
The Design and Implementation of 2D Vector Graphics Interactive
Tools Based on “Smart Handle”

Li Xianga, Wang Shuangb, Huayixina

a Institute of Surveying and Mapping, Information Engineering University, Zhengzhou , China ,
b LRES, Institute of Geographic Science and Natural Resources, CAS, Beijing, China

ABSTRACT

This article summarizes several kinds of interactive tasks and tools in 2D vector graphic system, analyses an ordinary
design idea for interactive tool. We find that it is difficult to find a point of balance between user experience and code’s
maintainability and extensibility. So we present a design idea for smart handle-based interactive tool. Handles are
usually expressed as rectangles or circles when graphic-cells are selected. Smart handle is a concept proposed in this
paper. Compared with the handle, smart handle knows how to operate its own graphic-cell. So a complicated interactive
task is assigned to every smart handle. It proves that this is a better solution to solve a contradiction between user
experience and code’s maintainability and extensibility.

Keywords: Handle，Interactive tasks，Interactive tools，2D vector graphics system

1. INTERACTIVE TASKS AND TOOLS IN 2D VECTOR GRAPHICS SYSTEM
In general 2D vector graphics system, drawing graphics is mainly through interactive way. In computer graphics, there
are many researches of interactive technology. There are some basic interactive tasks and composite interactive tasks[1],
but it is mainly focused on the human-machine interface. For a 2D vector graphics system, we believe that there are four
general interactive tasks:

a). Graphic-cell construction task, it means that we construct the basic graphic-cell in the view of 2D vector graphics
system. The basic graphic-cell includes line, rectangle and so on. Take a line construction for an example. The common
way is that we press the left mouse button to designate the initial point of the line, drag the mouse, and up the left mouse
button to designate the end point of line. So a construction process is finished.

b). Graphic-cell selection task, it means that choose one or more graphic-cells from the graphic-cell set. There are two
kinds of selection ways, one is point selection and the other is rectangle selection. Point selection means that selected by
mouse clicking. If the mouse clicks position in the graphic-cell or graphic-cell within the envelope, graphic-cell in the
selected state, the contrary is not selected in the state and vice versa. Rectangle selection means that selected by the
rectangle which is drawn by a series of mouse actions. Then we determine whether the drawn rectangle and the graphic-
cell are intersected or not. If they are intersected, the graphic-cell is in the selected state, the contrary is not selected in
the state and vice versa. There are round selection, polygon selection, etc besides point selection and rectangle selection.

c). Graphic-cell dynamic operation task: it contains that scaling, rotating, moving, anchor points moving and control
points moving tasks. As shown below:

Geoinformatics 2008 and Joint Conference on GIS and Built Environment: The Built Environment
and Its Dynamics, Lin Liu, Xia Li, Kai Liu, Xinchang Zhang, Xinhao Wang, Eds., Proc. of SPIE
Vol. 7144, 714424 · © 2008 SPIE · CCC code: 0277-786X/08/$18 · doi: 10.1117/12.812824

Proc. of SPIE Vol. 7144 714424-1

Fig 1 Graphic-cell dynamic operation tasks category

d). Graphic-cell property setting task: it means that setting graphic-cell attributes such as line size, line style and angle,
primarily through dialog box.

The basic tasks in the 2D vector graphic system are grouped into the following table:

Table 1 interactive tasks in 2D vector graphics system

Interactive tasks Interactive sub-tasks Interactive methods
Line construction
Rectangle construction
Circle construction
Ellipse construction

Graphic-cell construction

.......

Mouse and control key

Point selection
Rectangle selection
Circle selection Graphic-cell selection

......

Mouse and control key

Scaling
Rotating
Moving
Author points moving
Cntrol points moving

Graphic-cell dynamic operation

......

Mouse and control key

Setting line style
Setting line width Graphic-cell property setting
......

