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Abstract

As modern communications networks are heterogeneous and, therefore,
highly variable, the design of source coders should reflect this network variabil-
ity. It is desired that source coders are able to adapt instantly to any bit-rate
constraint. Source coders that possess this property offer coding flexibility that
facilitates optimal utilization of the available communication channel within a
heterogeneous network. Flexible coders are able to utilize feedback information
and therefore perform an instant re-optimization. This property implies that
flexible audio coders are better suited for networks with high variability due to
the fact a single configuration of the flexible coder can operate at continuum
of bit-rates.

The aim of the thesis is to implement a flexible audio coder in a real-time
demonstrator (VoIP application) that facilitates instant re-optimization of the
flexible coding scheme. The demonstrator provides real-time full-duplex com-
munications over a packet network and the operating bit-rate may be adjusted
on the fly. The coding performance of the flexible audio coding scheme should
remain comparable to non-flexible schemes optimized at their operating bit-
rates.

The report provides a background for the thesis work and describes the
real-time implementation of the demonstrator. Finally, test results are pro-
vided. The coder is evaluated by means of a subjective MUSHRA test. The
performance of the flexible audio coder is compared to relevant state-of-the-art
codecs.
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Chapter 1

Introduction

As modern communications networks are heterogeneous and, therefore, highly vari-
able, the design of source coders should reflect this network variability. It is desired
that source coders can adapt instantly to any bit-rate constraint. Source coders
that possess this property offer coding flexibility that facilitates optimal utilization
of the available communication channel within a heterogeneous network. Common
audio coding schemes are based on the source coding methods that are in generally
non-flexible. As a result they perform sub-optimally when the properties of the
communication channel are varying. This drawback of the traditional audio coding
approaches is addressed by flexible audio coding.

Heterogeneous networks typically provide feedback channels that can be used
to transmit auxiliary information to the encoder, for instance, about the available
bit-rate or a packet-loss rate. Non-flexible coding schemes are not able to utilize this
information fully as they only have a finite number of operating modes associated
with a final set of bit-rates and possible coder configurations. This often results in
sub-optimal performance, as it is common that the coder is faced with operating
conditions that are different than the conditions that it was designed for in a het-
erogeneous network. Flexible coders are able to utilize feedback information and
therefore perform an instant re-optimization. This property implies that flexible
audio coders are better suited for networks with high variability due to the fact a
single configuration of the flexible coder can operate at continuum of bit-rates.

In the remainder of this chapter, an overview of the state-of-the-art audio cod-
ing for communication purposes is presented. The overview provides background
information and explains the thesis motivation in more detail. Finally the thesis
objective and the outline is stated.

1.1 Audio Coding for Real-time Communications

This section focuses on providing an introduction to real-time audio communica-
tions. In particular, wideband (WB) monophonic schemes are discussed as they are
essential components of the state-of-the-art audio communication systems. These
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2 CHAPTER 1. INTRODUCTION

schemes may be further extended also to super wideband (SWB) coding scenarios
and to multi-channel cases (such extensions are beyond the scope of this thesis).

A real-time audio communication system consists of several functional blocks,
with the audio coding algorithm as one of them. A high level view of the real-time
audio communication system can be seen in Figure 1.1.

Pre-processing EncodingInput signal Communication
Channel

Decoding Post-processing Output signal

Figure 1.1: High-level diagram of communication system.

An input signal is first sampled from a microphone to obtain a discrete-time
representation. This operation is usually followed by several pre-processing steps.
The pre-processing can include an acoustic echo canceller (AEC), noise reduction,
resampling and equalization. After the signal is preprocessed, it is encoded into
a bit-stream that will be transmitted through a communications network. The
encoding is implemented by a dedicated encoder of the audio coder that is used.
Depending on the coding scenario, the bit-stream is divided into packets or frames
that are transmitted through the communication channel to the receiver. At the
receiver, the frames can be buffered and sorted by a jitter-buffer if the frames are
not received in order. In internet protocol (IP) networks this corresponds to the
UDP transport protocol, as with TCP-IP the packet ordering and the forward error
correction (FEC) is handled by the transport layer. The received bit-stream is then
decoded by the decoder block of the audio coding algorithm. Decoding may be
followed by post-processing which can include equalization, signal level adjustment
or enhancement (e.g., noise reduction). Finally, the post-processed signal is ready
to be played out.

The performance of the audio coding schemes is to a large extent determined by
properties of a communication channel (e.g., packet loss rate, available bit-rate). A
state-of-the-art audio coder should be able to utilize the available communication
channel in a best possible way. State-of-the-art audio coders, are, in general, not
flexible. This implies that they facilitate only a rate-distortion trade-off within a
limited set of operating bit-rates. Usually, it is difficult to obtain a coding algorithm
that remains efficient for a wide range of operating bit-rates. Instead, existing codecs
are highly tuned for their respective bit-rates. This leads to a situation where there
are several state-of-the-art codecs that co-exist and address different regions of a
practical range of operating bit-rates. In this thesis we focus on coding scenarios,
where operating bit-rate falls between 0.5 and 2 bits per sample. The state-of-the-
art audio coders that are relevant from the point of view of this thesis are gathered
and summarized in Table 1.1 where the bit-rate is given in kilobit per second (kbps).

