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Abstract

The purpose of this paper is to demonstrate a low bitrate audio coding algorithm
that allows modi�cations in the compressed domain. The input audio is segregated
into three di�erent representations: sinusoids, transients, and noise. Each rep-
resentation can be individually quantized, and then easily be time-scaled and/or
pitch-shifted.

1 Introduction

The goal of this paper is to present a new representation for audio signals that allows for
low bitrate coding while still allowing for high quality, compressed domain, time-scaling
and pitch-shifting modi�cations.

In the current MPEG-4 speci�cations, there are compression algorithms that allow for
time and pitch modi�cations, but only at very low bitrates (2-16 kbps) and relatively low
bandwidth (at 8 kHz sampling rate) using sinusoidal modeling or CELP [1]. In this system,
we strive for higher quality with higher bitrates (16-48 kbps), while allowing for high
bandwidth (44.1 kHz sampling rate) and high quality time and pitch scale modi�cations.

To achieve the data compression rates and wideband modi�cations, we �rst segment
the audio (in time and frequency) into three separate signals: a signal which models all
sinusoidal content with a sum of time-varying sinusoids [2], a signal which models all
attack transients present using transform coding, and a Bark-band noise signal [3] which
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models all of the high frequency input signal not modeled by the transients. Each of these
three signals can be individually quantized using psychoacoustic principles pertaining to
each representation.

High-quality time-scale and pitch-scale modi�cations are now possible because the sig-
nal has been split into sines+transients+noise. The sines and noise are stretched/compressed
with good results, and the transients can be time-translated while still maintaining their
original temporal envelopes. Because of phase-matching algorithms, the system can switch
between sines and transients seamlessly. In time-scaled (slowed) polyphonic music with
percussion or drums, this results in slowed harmonic instruments and voice, with the
drums still having sharp attacks.

In this paper, we will �rst describe the system from a high level point of view, showing
how the input audio signal is segmented in time and frequency. We will then spend one
section on each of the three signal models: sines, transients, and noise. In each of these
sections, we will also describe their separate methods of parameter quantization. After-
wards, another section will be devoted to compressed-domain time-scale modi�cations.

2 System Overview

The purpose of this system is to be able to perform high-quality modi�cations, such as
time-scale modi�cation and pitch-shifting, on full-bandwidth audio while being able to
maintain low bitrates. Before delving into our hybrid system, we will �rst mention other
successful systems, along with their advantages and disadvantages.

2.1 Other Current Systems

The current state-of-the-art transform compression algorithms can achieve very high qual-
ity results (perceptually lossless at 64 kbits/sec/channel) but cannot achieve any time or
pitch-scale modi�cations without independent post-processing modi�cation algorithms
[4].

The most recent phase vocoders can achieve high quality time and pitch-scale modi�-
cations, but currently imposes a data expansion rather than a data compression [5]. The
parameters in this class of modeling method are 2� oversampled FFT coe�cients. Once
expressed in magnitude and phase form, they can be time-scaled and pitch-scaled. Be-
cause of the oversampling, there are now twice as many FFT coe�cients as original time
coe�cients (or corresponding MDCT coe�cients). In addition, it has not been shown
how well these time and pitch-scale modi�cations will perform if the FFT magnitude and
phase coe�cients are quantized to very low bitrates.

Sinusoidal+noise modeling has been developed for high quality time and pitch-scale
modi�cations for fullband audio, but is currently limited to monophonic sources and
necessitates hand tweaking of the analysis parameters by the user [6]. This user interaction
would be unacceptable for a general purpose audio compression system. The system
also has di�culties modeling sharp, percussive attacks. These attack signals are not
e�ciently represented as a sum of sinusoids, and the attack time is too sharp for the
frame-based noise modeling used in the system. In addition, the system of [6] typically
gives a data expansion rather than a data compression, since its goal was a transformable
audio representation and not compression.
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Sinusoidal modeling has also been used e�ectively for very low bitrate speech [7](2-16
kbps/channel) and audio coding [8]. In addition, these systems are able to achieve time
and pitch-scale modi�cations. But these systems were designed for bandlimited (0-4 kHz)
monophonic (i.e. single source), signals. If the bandwidth is increased, or a polyphonic
input signal is used, the results are not of su�ciently high quality.

