visible to a
client does not get removed as a result of the recovery if at least one DataNode in
the pipeline is still alive and its data are not corrupted. This is because

12

1.

In cases 1, 2, and 3, there is a finalized replica. The client must have died
away during block construction stages 1 and 3. The algorithm does not
remove any byte.

In cases 4 and 5, all replicas to be recovered are in rbw state. The client must
have died during block construction stage 2. Assume the pre-recovery
pipeline has N DataNodes: DNy, DNy, ..., DNn.1. The length returned by DN!
step 4.a.ii must be equal to BRi. Assume that a subset of the DataNodes S in
the pipeline participates the length agreement, the new length is MIN(BR|, for
all DataNodes in S) >=BRN-1>=BAN-1>=_>=BA0, This guarantees the lease
recovery does not remove data that have delivered to any reader.

In case 6, the algorithm does not provide any guarantee since all DataNodes
in the pre-recovery pipeline had been restarted.

7. Pipeline Set Up

7.

1. Causes of pipeline set up

There are five cases that a pipeline needs to be set up:

1.

2.

7.

Create: When a new block is created, a pipeline needs to be constructed
before any bytes are streamed to any DataNode.

Append: When a file is to be appended and the last block of the file is not full.
A pipeline of all DataNodes that have a replica of the last block needs to be
set up before any new bytes are streamed to any DataNode.

Append recovery: When case 2 fails, a pipeline containing the remaining
DataNodes needs to be set up.

Data streaming recovery: If data streaming fails, a pipeline of the remaining
DataNodes needs to be set up before the data streaming resumes.

Close recovery: If pipeline close fails, a pipeline of the remaining DataNodes
needs to be set up in order to finalize the block.

2.Pipeline set up steps

1. Cases 2, 3,4, and 5 build a pipeline on an existing block, so the block’s
generation stamp needs to be bumped along with pipeline construction.
The dfs client asks NN for a new generation stamp.

2. The dfs client sends a write block request to the DataNodes in the new
pipeline with the parameters (not inclusive): block id with old generation
stamp, block length (number of bytes a replica must have or at least
have), max replica length, flags, and/or a new generation stamp.

Block id New Max
Cases /generation | Block len flags generation | block
stamp stamp len
No flag is no
1 (create) yes 0 - no
Pre-append Append no
2 (Append) yes block len flag is set yes

13

Append no
and
3 (Append yes The same as 2 | recovery | yes
Recovery)
flags are
set
4 (Data Recover
streaming yes BAc very yes BS¢
flag is set
recovery)
5 (Close B Close no
recovery) yes BA=BS5¢ flag is set yes

3. The following table shows the behavior when a DataNode receives a
pipeline set up request. Note that rwr replicas do not participate in the

pipeline recovery. We can relax this restriction with some special

handling of the rwr replicas. But since this is a very rare case, we choose

not to do it in this round of design.

. . GS
Cases Sanity Check Replica state change change
A replica with the . .
1 (Create) same block id should Create a rbw replica with no
. (BA, BR)=(0,0)
not exist
Open the replica for write;
Finalized replica; its | set the write stream offset
2 (Append) on-disk len should at the end of file; the Set to
pp match the pre- replica becomes rbw: new GS
append len (BA,BR)=(preAppendLen,
preAppendLen)
Finalized or rbw; -
. If finalized, do the same as
replica length (on-)
disk or BR) should | 2°°V®
3 (Append If rbw, wait for writer to Set to
match pre-append . .
Recovery) : exit; open block for write; new GS
len; rbw replica GS .
set write stream offset at
could be the same or .
the end of file.
newer
4 (Data rbw replica; the same Wait for writer to .e X1t
. Open block for write; set Set to
Streaming or newer GS; BAc<=)
:) write stream offset at the new GS
Recovery) BAi <= BRi <= BS¢ :
end of file.
rbw or finalized; the | If rbw, wait for writer to
5 (Close same or newer GS; exit and then finalize the Setto
Recovery) replica length should | replica; Close pipeline new GS

be the same as BA¢

when ack is sent back.

4. In cases 2, 3, and 4, on a successful pipeline setup, the dfs client notifies
NN of the new GS, min length, and the DataNodes in the new pipeline. NN

14

then updates the under construction block’s generation stamp, len and
locations.