G.722.1 is a low-complexity codec which has two operating bit-rates, 24 kbps
and 32 kbps [1]. This codec is transform based and uses the modulated lapped
transform (MLT) [2]. It uses overlapped frames and a fixed transform. To achieve
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Table 1.1: Wide-band real-time communication codecs

Codec G.722.1 G.722.2/AMR-WB G.729.1 Opus
Standard ITU-T ITU-T/3GPP ITU-T IETF

Date 1999 2001 2006 2011
Bit-rate (kbps) 24, 32 6.6 - 24 14 - 32 8 - 96

Type Configurable Configurable Configurable Variable
Frame (ms) 20 20 20 10 - 60

Look Ahead (ms) 20 5 29 5
Bandwidth (kHz) 7 7 4 / 7 4 - 48
Key Technology TFC ACELP ACELP DDC

LC BWE TFC TFC
TDBE Stereo
TDAC

efficiency, a considerable coding delay is required (40 ms). The main goal for this
coder is to provide low-complexity coding and this is achieved at a price of coding
efficiency and flexibility.

Another important codec is G.722.2 from ITU-T, which is also known as adaptive
multi-rate wideband (AMR-WB) in the 3GPP standardization [3, 4]. AMR-WB has
nine operating bit-rates and has an internal sampling frequency of 12.8 kHz, which
produces an effective bandwidth of 6.4 kHz. To obtain good coding performance for
wide-band signals, the missing part of the signal bandwidth must be reconstructed.
Therefore, in the highest supported bit-rate of 23.85 kbps, the coder uses bandwidth
extension (BWE) which extends the bandwidth from 6.4 to 7 kHz [5]. The key
technology of the AMR-WB codec is the code excited linear prediction (CELP),
which is implemented by means of an algebraic code yielding the algebraic code
excited linear prediction (ACELP) scheme [6]. This coder provides the state-of-the-
art coding quality of around 16 kbps. It does not, however, provide flexible rate-
distortion coding. Extending the coding approach of AMR-WB to other operating
bit-rates is non-trivial and requires a considerable effort. AMR-WB is therefore
unable to fully adjust to the available bit-rate in a heterogeneous network, especially
if the adaptation is desired to be performed in an on-the-fly manner.

AMR-WB also has an extension which is called AMR-WB+ [7]. The extended
version of AMR-WB was standardized in the course of 3GPP activities. The exten-
sion supports bit-rates up to 36 kbps, has stereo capabilities and is interoperable
with AMR-WB. The main advantage of AMR-WB+ is that it provides superior
quality compared to AMR-WB. This is possible by the introduction of several cod-
ing modes, where the coder can use different coding strategies (CELP, or transform
coding (TFC)). As the algorithmic delay of this coder is between 60 − 90 ms, it is
not feasible for real-time communications.

Another codec is G.729.1 [8], which is an embedded speech and audio codec
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that supports interoperability with G.729. The embedded coding within G.729.1
generates a structured bit-stream that consists of layers corresponding to differ-
ent quality levels. The bitstream is generated in such a way that the bit-rate can
easily be reduced by stripping off bits from the bit-stream by reducing the num-
ber of transmitted layers. The first layer is the core layer that corresponds to the
legacy G.729 format which is at 8 kbps in a narrow-band scenario. The second
layer enhances the narrow-band quality and operates at 12 kbps. The third layer
uses time-domain bandwidth extension (TDBWE) [8] to extend the bandwidth to
wide-band and operates at 14 kbps. The following layers uses time-domain aliasing
cancellation (TDAC) [8] and add 2 kbps every layer up to the maximum bit-rate
of 32 kbps. G.729.1 offers a set of operating bit-rates on its rate-distortion perfor-
mance, which implies a combination of different techniques making the extension
to the continuous rate-distortion trade-off case non-trivial. However, as the use of
TDAC that uses a modified discrete cosine transform (MDCT) [9] for analysis, 20
ms of overhead is added, which is not ideal for low-delay real-time communications.

Opus is a new state-of-the-art flexible embedded codec that is currently under
evaluation for inclusion of a IETF standard [10]. The Opus codec is a combination
of SILK [11] and CELT [12]. Opus has three main operation modes; speech, audio
and automatic. This codec is flexible since it can operate over a wide range of bit-
rates ranging from 6 kbps narrow-band up to 128 kbps full-band. At lower bit-rates,
SILK is used to code the lower band (up to 8 kHz) of the frequency spectrum and
when the bit-rates allows, the higher band of the spectrum is coded with CELT
resulting in a so-called hybrid mode. SILK uses a flexible quantization method
which is called delayed decision noise shaping quantizer (DDNSQ) that provides
very good speech performance at lower rates. The SILK coder is very efficient for
speech signals, however its performance depends on the type of signal. For bit-rates
lower than 1 bits/sample it is not efficient for audio. The audio mode is therefore
addressed by the CELT codec. The audio mode, which only uses the CELT codec,
is comprised of a transform based codec which is based on the usage of MDCT.
Moreover, the audio mode also support stereo. When CELT is used, the operating
bit-rate is restricted to be not less than 32 kbps in order to maintain the efficiency
of the energy envelope preservation.

The combination of different coding strategies for different types of signal is
certainly efficient in terms of coding quality, however it leads to complicated coding
schemes that are very hard to optimize for any specific bit-rate. Recently, flexible
audio coding was proposed with a goal to provide the state-of-the-art over a con-
tinuous range of operating bit-rates using a tractable and consistent coding method
[13, 14].