2.2 Time-Frequency Segmentation

It is evident that none of the individual algorithms described in the previous section can
handle both high quality compression and modi�cations. While sinusoidal modeling works
well for steady-state signals, it is not the best representation for attack transients or very
high frequencies (above 5 kHz). For this reason, we segment the time-frequency plane
into three general regions: sines, transients, and noise. In each time-frequency region, we
use a di�erent signal representation, and thus di�erent quantization algorithms.

The �rst step in the segmentation is to analyze the signal with a transient detector.
The details of the transient detector will be discussed in section 4.1. This step segments,
in time, the input signal between attack transients, and non-transient signals. Below 5000
Hz, the non-transients are modeled by multiresolution sinusoidal modeling [2], which will
be described in Section 3. Above 5000 Hz, the non-transients are modeled using bark-band
noise envelopes, similar to those techniques developed in [3], which will be described in
Section 5. The transient signals, between 0-16 kHz, are modeled using variants of current
transform coding techniques [4], which will be described in section 4. This time-frequency
segmentation can be seen in Figure 1. The overlap regions between the sinusoids and
the transients are phase-matched, so no discontinuities can be heard. This will also be
discussed in Section 3. Incremental improvements to the time-frequency segmentation
that allow for lower bitrates and higher �delity synthesis will be described later in the
paper.

2.3 Reasons for the Di�erent Models

Sinusoidal modeling is used only for the non-transient sections of the audio because attack
transients cannot be e�ciently modeled by a set of linearly ramped sinusoids. It is possible
to model transients with a set of sinusoids, but such a system would need hundreds of
sinusoidal parameters, consisting of amplitudes, frequencies, and phases. In this system,
we attempt to model only the steady-state signals with sinusoids, thus allowing for an
e�cient representation.

Sinusoidal modeling is only used below 5000 Hz because for most music (but not all),
there exists very few isolated, tonal sinusoidal elements above 5000 Hz. This is consistent
with results found in the speech world [9]. It is very ine�cient to model high frequency
noise with sinusoids, and it is also very di�cult to track stable, high frequency sinusoids
reliably in loud high-frequency background noise. A residual noise model from 0 to 5
kHz is currently being investigated. If one wanted to listen to a pitch pipe or a single
glockenspiel, then there certainly are stable high-frequency sinusoids present. But for most
music that people listen to, this is not the case. We could have included an additional
octave of sinusoids, but this would have added a considerable amount to the total bitrate,
and would only bene�t a very small percentage of sound examples.
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Transform coding is used for modeling transients so that the attacks of instruments can
be faithfully reproduced without using many bits. Because transform coding is a waveform
coder, it can be used to give a high-precision representation over a short time duration
(about 66 ms). Whenever an audio signal is to be time-scaled, we simply translate the
transform-coded, short-time transients to the correct new places in time. More details
will be provided in section 6.

When the signal is not being modeled as a transient, the system splits the bandwidth
between 5-16 kHz into six bark-band regions. The high-frequency bandwidth is then mod-
eled as a sum of white-noise bands modulated by separate amplitude envelopes. Again,
for most signals, this model is su�cient. More details will be described in Section 5.

3 Multiresolution Sinusoidal Modeling

Sinusoidal modeling has proved to be a good representation for modeling monophonic
music [6] and speech [7], but has only recently been used for wideband audio compression
[10]. Certain problems arise when switching from monophonic speech/audio to polyphonic
audio. A single fundamental frequency can no longer be assumed, and thus no pitch-
synchronous analysis can be performed.

The problem to then be solved is choosing a proper analysis window length. One would
like to have a long window to guarantee good frequency resolution at low frequencies. On
the other hand, one would like to have as short a window as possible to reduce the pre-
echo artifacts (see Figure 2). With a pitch-synchronous analysis, one could choose an
adaptive window length that is two to three times longer than the current fundamental
period.

Because multiple pitches and instruments may be present, we use a multiresolution
sinusoidal modeling algorithm [2]. We split the signal into three di�erent octaves, and
use di�erent window lengths in each octave. Each octave uses 50% overlap. See the table
below for the parameters used in this system:

frequency range window length hop size

0-1250 Hz 46 ms 23 ms
1250-2500 Hz 23 ms 11.5 ms
2500-5000 Hz 11.5 ms 5.75 ms

In the time-frequency plane, this segmentation can be visualized as in Figure 3. Each
rectangle shows the time-frequency region that sinusoidal famp; freq; phaseg parameters
can be updated. For example, in the lowest octave, sinusoidal parameters are only updated
every 23 ms (the hop size in that octave). But in the highest octave, parameters are
updated every 5.75 ms. Usually, there are about 5-20 sinusoids present in each octave at
any one time.