5. If the pipeline set up fails, if at least one DataNode remains, go to step 1
with a recovery flag set. Otherwise, since the pipeline has no more
DataNode, mark this pipeline as failed. If a user application is blocked in
hflush/write, it will be unblocked and get an EmptyPipelineException.
Otherwise the next write/hflush/close will get an
EmptyPipelineException immediately.

8. Report Replica/Block State/Meta Information Change to NN

8.1.Client Reports

A client informs NN of an under construction block’s meta information change or
state change.

As discussed in the pipeline set up section, in cases 2(append), 3(append recovery),
and 4(data streaming recovery), after a new pipeline is set up, a client reports NN of
the block’s new GS and the DataNodes in the pipeline. NN then updates the under
construction block’s GS, length, and locations.

Note that in this design after a pipeline for creating a block is set up, a client does
not report NN of the newly created block and its locations. Instead when the client
issues addBlock/append to ask for a new block, NN puts the new block and its
locations into the blocksMap before NN returns the block and locations back to
client. This design has a minor flaw. If a new reader happens to read the last block
between the time the block is added to blocksMap at NameNode and the time a
replica of the block is created on a DataNode, the reader may get a “block does not
exit” error. But since the chance of having a reader during this short time frame is
very slim, we consciously make this design decision to trade for performance. A
client does not need to send a notification to NN after a pipeline is set up for every
block create.

When a client issues addBlock or close (a file), NN will finalize the last block’s GS
and length. The last block may move to the Complete state if the last block already
has a GS/len matched finalized replica; otherwise the last block is moved to the
Committed state. In addition, if the number of the replicas of the last block is less
than its replication factor, NN explicitly replicates the block to reach its replication
factor.

8.2.DataNode Reports
A DataNode reports a replica’s meta information or state change by periodically
sending NN a block report or sending NN a blockReceived message when a rbw
replica is finalized.

15

* Each block report contains two lists: one for finalized replicas, one for
rbw. The finalized replicas list include finalized replicas and under
recovery replicas whose old state are finalized. The rbw replica list
includes rbw replicas, rwr replicas, and rur replicas whose old state are
not finalized. An rbw replica’s length is its bytes received (BR). The length
of an rwr is a negative number.

* Now each reported replica’s state is a quadruple <DataNode, blck_id,
blck GS, blck len, isRbw>.

* After NN receives a block report, compare it with what’s in the memory
and generate 3 lists: (do we need a updateStateList?)

o deleteList if blck_id is not valid, i.e. no entry in blocksMap or
belongs to no file.
o addStoredBlockList if NN does not have the replica <DataNode,
blck_id> but the block report has it.
o rmStoredBlockList if NN has the replica <DataNode, blck_id> but
the block report does not have it.
o updateStateList if the replica’s state in NN is rbw but the block
report says it is finalized.
To avoid race condition between client reports and DataNode reports,
rbw replicas are added to only deleteList or addStoredBlockList.
* Add anew replica
1. Blockin NN is Complete

* Ifthe reported replica is finalized,

o Ifits GS and length are different from NN recorded
value, add it to the blocksMap but mark it as corrupt.

o Otherwise, add the replica.

e Ifthe reported replica is rbw,

o Ifthe file is closed, if the replica’s GS/len is different
from NN-recorded value or the block has reached its
replication factor, instruct its DataNode to delete it.

o Otherwise, do nothing.

2. Blockin NN is Committed

The handling is very similar to the above case except that if the

reported replica is finalized and matches the block’s GS and length,

NN changes the block to the complete state.

3. Blockin NN is UnderConstruction or UnderRecovery

e Ifthe reported replica is finalized and the replica’s GS is equal
to or newer than NN recorded GS, add the replica. Also mark
the replica as finalized and keeps track of its length and GS.

* Ifthe reported replica is rbw and the replica is valid (GS not
older and length not shorter), add the replica. If the reported
replica is rbw, mark it as rbw; otherwise, mark it as rwr.

* Otherwise ignore it.