Dialog box or tool control bar

(1) Scaling (2) Rotating (3) Moving

(5) Control points moving (4) Author points moving

Proc. of SPIE Vol. 7144 714424-2

Ordinary 2D vector graphics system designers will design many interactive tools corresponding to the different
interaction tasks or sub-tasks. Interactive tools are offered to users in a form of the menu or tool control bar. As shown
below:

Fig2 2D vector graphics system interactive tools

When users select menu item [basic shape / - a rectangle], it means that the rectangular construction tool is selected,
when the mouse moves to the view through the following mouse actions: press the left mouse button – drag mouse -
raise your left mouse button. you can construct a rectangular graphic-cell.

2. AN ORDINARY DESIGN IDEA ABOUT 2D VECTOR GRAPHICS INTERACTIVE TOOLS
In object-oriented programming methods, designers will design many interactive tools corresponding to the graphic-cell
construction task, graphic-cell selection task and graphic-cell dynamic operation task. All the tools will inherit an
abstract tool class. It defines a number of mouse and keyboard response methods. When users select a tool, the system
framework will send mouse and keyboard messages to the active tool. So the tool completes the appropriate task.
(Because graphic-cell attribute task often uses the dialog to provide user to set attribute, does not relate to the mouse and
keyboard messages. So this paper doesn’t discuss how to design and realize graphic-cell attribute tool.)

The relationship between tools and tasks are not one-to-one, the designers will generally consider two points to design
interactive tools:

a). Good user experience;

b). Code’s maintainability and scalability.

When sub tools and tasks are one-to-one, code’s maintainability and scalability is very high. Because every tool class
only responds to one sub task in mouse and keyboard events. The amount of tool class code is very small. So code’s
maintainability is very high. If user adds a new tool, user only needs a tool inherited an abstract tool class. So code
scalability is very high. But user experience is not very good. For example, if user completes the following task:
constructing rectangle, rotating 45 degrees and moving rightward 20 pixels, user needs to select 4 tools: rectangle
construction tool-point selection tool (rectangle selection tool)-rotating tool-moving tool.

Proc. of SPIE Vol. 7144 714424-3

Fig 3 The class diagram for general 2D vector graphic interactive tools

Good user experience is that user can complete all the tasks only by selecting one tool. The interactive tools can be
divided into two kinds:

a). The construction tool: It completes all the graphic-cells construction task via setting some parameters;

b). The selection and dynamic operation tool: It completes two sub tasks in selection task as point selection and
rectangle selection; and five sub tasks in dynamic operation task as scaling, rotating, moving, moving anchor point and
moving control point.

The designers can solve automatic conversion of the construction tool to the selection and dynamic operation tool after
construction by the locking concept. When the construction tool is locked, user constructs graphic-cells until the
construction tool is unselected. When the construction tool is unlocked, it switches the active tool to the selection and
dynamic operation tool after constructing the graphic-cell. From the maintainability and scalability of code, the
complexity of the structure tool has not changed significantly, and its maintainability and scalability are still good. But
the amount of the selection and dynamic tool code has increased. So it resulted in the increase of complexity,
maintainability and scalability will inevitably decline.

Both design methods are very difficult to find a point of balance between the user experience and code’s maintainability
and extensibility. This paper, based on JhotDraw open source projects and other vector graphics system, presents a
method which to solve the contradiction between the code’s maintainability and extensibility and good user experience.

3. THE DESIGN AND IMPLEMENTATION OF AN INTERACTIVE TOOL BASED ON “SMART HANDLE”
The concept of handle helps to provide the graphic-cell scaling, rotating, moving, author point moving and control point
moving. When graphic-cell in the selected state, a small rectangle or a solid circle is used to represent a handle.
Generally, the distributive positions of the handle have three situations:

a). The corner and the center border of graphic-cell envelop;

b). The vertex of line or area graphic-cell;

c). The control point of curve.

User picks up the corresponding handle through the mouse to implement scaling, rotating, moving, author point moving
and control point moving.

Proc. of SPIE Vol. 7144 714424-4

Smart handle is a concept proposed in this paper. Actually, handle is abstracted into a class of object; each handle is
linked to a graphic-cell. A graphic cell has one or more handles. Compared with the handle, smart handle knows how to
operate its own graphic-cell.