3.1 Analysis Filterbank

In order to obtain these multiresolution sinusoidal parameters, we use a 2� oversampled,
octave-spaced, �lterbank front-end. Each octave output of the �lterbank is analyzed
separately by a sinusoidal modeling algorithm with di�erent window lengths. The reason
we oversample the �lterbank by a factor of 2 is to attenuate the aliasing energy between the
octaves below audibility. If we used a critically sampled �lterbank, such as a discrete-time
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wavelet transform, each octave output would have aliased energy from the neighboring
octaves. This aliased energy would introduce errors in the sinusoidal modeling. For more
details on the �lterbank design, see [2][11].

3.2 Sinusoidal Parameters

In each lth frame of analyzed audio, in a given octave, the system produces Rl sets of
plr = fAl

r; !
l
r; �

l
rg (amplitude,frequency,phase) parameters based on maximum likelihood

techniques developed by Thomson [12] and previously used for sinusoidal modeling by
Hamdy, et al.[10]. For a given frame, indexed by l, the synthesized sound is:

s(m+ lS) =
RlX

r=1

Al
r cos[m!l

r + �l
r] m = 0; : : : ; S � 1

where S is the length of the octave-dependent hop-size, shown in the previous table in
Section 3. To be able to synthesize a signal without discontinuities at frame-boundaries,
we interpolate the sinusoidal parameters between for each sample m from the observed
parameters at m = 0 and m = S. The amplitudes are simply linearly interpolated from
frame to frame. The phase and frequency interpolation will be later be discussed in
Section 3.3.

In the next sub-sections, we will show how we �rst track sinusoids from frame to frame
and then compute a psychoacoustic masking threshold for each sinusoid. Based on this
information, we then decide which sinusoids to eliminate from the system and how to
quantize the remaining sinusoids.

3.2.1 Sinusoidal Tracking

Between frame l and (l � 1), the sets of sinusoidal parameters are processed through a
simpli�ed peak continuation algorithm. If jAl

i � Al�1
j j < Ampthresh and j!l

i � !l�1
j j <

Freqthresh then the parameter triads pl�1j and pli are combined into a single sinusoidal
trajectory. If a parameter triad pli cannot be joined with another triad in adjacent frames,
fpl�1j ; j = 1; : : : ; Rl�1g and fpl+1k ; k = 1; : : : ; Rl+1g, then this parameter triad becomes
a trajectory of length one. With these sets of sinusoidal trajectories, we now begin the
process of reducing the bits necessary to represent the perceptually relevant information.

3.2.2 Masking

The �rst step in reducing the bitrate for the sinusoids is to estimate how high the sinu-
soidal peaks are above the masking threshold of the synthesized signal. In each octave
of sinusoidal modeling, we compute a separate psychoacoustic masking threshold using a
window length equal to the analysis window length for that octave. The model used in
this system was based on the MPEG psychoacoustic model II. For details on computing
the psychoacoustic masking thresholds, see [13].

In each octave, we compute the masking threshold on an approximate third-bark band
scale, or the threshold calculation partition domain in [13]. From 0 to 5 kHz, there are
about 50 non-uniform divisions in frequency that the thresholds are computed within.
The ith sinusoidal parameter triad in frame l, pli, then obtains another �eld, the masking
threshold, ml

i. The masking threshold ml
i is the di�erence between the energy of the
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ith sinusoid (correctly scaled to match to domain of the psychoacoustic model) and the
masking threshold in its third-bark band [in dB].

Not all of the found sinusoids estimated in the initial analysis [12] are stable sinusoids.
We only desire to encode sinusoids that are stable sinusoids, and not model noisy signals
with several closely-spaced sinusoids. We use the psychoacoustic model, which has a
tonality measure based on prediction of FFT magnitudes and phases, to double-check the
results of the initial sinusoidal estimations.

As can be seen in Figure 4, shorter trajectories have (on average) a lower signal-to-
masking threshold. This means that many shorter trajectories will be masked by longer,
more stable trajectories. A possible reason for this trend is that the shorter trajectories are
attempting to model noise, while the longer trajectories are actually modeling sinusoids.
In [13], a stable sinusoid will have a masking threshold at -18 dB in its third-bark band,
while a noisy signal will have only a -6 dB masking threshold. Therefore, tonal signals will
have a larger distance to the masking threshold than noisy signals. A simple graphical
example of the masking thresholds of stable sinusoids can be seen in Figure 5. The signal-
to-masking thresholds and trajectory lengths will be important factors in determining
which trajectories to eliminate, and how much to quantize the remaining parameters.