1.2 Thesis Objective and Outline

The main focus of this thesis is to implement a framework for the operation of
an audio coder that uses a flexible audio coding scheme. The framework should
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demonstrate the rate-distortion trade-off that is performed in a flexible manner.
Specifically, the implementation task includes generation of a bit-stream, packeti-
zation, transmission through a network, decoding and play-out. A simple network
model is assumed, where there are no packet losses and the transmission delay is
constant. This model is not realistic, but still provides means for evaluation of coder
flexibility. The usage of a more accurate network model is beyond the scope of this
thesis.

The goal for this thesis is to implement a flexible audio coder scheme that is
based on the work of [14, 13]. This flexible audio coding is achieved by means
of statistical modelling of the audio signal and by utilizing distribution preserving
quantization (DPQ) [15].

The implementation should demonstrate the following properties of the flexible
audio coder:

• real-time operation,

• instant re-optimization of the scheme,

• coding performance comparable to non-flexible schemes optimized at their
operating bit-rates.

In addition to these properties, the benefit of the DPQ approach may be eval-
uated by comparing it to a classical entropy-constrained quantization. This is im-
plemented by providing the user with the possibility to choose between DPQ and
the entropy constrained quantization operating at a variable bit-rate. This imple-
mentation work consists of:

• designing a voice over IP (VoIP) application to utilize the flexible audio codec,

• implementing instances of audio encoder and decoder,

• implementing the bit-stream generation (entropy coder and entropy decoder),

• designing and implementing a demonstration specific real-time protocol (RTP).

This thesis is organized as follows.
Chapter 2 introduces fundamental concepts in audio coding using source coding

tools. As the thesis focuses on the flexible audio coding, some important source
coding concepts that facilitate the flexible-rate distortion trade-off are described.
Finally, a basic introduction to flexible audio coding is presented.

Chapter 3 provides a method for flexible audio coding which is then followed
by a high level architecture view of such a codec. The chapter is then summarized
with a detailed description of how flexible audio coding methods are implemented
in an audio codec.

Chapter 4 gives an overview of the implementation of a real-time demonstrator
that was created during the work on this thesis.
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In Chapter 5, the real-time implementation is evaluated by means of objective
and subjective testing and the obtained results are discussed in detail.

Chapter 6 provides some final conclusions and discusses possible improvements.



Chapter 2

Fundamental Concepts in Audio
Coding

This chapter contains a short introduction to audio coding. The presentation focuses
on common techniques used in real-time audio coding for communication and, in
particular, on these aspects that are relevant to flexible audio coding.

In the first section, a brief discussion on the fundamental concepts in source
coding is made. These concepts are then related to their applications in audio
coding. The discussion provides a technical background to the implementation task
of this thesis. The chapter is summarized by providing audio coding attributes that
are important from the point of view of designing a flexible audio coder.

2.1 Source Coding Background

In this section it is assumed that the signals are discrete-time with discrete ampli-
tudes (unless otherwise stated). This means that the analog signal is first sampled
and a discrete-time representation is obtained. The discrete-time signal with sam-
ples taking continuous values is then quantized to yield discrete-valued signal. Since
the discrete-time is used, all the quantized samples may be indexed by a time index
i. A value of the considered signal may be then seen as a time-indexed random
variable Xi. In this section it is assumed that the signal is stationary.

The first useful information-theoretic quantity that characterizes Xi is the en-
tropy. Assume that Xi can take any value x from the discrete set of possible values
A with a probability pXi(x) = P (Xi = x). The entropy of Xi is defined as

H(Xi) = −
∑
x∈A

pXi(x) log2(pXi(x)) (2.1)

and specified in bits. The entropy specifies how many bits is required to reconstruct
the process Xi without any loss of information. One may also consider blocking the
consecutive realizations of Xi (with respect to the time index i) into a k-dimensional

7
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random vector Xk
i = [Xi−k, · · · , Xi]T (assuming that the past samples are avail-

able). In this case the entropy can be defined as joint entropy

H(Xk
i ) = −E

{
log2 pXi−k,...,Xi(Xi−k, ..., Xi)

}
, (2.2)

where time indices lower than k indicate previously observed scalar values, E{·}
denotes an expectation and pXi−k,...,Xi denotes a joint pdf.

This first-order entropy in equation 2.1 does not account for dependency be-
tween samples. The joint entropy in equation 2.2 may be used to define a k-th
order entropy Hk(Xk

i ) = 1
k H(Xk

i ). As the block processing of samples is a typical
approach in coding, it is convenient to define the entropy rate

H∞ ≡ lim
k→∞

1
k

H(Xi−k, · · · , Xi), (2.3)

where the k → ∞ is the dimension of the vector or block.
If the samples are independent, identically distributed (iid) the entropy rate the

block is H∞(Xi) = H1(Xi). This means that if the samples are iid within the block,
there is no redundancy between samples. This property may be evaluated by means
of the redundancy rate

ρ(Xi) = H1(Xi) − H∞(Xi). (2.4)

The definition of the redundancy in equation 2.4 is considered on sample-by-
sample basis. As mentioned earlier, block processing is more common in practice
and therefore a useful parameter is the total redundancy rate that is defined by

ρT (Xi) = L − H∞(Xi), (2.5)

where L is the average bitrate per sample. In equation 2.4 the block size is m = 1,
however if instead the length is considered to be m the redundancy can be redefined
as the inter-block redundancy

ρm(Xi) = Hm(Xi) − H∞(Xi). (2.6)

Another redundancy rate is the dependencies by samples in the block and have the
notation intra-block redundancy rate

ρc(Xi) = L − Hm(Xi), (2.7)

These two combined gives the total redundancy rate

ρT (Xi) = ρm(Xi) + ρc(Xi). (2.8)

The equation 2.8 describes the average redundancy within a coding block that
should be exploited by a coding algorithm.