3.1 The design thinking
This is a class diagram of the interactive tools. As shown below:

Fig4 A class diagram of interactive tools based on smart handle

Table 2 Interactive tools and Interactive tasks

Interactive tools Interactive tasks

The delegated tool
This tool delegates mouse and keyboard events to a specific tool such as the
selection tool, moving tool and based on handle tool.

The selection tool This tool includes point selection tool and rectangle selection tool.

The construction tool This tool can construct line, rectangle and circle graphic-cell by passing
different parameters.

The moving tool This tool takes charge of moving graphic-cell.

The dynamic
operation tool

The handle tool This tool takes charge of scaling, rotating, author point moving and control
point moving.

The design has two different points:

a). Dynamic operation tool is divided into two tools, the moving tool and the handle tool. Because moving a graphic-cell
does not need picking up a handle, we design the moving tool. Because we scale, rotate a graphic-cell and move anchor
points and control points by picking up handles, we design the handle tool. The handle tool is implemented by different
kinds of smart handles.

Proc. of SPIE Vol. 7144 714424-5

b). We design the delegated tool above the selection tool, moving tool and handle tool. This tool delegates mouse and
keyboard events to a specific tool. So user selects one tool to complete all the tasks. This tool doesn’t implement any edit operation.
So the amount of the delegated tool code is small. The code’s maintainability and scalability are very high.

3.2 The implement of the delegated tool
According to general user’s habits, the delegated tool judges the type of task in two mouse events, the left mouse button
press event and the mouse moved event, and delegates tasks to different tools.

a). The left mouse button press event: the delegated tool judges whether it captures a handle according to the position
which the left mouse button pressed. If the mouse captures a handle, the delegated tool will delegate a task to the handle
tool. if not, the delegated tool judge whether the mouse captures a graphic-cell. If it captures a graphic-cell, the
delegated tool will delegate task to the moving tool. If not, the delegate tool will delegate a task to the selection tool;

b). The mouse moved event: the rule in this event is the same as in the left mouse button press event;

c). The left mouse button raised event: the delegated tool determines whether the task has been assigned to other
interactive tools. If the task has been assigned to other interactive tools, the delegate tool delegates mouse event to a
specific tool. If not, it doesn’t make any operation.

d). Other mouse and keyboard events: the delegated tool delegates mouse and keyboard events to a specific tool.
The flow diagram of the delegated tool:

Fig 5 The flow diagram of the delegated tool

It is worth to notice a point in the diagram. This is a judgment which determines whether the current task is delegated to
other tools in the left mouse button down event and mouse moved event. But there is a little difference between the left
mouse button down event and mouse moved event. In the left mouse button, this judgment is the first. But it is the last
in the mouse moved event. The difference is determined by the character of the mouse moved event. For example,

Proc. of SPIE Vol. 7144 714424-6

assuming that the current tool is the moving tool, if a handle is caught in the mouse moved event, the current tool should
be changed to the handle tool. If the judgment is the first which determines whether the current task is delegated to other
tools, the current tool is always the moving tool.

3.3 The implement of the handle tool based on smart handle
A smart handle class encapsulates graphics operations (rotating, scaling, etc) and the cursor resources. Every smart
handle is linked to a graphic-cell. A graphic-cell has one or more smart handles. All the handles must implement I
Handle interface. It has three important methods, InvokeStart，InvokeEnd and InvokeStep (Table 3).When a handle is
captured, the delegated tool delegates followed mouse and keyboard events to the handle tool. The handle tool delegates
tool to the captured smart handle. The InvokeStart is invoked in the left mouse button pressed event.InvokeStep is
invoked in the mouse dragged event.InvokeEnd is invoked in the left mouse button raised event. The cursor is set in the
mouse move event.