3.2.3 Sinusoidal Trajectory Elimination

Not all sinusoidal trajectories found as described Section 3.2.1 will be encoded. A trajec-
tory that is masked, meaning its energy was below the masking threshold of its third-bark
band, will not be encoded. By eliminating the masked trajectories, the sinusoidal bitrate
is decreased approximately 30% in typical audio input signals. In informal listening tests,
no audible di�erence was heard after eliminating these trajectories.

3.2.4 Sinusoidal Trajectory Quantization

Once the masked trajectories have been eliminated, the remaining ones are to be quan-
tized. In this section, we will concentrate only on amplitude and frequency quantization.
We will discuss phase quantization in Section 3.3. Initially, the amplitudes are quantized
with 5 bits, in increments of 1.5 dB, giving a dynamic range of 96 dB. The frequencies
are quantized to an approximate just noticeable di�erence frequency scale (JNDF) using
9 bits.

Because of the slowly varying amplitude and frequency trajectories, we can e�ciently
quantize the temporal �rst-order di�erences across the trajectory. We then Hu�man
encode these di�erences. In addition, we can also exploit the inter-trajectory redundancy
by Hu�man encoding the di�erence among neighboring trajectories' initial amplitudes
and frequencies.

In the previous Section 3.2.3, we eliminated the trajectories that were masked. But,
we kept all the other trajectories, even those whose energies were just barely higher than
their bark-band masking thresholds. In principle, these lower-energy trajectories should
not be allocated as many bits as the more perceptually important trajectories; i.e. those
having energies much higher than their masking thresholds. A solution that was found to
be bitrate e�cient and which still sounded good was to downsample these lower-energy
sinusoidal trajectories by a factor of two. That is, update the sinusoidal parameters at half
of the original rate. On the decoder end, the missing parameters are linearly interpolated.
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This e�ectively reduces the bitrate of these trajectories by 50%, and the total sinusoidal
bitrate by an additional 15%.

After testing several kinds of music, we were able to quantize three octaves of multires-
olution sinusoids from 0 to 5 kHz at 12-16 kbps. These numbers depend on how much of
the signal from 0 to 5 kHz is encoded using transient modeling, as discussed in Section 4.
More transients per unit time will lower the sinusoidal bitrate, but the transient modeling
bitrate will increase.

3.3 Switched Phase Reconstruction

In sinusoidal modeling, transmitting phase information is usually only necessary for one
of two reasons. The �rst reason for keeping phases is to create a residual error signal
between the original and the synthesized signal. This is needed at the encoder, but not
at the decoder. Thus, we need not transmit these phases for this purpose.

The second reason for transmitting phase information is for modeling attack transients
well. During sharp attacks, the phases of sinusoids can be perceptually important. But
in this system, no sharp attacks will be modeled by sinusoids; they will be modeled by a
transform coder. Thus, we will not need phase information for this purpose.

A simple example of switching between sines and transients is depicted in Figure 6.
At time=40 ms, the sinusoids are cross-faded out and the transients are cross-faded in.
Near the end of the transients region at time=90 ms, the sinusoids are cross-faded back
in. The trick is to phase-match the sinusoids during the cross-fade in/out times while
only transmitting the phase information for the frames at the boundaries of the transient
region.

To accomplish this goal, we use cubic polynomial phase interpolation [7] at the bound-
aries between the sinusoidal and transient regions. We perform phaseless reconstruction
sinusoidal synthesis at all other times. Because we only send phase at transient bound-
aries which happen at most several times a second, the contribution of phase information
to the total bitrate is extremely small.

First we will quickly describe the cubic-polynomial phase reconstruction, and then
show the di�erences between it and phaseless phase reconstruction. Afterwards, we show
how we can switch seamlessly between the two.

3.3.1 Cubic-polynomial Phase Reconstruction

Recall from Section 3.2 that during the lth frame, we estimate the R sets triad of param-
eters plr = fAl

r; !
l
r; �

l
rg. These parameters must be interpolated from frame to frame to

eliminate any discontinuities at the frame boundaries. The amplitude is simply linearly
interpolated from frame to frame.