Another important property from the point of view of source coding is related to
the fact that some distortion might be tolerated in the received signal. This property
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may be exploited and leads to the lossy coding paradigm that is commonly used
in audio and video coding. The lossy coding is based on irrelevancy removal, lossy
coding is necessary when the rate budget is restricted and perfect reconstruction is
not possible. It exploits the fact that some information that is not needed for the
receiver to interpret the signal may be removed leading to an acceptable level of
distortion. This is known as the irrelevancy rate

ζ(Xi) = H∞(Xi) − R(D), (2.9)

where R(D) is the rate-distortion bound.
The rate-distortion bound R(D) is a function that associates the number of bits

R needed to represent the coded signal and the distortion D, where the distortion
represents the difference between the original signal and the reconstructed signal.
Since in the context of audio coding the objective is to minimize the perceptually
perceived distortion, an appropriate distortion measure that evaluates the difference
should be used. However these perceptually-relevant distortion measures are often
complex, so instead a simple sample based distortion criterion such as the mean
square error (MSE) is used which is known to be relevant to the perception only at
very low distortions. To make the MSE efficient as a distortion measure, the signal
is companded into the perceptually weighted domain.

R(D) provides a theoretical lower bound of the compression, based on the dis-
tortion and probability density function (pdf) of the source. The R(D) serve as a
guideline while designing a practical source coder but does not provide any practical
tools to achieve this bound. As a description of the general rate-distortion function
is unnecessary for this thesis, only the specific case with a Gaussian distributed
variable X is reiterated

R(D) = 1
2

log2(σ2
x

D
), D ≤ σ2

x, (2.10)

where σ2
x is the variance of the random variable X.

This concludes the short discussion about basic source coding concepts. These
concepts are useful in the contexts of lossy and lossless coding.

2.1.1 Lossy Coding

The main purpose of irrelevancy removal (lossy coding) is to minimize the trans-
mission of irrelevant information. This is usually achieved by appropriate design
of quantizers. In the remainder of this section the formulation of two optimality
criteria for signal quantizers that are particularly useful in source coding is provided.

Scalar quantization is a simple form of lossy coding. It is used to encode scalar
continuous random variables. This is represented by a mapping Q of a real line R to
a codebook C = {ci}i∈I , where I is a set of indices. The mapping is often performed
in two steps. First, an encoding step assigns an index i to a point representing the
value to be quantized by means of Qe. The index can be converted into a bit-stream
or a binary codeword. It can be further stored or transmitted. The index can be
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decoded into a reconstruction point ci by means of Qd. Therefore, the quantization
can be seen as a pair of encoding and decoding mappings:

Qe : R → I,

Qd : I → C, (2.11)

where the subscripts e and d represent encoding and decoding operations respec-
tively.

The scalar quantizer is not the optimal way to quantize a signal (in particular
audio signals). The drawback of a scalar quantizer is that it can not remove all
irrelevancy. This can be illustrated in the entropy constrained case by by compar-
ison to the rate-distortion function for a entropy constrained (fixed average rate)
scalar quantizer operating on a Gaussian random variable with no inter-symbol
redundancy [16]

H(Xi) = 1
2

log2(
σ2

xi

D
) + 1

2
log2(2πe

12
). (2.12)

If equation 2.12 is used in equation 2.9 it can be seen that ζ(Xi) ≈ 0.25 bits,
which shows that a scalar quantizer cannot remove all irrelevancy. The scalar quan-
tizer cannot achieve R(D), however it has an advantage of low-complexity and
facilitates analytical optimization with an aid of the high-rate theory [16].

The vector quantizer (VQ) is a generalization of the scalar quantizer, and as
the name suggests, it operates on multi-dimensional space. The difference to the
scalar quantizer is due to multi-dimensional quantization cells, which, in general,
can exist in a k-dimensional space Rk. The operation of the vector quantizer can be
illustrated by the same two-stage mapping as the scalar quantization, except that
the dimensionality of the signals space is now k. This implies that the reconstruction
points are also in Rk.

Qe : Rk → I,

Qd : I → Ck. (2.13)

The vector quantizer can, with increasing dimensionality k and after fulfilling
some technical conditions, converge asymptotically to the rate-distortion bound [16].
This indicates that a vector quantizer can remove both irrelevancy and redundancy
as it converges closer to the rate-distortion bound than the scala quantizer. Irrele-
vancy is removed because of the limitation of precision and the means to remove the
redundancy are obtained due to the dependency between samples are reflected by
the codebook vectors. This may suggest that the vector quantizer is the ultimate
solution for all practical audio coding problems. However this is not the case. As
the dimensionality of the vector quantizer increases, the computational complexity
increases exponentially, which complicates the design and usage. The complexity
problem can be solved partially by usage of structured vector quantization (e.g., lat-
tice quantizers). However, other problems appear, such as a difficulty in obtaining
an efficient coding of quantization indices (e.g., due to truncation problems).
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Since an index i ∈ I must be converted into its binary representation for the
transmission over network, there are two approaches that are commonly used. One
approach assumes that every index i is assigned with a codeword of a fixed length of
B bits. This approach results in so-called fixed-rate coding and the corresponding
quantizer is resolution constrained. The other practical approach aims at coding
the indices at a variable bit-rate and is presented in the next section. The bit-
rate constraint is formulated in terms of a fixed average bit-rate and the obtained
quantizer is thereof entropy constrained. This thesis focuses on the later case.