16

* Update areplica’s state
When a block report shows a replica is changed from rbw to finalized, if
the block is under construction, NN marks the NN stored replica as
finalized and keeps track of the finalized replica’s GS and length. If the
block is Committed, if the finalized replica matches the block’s GS and
length, NN changes the block to the Complete state; otherwise remove
this replica from NN.

8.4.blockReceived
DataNodes send blockReceived to NN to notify that a replica is finalized.
When NN receives a blockReceived notification, it either add a new replica if
(DataNode, block_id) does not exist in NN, update the replica’s state if it is
recorded at rbw, or ask a DataNode to delete the replica if the block is invalid.

9. Replica/Block State Transition

9.1.Replica State Transition

The following diagram summarizes all possible replica state transitions at a
DataNode.

Temporay)
Replica ~<+——— replicate/copy for balancing

replication/copy
fails or DN restarts

Replicate/copy succeeds
Create
l deleted
pipeline
Close write —— l

Recovery —~ recovery
(GS++) (GS++)

AN

Append/append recovery (GS++)

Replica
Being
Written

Finalized
Replica
close

replica recovery starts
Replica
Recovery
finishes
(GS++)

DN
restarts

DN dies

Replica
Recovery

starts DN

DN dies

Replica
Waiting To
Be
Recovered

Replica
Under
Recovery

replica recovery starts

\ Replica

Recovery starts
(Recovery# ++)

* Anew replicais created

17

o Either by a client. The new replica start with a replica being written
(rbw) state.
o Orupon an instruction from NN to replicate or copy a replica for the
purpose of balancing. The new replica is in temporary state.
An rbw replica changes to be a replica waiting to be recovered (rwr) when its
DataNode restarts.
A replica changes to be a under recovery replica when a replica recovery
starts in response to lease expiration.
A replica is finalized when a client issues a close, replica recovery succeeds,
or replication/copy succeeds.
Error recovery always causes a replica’s GS to be bumped.

9.2.Block State Transition
The following diagram summarizes all possible block state transitions at the

NameNode.

NN restarts if not last addBlock
block of an unclosed file append if last

/N block is ful pipeline

recovery
\1 — succeeds

(GS++)

lease Append or NN restarts

Complete

expires Block Under d
~a Block Construction ap p?n
addBlock or close \ Plpeline
is setup
7 (GS++)
receives a GS/Len
matched finalized addBlock
replica
| lease
expires
lease expires and & block NN
force file close close recovery restarts
| starts
NN restarts if .. recovery
not last block of '\IIN rEIStaES f'f succeeds block
an unclosed file ast block o reco
an unclosed very
file _— fails
block recovery / lease
lease Committed succeeds but no expires &
expires Elook «—— GS/len matched BIF?eC:oL\jg?fr ~ block
~a finalized repllca recovery
(GS++) starts
(Recovery#

++)
zero length block

¥

removed

e Ablockis created

o Either when a client issues addBlock to add a new block to a file.

o Or when a client issues append and the last block of the file is full.
The newly created block is a block under construction.

18

Append may also cause a Complete block to be changed to a block
UnderConstruction if the last block is partial.
When addBlock or close is issued,

o the last block becomes either Complete if the block already has a
GS/len matched finalized replica or Committed otherwise.

o addBlock waits until the penultimate block to become Complete.

o Afile won’t be closed until the last two blocks of the file are Complete.
When lease expires, a lease recovery changes a block under construction to
be a block under recovery.

o Ablock recovery may change a block under recovery to be

= Removed if all its replicas are of length 0;

» Committed if the recovery succeeds and the block has no
GS/len matched finalized replica;

» Complete if the recovery succeeds and the block has a GS/len
matched finalized replica.

o Alease recovery may force a Committed block to be Complete.

Block states do not persist on disk. When a NameNode restarts, the last block
of an unclosed file becomes under construction and the rest become
Complete.

o Note a Complete or Committed block may change to be an
UnderConstruction block after NN restarts if it is the last block of a
file. If the client is still alive, the client will finalize it again. Otherwise
when lease expires, a block recovery will finalize it again.

Note that once a block becomes Committed or Complete, all its replicas
should have the same GS and are finalized. When a block is
UnderConstruction, it may have multiple generations of the block coexisting
in the cluster.

19