The phase interpolation is more complicated. We �rst create an instantaneous phase
parameter, �lr, which is a function of surrounding frequencies, f!l

r; !
l�1
r g and surrounding

phases, f�l
r; �

l�1
r g. Because the instantaneous phase is derived from four parameters, we

need a cubic polynomial interpolation function. For details of this interpolation function,
see [7].

Finally, the reconstruction for frame l becomes

s(m+ lS) =
RlX

r=1

Al
r(m)cos[�lr(m)] m = 0; : : : ; S � 1 (1)
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3.3.2 Phaseless Reconstruction

Phaseless reconstruction is called phaseless because it does not need explicit phase in-
formation transmitted in order to synthesize the signal. The resulting signal will not be
phase aligned with the original signal, but it will not have any discontinuities at frame
boundaries.

Instead of deriving the instantaneous phase from surrounding phases and frequen-
cies, phaseless reconstruction derives the instantaneous phase as the integral of the in-
stantaneous frequency [14]. The instantaneous frequency, !l

r(m), is obtained by linear
interpolation:

!l
r(m) = !l�l

r +
(!l

r � !l�1
r )

S
m m = 0; : : : ; S � 1

Therefore, the instantaneous phase for the rth trajectory in the lth frame is:

�lr(m) = �l�1r + !l
r(m) (2)

The term �l�1r refers to the instantaneous phase at the last sample of the previous frame.
The signal is then synthesized using Equation (1), but using �lr(m) from Equation (2)
instead of the result of a cubic polynomial interpolation function. For the �rst frame of
phaseless reconstruction, the initial instantaneous phase is randomly picked from [��; �).

3.3.3 Phase Switching

In this section, we will show how to switch between phase interpolations algorithms
seamlessly. As a simple example, let the �rst transient begin at frame l. All frames
(0; 1; : : : ; l � 2) will be synthesized using the phaseless reconstruction algorithm outlined
in section 3.3.2. During frame l�1, we must seamlessly interpolate between the estimated
parameters f!l�1g and f!l; �lg, using cubic interpolation of Section 3.3.1. Because there
were no estimated phases in frame l � 1, we let �l�1 = �l�1(S), at the last sample of the
instantaneous phase of that frame. In frame l, cubic interpolation is performed between
f!l; �lg and f!l+1; �l+1g. But, !l = !l+1, and �l+1 can be derived from f!l; �l; Sg, as was
shown in [15]. Therefore, owe need only the phase parameters, �l

r, for r=(1; 2; : : : ; R) for
each transient onset detected.

To graphically describe this scenario, see Figure 7. Each frame is 1024 samples long,
and the frames l � 1 and l are shown. That is, the transient begins at t=1024 samples,
or the beginning of frame l. A similar algorithm is performed at the end of the transient
region to ensure that the ramped-on sinusoids will be phase matched to the transient
being ramped-o�.

4 Transform-Coded Transients

Because sinusoidal modeling does not model transients e�ciently, we represent transients
with a short-time transform coder instead. The length of the transform coded section
can be varied, but in the current system it is 66 milliseconds. This assumes that most
transients last less than this amount of time. After the initial attack, most signals be-
come somewhat periodic and can be well modeled using sinusoids. First, we will discuss
our transient detector, which decides when to switch between sinusoidal modeling and

8



transform coding. Then, we describe the basic transform coder used in the system. In
the following subsection, we then discuss methods to further reduce the number of bits
needed to encode the transients.

4.1 Transient Detection

The design of the transient detector is very important to the overall performance of
the system. The transient detector should only ag a transient during attacks that will
not be well modeled using sinusoids. If too many parts of the signal are modeled by
transients, then the bitrate will get too high (transform coding has a higher bitrate than
multiresolution sinusoidal modeling). In addition, time-scale modi�cation, which will be
discussed in Section 6, will not sound as good. If too few transients are tagged, then some
attacks will sound dull and have pre-echo problems due to the limitations of sinusoidal
modeling.

Two methods are combined in the system's transient detection algorithm. The �rst
method is a conventional frame-based energy measure. It looks for a rising edge in the
energy envelope of the original signal over short frames. The second method involves the
residual signal, which is the di�erence between the original signal and the multiresolution
sinusoidal modeled signal (with cubic polynomial interpolated phase). The second method
measures the ratio of short-time energies of the residual and the original signal. If the
residual energy is very small relative to the original energy, then that portion of the signal
is most likely tonal and is modeled well by sinusoidal modeling. On the other hand, if the
ratio is high, it concludes the energy in the original signal was not modeled well by the
sinusoids, and an attack transient might be present.