2.1.2 Lossless Coding

After irrelevancy removal, the signal is described with a finite number of discrete
random variables. A method called lossless coding or entropy coding can now be
used to code a signal without introducing any type of distortion. A direct method
to convert the quantized indices would be to describe them each individually with a
binary codeword, where a set of codewords is called a code. As different codewords
have different lengths, the mean codeword length may be used to characterize such
a code. As seen in the previous section, coding the quantization indices with respect
to the first-order entropy equation does not account for dependency between sam-
ples. Instead of code on an individual sample-basis, one can create a codeword for a
sequence of iid samples, and then it is then often possible to reach an optimal (the
lowest possible) average codeword length, which is lower than for the single sam-
ple scenario. When coding a concatenated sequences of variables with codewords,
the codewords should be assigned uniquely. This guarantees the that decoding is
possible. A constraint on possible codeword lengths {l(x)}x∈A is used to design a
practical code. This constraint is described by the Kraft inequality

∑
x∈A 2−l(x) ≤ 1.

The Kraft inequality can then be used to obtain the source coding theorem [16],

H(X) ≤ L < H(X) + 1, (2.14)

where L =
∑

x∈A pX(x)l(x). The source coding theorem states that the minimum
average length of a uniquely decodable code is between the entropy H(X) and
H(X) + 1 bit. Therefore an estimate of the entropy of a source could be used to
evaluate the performance of a practical implementation of a lossless coder.

There are different approaches to apply practical lossless coding to a signal but
it can in general be divided up into two categories. First there are codes that require
a-priori probability distributions. There are also universal codes that do not require
this. The first category exploits the knowledge of the probability mass function of a
source, this means that the coding scheme is able to assign short codewords to the
sequences of indices with high probability and longer codewords to the sequences
with lower probabilities (e.g., the indices on the tail of the distribution). Two
common implementations of these lossless coders are Huffman-coding and arithmetic
coding [16]. The second category do not use any a-priori statistical properties of the
signal and therefore no prior pmf estimation is needed (in practice, the statistics of
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indices are learnt directly form the coded sequence instead), a methodology is the
the Ziv-Lempel code, this method is however rather theoretical and impractical.

2.2 Audio Coding Techniques

In this section common audio coding techniques for the forward adaptive coding are
briefly discussed. In the forward adaptive coding paradigm, the signal samples are
blocked into blocks that are subject to coding. An efficient coding scheme should
exploit the statistical dependencies between the blocks (inter-dependencies) and the
statistical dependencies within a block (intra-block dependencies). In this section
several common tools to remove redundancy in audio signals are presented: the
inter-block coding methods, which exploit inter-block redundancy, will be described,
and the intra-block coding methods.

The forward adaptive audio coders that perform coding on a block basis can
further be sub-divided into two groups with respect to the signal representation
that is used. Hence audio coders can roughly be divided up in two general classes:

• Waveform approximation coders

• Parametric coders

Waveform approximation coders strive to reconstruct the original signal with
the smallest quantization error as possible while parametric coders reconstruct the
signal from parameters and do not converge towards the original signal.

Parametric coders, as the name suggest, use a parametric representation to
describe important properties of the signal that are needed for an efficient signal
reconstruction. In general, a parametric coding scheme is able to operate a low-bit
rate achieving a toll quality. However as the quality can only reach a certain level
and saturates, therefore pure parametric coders are only used at the lowest bitrates.
In waveform coding the signal is quantized and the goal is to minimize the error
between the reconstructed and the original audio signal.

In modern audio coding these techniques are often combined to provide the
best of both worlds in hybrid coding. Some parameters might be extracted and
sent as side information, the residual signal (signal after parameter extraction) is
then quantized in terms of waveform quantization and this combination gives better
performance than each technique would do by itself.

This thesis focuses on the waveform coding approach and therefore the following
discussion is limited to this case.

2.2.1 Inter-block Coding

The inter-block redundancy described in equation 2.6 is commonly exploited in
audio and speech coding for more efficient coding. When encoding the n-th block,
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the information from previous blocks can be used to calculate the predicted block

r = E(Xn|Xn−1, · · · , X0), (2.15)

where Xn−1, · · · , X0 is the previous blocks. The predicted block r describes de-
scribes the prediction about a currently encoded block based on the previously
coded blocks. The vector r may be interpreted as so-called ringing. The ringing
can be decomposed into two contributions: one accounting for the short term de-
pendency between the samples on a boundary between the coded blocks and one
accounting for the longer dependencies. The decomposition of the ringing vector is
usually motivated by a convenience of implementation. We limit our discussion to
the case where the estimator described by equation 2.15 is linear.

The short term ringing subtraction, which often is noted as ringing subtrac-
tion, is based on exploiting of sample dependencies on the boundary between two
blocks. The ringing subtraction is commonly used in the state-of-the-art audio cod-
ing schemes. For instance in CELP schemes, the ringing of the synthesis filter [17]
used in the analysis-by-synthesis scheme needs to be accounted for. The ringing
subtraction operation exploits the signal envelope-related dependencies. These de-
pendencies may be described by an autoregressive (AR) model. The model is used
to design whitening filters that yield signal representation that may be efficiently
quantized. In practice, the AR is estimated by means of linear prediction (LP).