Table 3 methods in smart handle class

Declaration Description
void InvokeStart(int x, int y) It is invoked in the left mouse button pressed

event
void InvokeStep (int x, int y, int anchorX, int
anchorY)

It is invoked in the left mouse button pressed
event

void InvokeEnd(int x, int y, int anchorX, int
anchorY)

It is invoked in the left mouse button pressed
event

IFigure* Owner() const The graphic-cell linked to smart handle
void SetCursor() Set the handle’s cursor to the current cursor

According to the functions, it can be divided into several types

Fig 6 handle class diagram

Proc. of SPIE Vol. 7144 714424-7

Table 4 handle classes

Name Description
IHandle Smart handle class’s interface. It determines several methods which are must be

implemented
CAbstractHandle It implements part of methods such as function called Owner.
CBoxHandle It is the base class of handles which resize their own graphic-cell.
CNorthHandle，
CSouthHandle,
CNorthWestHandle,
etc

See also the figure 7

CRotateHandle It rotates its graphic-cell.
CLocatePointHandle It moves its graphic-cell’s anchor points.
CControlPointHandle It controls its grapic-cell’s control points.
CNullHandle It has no operation except that it represents its graphic-cell is selected.

Fig 7 A different kind of smart handles

You can create other handles to implement other advanced edit functions. But all the handles must implement IHandle
interface.

4. The potential problem and solving methods

4.1 The potential problem
The amount of every tool’s code is relatively small because of the division of the dynamic operation tool and
introduction of smart handles. At the same time, user only needs to select one tool, the delegated tool; to implement all
tasks. It is easy to use. But this design also brings a potential problem, a large amount of memory spending. Because one
graphic-cell needs four smart handles at least. It means when you create a graphic-cell, you must create four handles in
memory. Although user does not feel slowly when he edits a graphic-cell, but based on two reasons, we must attach
importance to this issue.

a). The actual situation is that only a graphic-cell is in the selected state, its handles are displayed. And at most time we
do not need handles;

b). User does not feel slowly when he edits a graphic-cell in a PC machine. But in the network environment, the
bandwidth is limited; we must take this issue seriously.

Proc. of SPIE Vol. 7144 714424-8

4.2 The solution of solving problem
The thinking is that when a handle is needed, it is created, when it is not needed, it is destroyed. The problem is when a
handle is live and when a handle is dead.

There are two methods to define when a handle is live and dead. To live or die, this is really a problem.

a). When a graphic-cell is created, associated handles are to live. When a graphic-cell is destroyed, associated handles
are dead.

b). When a graphic-cell is selected, associated handles are live. When a graphic-cell is unselected, associated handles
are dead.

The latter method can greatly reduce memory spending. Take example for drawing 1000 graphic-cells in a graphic
system.

According to the first definition, 4000 handles are resident in memory at least. But according to the second definition,
the amount of handles lies on the current number of the selected graphic-cells. In fact we have little time to select all the
graphic-cells when graphic system is in edit state.

The follow figure represents the process of life and death.

Fig 8 The handle’s life

graphic-cell A is
selected graphic-

A
B

A
B

Handle Set
A1
A2
A3

A4
B1

..........

Proc. of SPIE Vol. 7144 714424-9

Fig 9 The handle’s death

5. CONCLUSION
This design idea has the following main advantages:

The amount of every tool’s code is relatively small because of the division of the dynamic operation tool and
introduction of smart handles. At the same time, user only need to select one tool, the delegated tool, to implement all
tasks. It is easy to use. This is a better solution to solve the confliction between code’s maintainability and scalability
and easy-to-use.

We find a potential problem, a large amount of memory spending, because of the introduction of the smart handle.
Through analyzing the process which is from the handle’s life and death, we solve this problem.
However, the design still needs to be improved: As graphic-cell and its handles are not a whole, when we draw, add and
delete a graphic-cell, we must notify the framework to add or delete handles. This realization is not so good.

REFERENCES

1. James D. Foley, etc "Computer Graphics Principles and Practice (Second Edition in C)," China machine press. 254-
273 (2004).

2. Erich Gamma, etc "Design Patterns Elements of Reusable Object-Oriented Software," China machine press. (2000)
3. http://www.jhotdraw.org

Graphic-cell A is
unselected graphic-

A
B

Handle’s death
B

A

Handle Set
A1
A2
A3

A4
B1

..........

Proc. of SPIE Vol. 7144 714424-10