The �nal transient detector uses both methods; i.e., it looks at both rising edges in
the short-time energies of the original signal and also the ratio of residual to original
short-time energies. The system declares a region to be a transient region when both of
these methods agree that a transient is occurring.

4.2 A Simpli�ed Transform Coder

The transform coder used in this system is a simpli�ed version of the MPEG-AAC (Ad-
vanced Audio Coding) system [4]. It has been simpli�ed to reduce the system's overall
complexity. The emphasis in this paper is not to improve the current state of the art in
transform coding, but rather to use it as a tool to encode transient signals. In the future,
we plan to further optimize this simpli�ed coder to reduce the bitrate of the transients
and to introduce a shared bit reservoir pool between the sines, the transients, and the
noise modeling algorithms. In this system, the transient is de�ned as the residual over
the detected transient duration after subtracting out the o�-ramping and on-ramping
sinusoids. A graphical example of a transient can be seen in the second plot in Figure 6.

First, the transient is windowed into a series of short (256 point) segments, using a
raised sine window. At 44.1 kHz, the current system encodes each transient with 24 short
overlapping 256-point windows, for a total length of 66 ms. There is no window length
switching as in AAC since the system has already identi�ed the transient as such. Each
segment is run through an MDCT [16] to convert from the time domain to a critically
sampled frequency domain. A psychoacoustic model [13] is performed in parallel on the
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short segments in order to create the masking thresholds necessary for perceptually lossless
subband quantization.

The MDCT coe�cients are then quantized using scale factors and a global gain as
in the AAC system. However, there are no iterated rate-distortion loops. We perform
a single binary search to quantize each scale factor band of MDCT coe�cients to have
a mean-squared error just less than the psychoacoustic threshold allows. The resulting
quantization noise should now be completely masked. We then use a simpli�ed version
of the AAC noiseless coding to Hu�man encode the MDCT coe�cients, along with the
di�erentially encoded scalefactors.

4.3 Time-Frequency Pruning

In principle, a time duration of a transient is frequency dependent. We do not have a
rigorous de�nition of transient time duration, other than to generally say it is the time
during which a signal is not somewhat periodic. At lower frequencies, this time duration
is usually longer than it is at higher frequencies.

We mentioned earlier in this section that transients are encoded in this system for 66
milliseconds. But because a single transient does not have the same length in time at all
frequencies, we do not need to encode all 66 milliseconds of the transient in every frequency
range. In particular, we construct a tighter time-frequency range of transform coding
around the attack of the transient. For example, as shown in Figure 8, we transform-
encode the signal from 0 to 5 kHz for a total of 66 milliseconds, but we only transform
encode the signal from 5-16 kHz for a total of 29 milliseconds. The remaining time-
frequency region above 5 kHz not encoded by transform coding is represented by bark-
band noise modeling, which will be discussed in the following section.

This pruning of the time-frequency plane greatly reduces the number of bits necessary
to encode transients. As will be shown, bark-band noise modeling is a much lower bitrate
representation than transform coding. After informal listening tests on many di�erent
kinds of music, no di�erences were detected between using transform coding over all
frequency ranges for the full duration of the transient versus just a tighter �t region of
the time-frequency plane.

As shown in Figure 8, there are only two frequency regions that have di�erent time-
widths of transform-encoded transients. This could easily be generalized to more bands,
octave-spaced bands, or even a bark-band scale. By using transform coding only around
the time-frequency regions that need it, the bitrates can be lowered further. The remaining
regions of time-frequency are modeled using multiresolution sinusoidal modeling and bark-
band modeling, both of which have lower bitrate requirements.

5 Noise Modeling

In order to reduce the total system bitrate, we stated previously that we will not model
any energy above 5 kHz as tonal (with sinusoids). Above 5 kHz, the signal will either be
modeled as a transform-coded transient or as bark-band �ltered noise, depending on the
state of the transient detector. Bark-band noise modeling bandpass �lters the original
signal from 5-16 kHz into six bark-spaced bands [17]. This is similar to [3], which modeled
the sinusoidal modeling residual from 0-22 kHz with bark-spaced noise modeling. If a
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signal is assumed to be noisy, the ear is sensitive only to the total amount of short-time
energy in a bark band, and not the speci�c distribution of energy within the bark band.
Therefore, every 128 samples (3 milliseconds @ 44.1 kHz), an RMS-level energy envelope
measurement is taken from each of the six bark bandpass �lters. To synthesize the noise,
white noise is �ltered through the same bark-spaced �lters and then amplitude modulated
using the individual energy envelopes.