Another important tool to remove inter-block dependencies is a long term predic-
tion. (LTP) The LTP exploits a periodic nature of audio signals, which is normally
occurring during a large portion of speech and audio segments. This periodic nature
of audio signals is commonly modelled by the term pitch [18]. The notion of LTP
is implemented by means of pitch subtraction. The pitch subtraction operation is
driven by a pitch model

E(t) = X(t) − βX(t − T ), (2.16)

where E(t) is the residual (or so-called innovation) after the pitch contribution
βX(t − T ) has been subtracted from the current signal in a open loop. X(t) and
β is the pitch decay factor and T is the pitch delay (pitch lag). The equation 2.16
may be rewritten as a filtering operation. If the Z transform is used, the pitch can
be modelled by a one tap filter

X(z) = E(z)
1 − βz−T

, (2.17)

where X(z) = Z{X(t)} and E(z) = Z{E(t)}. Both of these methods must be
used to reduce redundancy in practice. The LTP has a huge impact on the coding
performance and, therefore, it is essential for any state-of-the-art codec operating
at low or moderate rates.

The ringing subtraction operation performed at the encoder has its counter-
operation performed at the decoder. In order to reconstruct the signal at the de-
coder, the ringing contribution must be estimated and added to the reconstructed
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signal. As the decoder has only access to previously reconstructed signal X̂, the
reconstruction can only be based on that signal. The encoder has access to the orig-
inal signal. If the prediction at the encoder would be based on the original signal,
there would be a mismatch between the encoder and the decoder which means they
are not in sync, which would affect the performance of the coding scheme. This cor-
responds to a situation, where so called open-loop prediction is used. Alternatively,
a closed-loop prediction may be used, where the encoder perform a local decoding
and uses the locally decoded signal to facilitate its prediction. This corresponds
of using the decoded signal X̂n−1, · · · , X̂0 in equation 2.15. Closed-loop predic-
tion complicates the encoder but has a number of advantages over the open-loop
prediction.

2.2.2 Intra-block Coding

As the first two methods focus on remove redundancy based on the signal from previ-
ously decoded blocks, the following two methods focus on exploiting the redundancy
between the samples within the currently coded block according to equation 2.7.

The first method to exploit these dependencies is prediction, which is also the
most common tool used in codecs for audio communications. It offers relatively
low delay, low complexity and good performance in practice. The term prediction
refers to the method predicting the next sample of a process based on the previous
samples. Formally, the prediction operation employed to intra-block coding requires
that the signal is stationary within a block. This assumption is usually realistic for
blocks with duration of approx. 20ms.

The original signal is used as condiments in a analysis filter to compute a pre-
diction residual. The original signal is simply filtered by the analysis filter to obtain
the residual signal. The rate reduction bound for stationary Gaussian process with
variance σ2

x and with prediction error variance σ2
p can be defined as

ρ(Xi) ≥ 1
2

log σ2
x

σ2
p

, (2.18)

where p is the predictor order and σ2
p ≤ σ2

p−1 for p ∈ {1, 2, · · · } [16]. When p → ∞
the bound is tightest, this is however not practical due to memory and complexity
constrains of practical implementations. Therefore for wideband audio signals the
order 16 of the predictor p is normally used. Since the variance of the prediction
error is lower it seems natural to quantize this for transmission. However one of the
main drawbacks of linear prediction is that the filtering operation is not invariant
with the error criterion, this means that the MSE criterion which was optimal in
the weighted signal domain is not optimal in the so-called excitation domain. The
prediction can be seen as a non-unitary transform, which has certain disadvantages
for coding. Nevertheless, the prediction is commonly used in the state-of-the-art
audio coders.

Another approach that addresses intra-block dependencies assumes signal quan-
tization in the transform domain (so-called transform coding). Transform coding
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is also a method to exploit redundancy and it is commonly used in audio coding.
While prediction removed redundancy in terms of minimize the variance, the trans-
form tries to concentrate energy of the signal coefficients within a few number of
them. This approach is able to exploit the redundancy.

The unitary transforms are commonly used in coding. If the transform is unitary,
it conserves the MSE criterion meaning that the squared error in the signal domain
is the same as the squared error in the transform domain. This is in contrast to
prediction, which does not render such a property.

Two types of transform which is commonly used in audio coding is non-adaptive
transforms and adaptive optimized transforms. As the names suggest non-adaptive
transforms are fixed and the adaptive transforms are calculated for individual blocks
based on some statistical model.

Both transforms types have their benefits and drawbacks. The transforms with
adaptation may be optimal since it is calculated based on the statistics of the actual
signal. It can therefore achieve a better energy concentration than a non-adaptive
transform. This however comes with the price of complexity. The model needs to
be estimated and then the actual transform need to be derived from that model.
Also since the signal statistics is unknown at the decoder these have to be quantized
and transmitted which increases the bitrate.

The fixed transforms can be asymptotically optimal as the dimension is k → ∞
which is not achievable in practice due to a delay constraint, but for practical block
lengths, the non-adaptive transform are still able to concentrate the signal energy.
A design trade-off for the non-adaptive transform is therefore between the coding
delay and the coding gain. Also since, in this case, the transforms are fixed they do
not require any additional transmission.

The main benefit of unitary transforms is that they render the efficiency of
the MSE criterion that is used to design the quantizers operating in the transform
domain.

2.2.3 Audio Coding Structure

In the previous sections the theory and the methods to apply the theory was in-
troduced, in this section it will be combined to present a audio coding scheme. If
equation 2.8 and equation 2.9 is used in equation 2.5 this gives the total average
rate

L = ρ(Xi) + ρc(Xi) + ζ(Xi) + R(D). (2.19)

This can then be realized in a coder architecture which can be seen in figure 2.1.
First redundancy is exploited by means of signal processing which has been de-
scribed in the previous section which described inter and intra-block coding. In the
second step the irrelevancy is removed by means of quantization using a perceptu-
ally meaningful distortion measure. The quantization outputs quantization indices
that still include some redundancy (they require entropy coding). The redundancy
removal (from the quantization indices) is finally done by lossless coding.
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Figure 2.1: Audio coding scheme block diagram.

This concludes the introduction of some common concepts in audio coding. In
the next sections audio quality assessment is discussed as the subjective coding qual-
ity versus operating bit rate is of high importance for evaluating the performance of
audio coders. The chapter is concluded by some discussion about important audio
coding attributes.

2.3 Audio Quality - Subjective Quality Assessment
Lossy coding obviously introduces a distortion. The audio quality of the audio
codec becomes the parameter of a high practical interest. For newly developed
codecs the audio quality needs to be evaluated to make sure that such a codec
performs satisfactory (e.g., compared to the current state-of-the-art codecs). This
evaluation is often categorized into two methodologies: subjective quality evaluation
(performed by means of listening tests) and objective quality measurements (that
can be automated).

The subjective evaluation is done by means of listening test that needs to be
performed to assure the subjective performance of the audio codec. Typically, such
a test involves a large number of listeners that evaluate the codec over a large
number of test conditions. There are different types of subjective test with different
types of rating. Commonly used test methodologies is:

• absolute category rating (ACR) which is commonly used for transmission
quality assessment with a scale from 0 to 5,

• multiple stimuli with hidden reference and anchor (MUSHRA) [19],

• A/B test that facilitates a simple comparison of two test conditions.

The test results obtained form a large number of listeners are statistically evaluated.
For example, the average test scores may be calculated, which gives a mean opinion
scores (MOS).

The MUSHRA test is a subjective assessment for intermediate quality levels of
coding systems. The MUSHRA test has a scale which ranges from 0 to 100, which
makes it possible to rate smaller differences, also a hidden reference together with
an low pass filtered reference (Anchor) is used. If an anchor signal is used the scale
is closer to an absolute scale. All codecs are compared at the same time which
makes the requirement of participants smaller than the ACR test. A/B test is used
to compare single variable test, this can for example be tuning of some parameter.



2.4. AUDIO CODING ATTRIBUTES 17

The subjective tests are expensive in terms of man hours and therefore the main
motivation to use objective test is to reduce cost. As the subjective tests are both
costly and time consuming therefore in many situation objective evaluation tools
are used instead. Objective test is cost effective and also repeatable on larger scale
compared to subjective tests. A main disadvantage of the objective test is that it
does not necessarily produce a reliable results (especially in the case where a newly
developed coding scheme is analyzed).

Simple measures as signal-to-noise ratio (SNR) with MSE criterion are not per-
ceptually relevant at low bit rates therefore a more advanced objective measure
is needed. Perceptual evaluation of speech quality (PESQ) is a standard for ob-
jective testing of speech quality. It uses the same scale as the ACR test and the
result from PESQ should correspond to similar test results from a subjective test.
The current PESQ standard supports wideband speech signals between (50-7000Hz)
[20]. The successor of PESQ is P.OLQA which supports super wideband (SWB)
speech signals (50 - 14000Hz). This is needed for evaluation of the next generation
state-of-the-art codecs which will support SWB. However, P.OLQA and PESQ only
supports speech and can therefore not be used on general audio signals. This is
the purpose perceptual evaluation of audio quality (PEAQ) standard [21]. However
PEAQ does not support the low bitrates with high distortions which is needed for
evaluation of audio codecs operating at low bit rates and it is therefore only useful
and recommended at higher rates.

2.4 Audio Coding Attributes
Except the coding quality there are several other attributes of audio coding scheme
that are important form the point of view of the design. These attributes describe
the performance of a codec in terms of practically-relevant parameters. Some of
them are useful in terms of constraining the design. Some of the attributes are
practically related by means of design trade-off, i.e. low transmission rate results
in lower audio quality due to higher distortion, etc. The discussion starts with a
presentation about delay.

2.4.1 Delay

Delay is an important audio coding attribute. In order to keep a conversation in
communication system in decent quality, a delay smaller than 200 ms is preferred
[22]. But the conversational quality starts to degrade quickly already at 100 ms.
There are many components in a audio communication system that influence the
end-to-end delay for the end user:

• Sound capture

• Preprocessing

• Encoding
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• Network

• Jitter buffers

• Decoding

• Postprocessing

• Sound playback

As seen, the algorithmic delay of the audio codec is just one contributor to
the total delay of the system. The shorter delay in the codec the longer delay is
acceptable in the network and the other components. This has created a market for
low-delay codecs. However, these typically require a much higher bit-rate to achieve
a similar quality than codecs with moderate delay such as 25 ms. As lengthy coding
delay is not desired, it can certainly help to achieve a more efficient coding scheme.
Depending on the application, the acceptable coding delay of codecs for real-time
communications varies between 16 and 40 ms.