5.1 Bark-Band Quantization

After some informal listening tests, quantizing each bark band energy sample to 1.5 dB
seemed the largest possible quantization range possible without hearing artifacts. An
example of such an envelope can be seen in the top plot of Figure 9. If we Hu�man
encode this information, the total data rate would be in the neighborhood of 10 kbps.
However, it does not seem perceptually important to sample the energy envelope every
128 samples (345 frames/sec). It seems more important perceptually to preserve the
rising and falling edges of the energy envelopes. Small deviations in the bark-band energy
envelope could be smoothed without audible consequence. The goal is to transmit only a
small subset of the energy envelope points, and linearly interpolate the missing points at
the decoder.

5.2 Line Segment Approximation

We call the samples of the energy envelopes that are transmitted, breakpoints, since they
are points at which the straight lines \break" to change slope. We implemented a greedy
algorithm [18] that iteratively decides where a new breakpoint in the envelope would
best minimize the error between the original and approximated envelope. The number
of breakpoints is set to 20% of the length of the envelope itself. Using fewer breakpoints
would lower the bitrate, but would introduce audible artifacts in the synthesized noise.
An example of an energy envelope reduced by line segment approximation can be seen in
the lower plot of Figure 9.

There are now two sets of data to quantize: the timing and amplitude of the break-
points. We Hu�man encode the timing di�erences, along with the amplitude di�erences.
In addition, there is another Hu�man table to encode the �rst amplitude of each enve-
lope. The initial timing of each envelope can be inferred from timing information of the
preceding transform-coded transient signal. If there is a possibility of losing some data in
transmission, the time-di�erential methods will obviously need to be changed. Overall,
quantization of the six bands for most signals results in a bitrate of approximately 3 kbps.

5.3 High Frequency Transform Coding

There are certain transients, which we will call microtransients, that are not broadband
or loud enough to be triggered in by the algorithm stated in section 4.1. For example,
small drum taps like a closing hi-hat sometimes appears as a microtransients. If these
microtransients are modeled by bark-band noise modeling, the result will not sound crisp,
but rather distorted and spread. The solution is to use transform coding centered around
these attacks, but only from 5 to 16 kHz. Because these high frequency transients are very
sudden and short, only three transform coding frames of 128 samples each are necessary.
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Before and after the sudden transient, bark-band noise modeling is used. See Figure 10
for an example and further discussion.

6 Modi�cations

Time-scale and pitch-scale modi�cations are relatively simple to perform on the com-
pressed data because the input audio has been segregated into three separate para-
metric representations, all of which are well behaved under time/frequency compres-
sion/expansion. In this section we will concentrate on time-scale modi�cation. For more
details on pitch shifting capabilities, see [19]. Because the transients have been separated
from the rest of the signal, they can be treated di�erently than the sines or the noise. In
order to time-scale the audio, the sines and noise components will be stretched in time,
while transients will be translated in time. In the next three subsections, we will discuss
in detail how each of the three models are time-scale modi�ed. See Figures 11 and 12 for
graphical examples and further explanation.

6.1 Sinusoidal Time-Scale Modi�cation

Since the earliest sinusoidal modeling systems for speech and audio, it has been shown how
to time-scale the representation. The synthesis equation (1) for the lth frame is slightly
altered by scaling the hop size S by the time stretch factor �:

s(m + lS�) =
RlX

r=1

Al
r(m)cos[�lr(m)] m = 0; : : : ; �(S � 1) (3)

When � = 1, no time-stretching is applied. When � > 1, the playback speed is slowed but
the pitch remains the same. Similarly, when � < 1, the playback speed is faster with the
same pitch. The amplitude parameters are still linearly interpolated, but over a di�erent
frame length. In addition, the instantaneous phase parameter is now interpolated using
the phase switching algorithm described in Section 3.3.3 over a di�erent frame length.
Even though the cross-fade regions between the sinusoids and the transients now appear
at di�erent regions in time, phase-locking is still guaranteed when the sinusoids overlap
with the transient signal.

6.2 Transient Time-scale Modi�cation

To keep the sharp attacks inherent in the transients, the transform-coded transients are
translated in time rather than stretched in time. Therefore, the MDCT frames are simply
moved to their new place in time and played at the original playback speed. Because
these signals are so short in time (66 milliseconds), the attack sounds natural and blends
well with the time-stretched sinusoids and noise. Thus, attacks are still sharp, no matter
how much the music has been slowed down.

6.3 Noise Time-scale Modi�cation

Because the noise has been parametrized by envelopes, it is very simple to time-scale the
noise. The breakpoints in the bark band envelopes are stretched according to the time

12



factor, �. Using linear interpolation between the breakpoints, new stretched envelopes are
formed. Six channels of bark bandpassed noise are then modulated by these new stretched
envelopes and summed to form the �nal stretched noise. Similarly, e�cient inverse FFT
methods could be used [3].

7 Acknowledgment

The �rst author would like to thank Tony Verma for his sinusoidal modeling software
core, and for many hours of discussions about parametric coders and compression.

8 Conclusions

We described a system that allows both aggressive data compression and high-quality
compressed-domain modi�cations. By parametrizing sines, transients, and noise sepa-
rately, we get the coding gain of perceptually based quantization schemes and the ability
to perform compressed-domain processing. In addition, we can preserve the sharp attacks
of transients, even with large time-scale modi�cation factors. To hear demonstrations of
the data compression and modi�cations described in this paper, see [20].
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Figure 3: The time-frequency segmentation of multiresolution sinusoidal modeling. Each
rectangle shows the update rate of sinusoidal parameters at di�erent frequencies. In the
top octave, parameters are updated every 5.75 ms, while at the lowest octave the update
rate is only 23 ms. Usually, there are 5-20 sets of sinusoidal parameters present in any
one rectangle.

0 5 10 15

−10

−5

0

5

10

15

trajectory length [in frames]

av
er

ag
e 

m
as

ki
ng

 th
re

sh
ol

d 
[d

B
]

Figure 4: This �gure shows how longer sinusoidal trajectories have a higher average max-
imum signal-to-masking threshold than shorter trajectories. Or, the longer a trajectory
lasts, the higher its signal-to-masking threshold. This data was derived from the top oc-
tave of 8 seconds of pop music, where each frame length is approximately 6 milliseconds
in length.
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at frequencies 500, 1500, 3200 Hz. Notice that the masking threshold is approximately
18 dB below their respective sinusoidal peaks.
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Figure 6: This �gure shows how sines and transients are combined. The top plot shows the
multiresolution sinusoidal modeling component of the original signal. The sinusoids are
faded-out during the transient region. The second plot shows a transform-coded transient.
The third plot shows the sum of the sines plus the transient. For comparison, the bottom
plot is the original signal. The original signal has a sung vowel through the entire section,
with a snare drum hit occurring at t=60 ms. Notice that between 0 and 30 ms, the
sines are not phase-matched with the original signal, but they do become phase-matched
between 30-60 ms, when the transient signal is cross-faded in.
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Figure 11: This set of plots shows how time-scale modi�cation is performed. The original
signal, shown at top left, shows two transients: �rst a hi-hat cymbal hit, and then a bass
drum hit. There are also vocals present throughout the sample. The left-side plots show
the full synthesized signal at top, and then the sines, transients, and noise independently.
They were all synthesized with no time-scale modi�cation, at �=1. The right-side plots
show the same synthesized signals, but time-scale modi�ed with �=2, or twice as slow
with the same pitch. Notice how the sines and noise are stretched, but the transients are
translated. Also, the vertical amplitude scale on the bottom noise plots are ampli�ed 15
dB for better viewing.
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Figure 12: These �gures show the time-frequency plane segmentations of Figure 11. The
�gure on the left is synthesized with no time-scaling, �=1. The �gure on the right is
slowed down by a factor of two, i.e. �=2. Notice how the grid spacing of the transform
coded regions are not stretched, but rather shifted in time. However, the time-frequency
regions of the multiresolution sinusoids and the bark-band noise have been stretched in
time in the right plot. Each of the rectangles in those regions are now twice as wide in
time. The exception to this rule is the bark-band noise modeled within the time span
of the low-frequency transform-coded samples. These bark-band noise parameters are
shifted (not stretched), such that they remain synchronized with the rest of the transient.
There are no sinusoids during a transform-coded segment.
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