2.4.2 Operating Bit-rate

One of the most important attributes of audio coding is the number of bits that
is required to transmit the audio bit-stream to the decoder. When bits are used
to specify the transmission rate, it is usually specified in terms of bps. Since the
bit rate used in practical applications usually is much higher the term kilobit per
second (kbps) is more commonly used. If the sampling rate for the system is known
then the term bits per sample can also be used. In this thesis for wideband coding
systems that use a sampling frequency of 16 kHz the bit-rate is described as

• Low-rate < 5 kbps

• Medium-rate < 8 kbps

• Intermediate-rate < 16 kbps

• High-rate ≥ 16 kbps

In practice, the bit-rate may be specified in a number of ways. By far, the
two most common scenarios include the case of a fixed bit-rate and the case of a
average bit-rate. Therefore, the bit-rate constraint is often formulated in terms of
fixed rate constraint and average bit-rate (entropy) constraint. These cases are not
dual and in principle the systems can be optimized according to any of the two
criteria. The bit-rate constraint is closely related to the design of signal quantizers.
For example, the constrained resolution approach tries to minimize the distortion
by finding the optimal centroid density function given a fixed codeword length (a
fixed rate) yielding a resolution-constrained quantizer. The constrained entropy (at
high bit-rates) leads to a uniform density of the reconstruction points, which leads
to uniform entropy constrained quantizers.
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The most common quantization method used in the state-of-the-art audio coding
is the resolution constrained quantization. Therefore many state-of-the-art coders
operate at a fixed rate. This is mainly because the traditional communications sys-
tems used to operate at a fixed rate (e.g., radio channels in GSM). The constrained
resolution systems have an advantage since generation of the bit-stream becomes
very simple in this case. In principle, vector quantizers optimized for the resolution-
constrained scenario can be used to achieve an efficient coding. The design typically
involves iterative procedures (e.g., Lloyd-Max algorithm) that prevents flexible cod-
ing.

2.4.3 Computational Complexity and Memory Requirements

The computational complexity and the memory required for an audio transmission
system is associated with some operational and implementation costs. These costs
affect applicability and usefulness of a particular coding approach. It is therefore
of a high practical interest to reduce the associated costs during the design of an
audio coding communication system.

The memory requirement in a codec is mostly dependent by the number of code-
books that needs to be stored. The number of codebooks is therefore often limited
to some small number of operating modes. This however limits the flexibility of the
audio codec. A small memory footprint is important for embedded implementations
as well as the download size of the codec when it used in VoIP applications.

Computational complexity is a typical concern when developing codecs. This is
especially true since codecs for real-time communications should be able to perform
real-time operation on small embedded devices such as mobile phones. Performance
can be evaluated either through theoretical analysis [23] in the design phase or by
profiling in the implementation phase. Profiling is done by running an instrumented
codec on a specific platform to evaluate some performance related counters. This
means that the codec needs to be implemented and properly instrumented before
any benchmarking can be performed. Therefore, profiling is commonly used to find
bottlenecks in implementations. These bottlenecks can then be optimized for a
specific platform with machine specific code. Theoretical analysis is often a more
useful tool to evaluate an algorithm while it is developed. It gives a rough estimate
on the performance.

The algorithmic complexity may be conveniently expressed using the notation
is called the Big-O. If T (n) is the run time of an encoder and n is the dimension
of the input vector, then the run time can be expressed as T (n) = O(f(n)) where
f(n) is an encoder function. The two following rules [23] makes the usage of the
Big-O straightforward to use:

1. Constant factors do not matter. O(df(n)) = O(f(n)) where d is a constant.

2. Low-order terms do not matter. Only the largest polynomial has to be kept
since it will dominate any other polynomials at large n.



20 CHAPTER 2. FUNDAMENTAL CONCEPTS IN AUDIO CODING

2.4.4 Transmission-Error Sensitivity

Any audio codec applied to coding through a network with losses will face the
problem of transmission errors. The transmission errors can involve bit-errors where
some bits of the transmitted bitstream are inverted. In addition, there can be packet
losses, where some part of the bitstream is lost due to dropping of a packet. Often
telecommunication system over networks use the transport protocol user datagram
(UDP) since it has smaller overhead and lower delay due to no retransmission of
packets if an error occurs. Since no error handling is used on the transport layer
this needs to be handled at a higher layer in the OSI stack. Usually a channel
coder is used ensure that no packet loss or bit-errors is accepted. A jitter buffer is
used to do ensure that the packets are provided to the decoder in the correct order.
Some codecs are designed to be robust against frame erasures such as G.718 and is
thereby a good choice for VoIP applications in IP networks [24].



Chapter 3

Flexible Audio Coder

In this chapter a high-level view on the architecture of the flexible audio coder
(FAC) is provided. The description is based on the work of [13, 14]. The architecture
includes a number of state-of-the-art components that are based on AMR-WB codec
[4] and on the quantization method of [15]. The high-level view focuses on the
functional description of the obtained coding structure and provides implementation
details for encoder and the decoder.

3.1 Coding Driven by a Statistical Signal Model
The philosophy behind this flexible audio coding scheme is motivated by using a
statistical model of the audio signal. The audio signal is modeled as a stochastic
sequence of samples {X(t)}, these are blocked into non-overlapping signal frames
xm. An m-th frame is then a realization of a k-dimensional random vector Xk. It
is assumed that the signal is stationary within a duration of a frame. The random
vector Xk have a distribution specified by fX(x). If the subscript m is dropped
fX(x) can be approximated by a generic mixture model

fX(x) ≈
∫

pΘ(θ)gX|Θ(x|θ)dθ (3.1)

where pΘ(θ) is a pdf of the parameter Θ and gx|Θ(x|θ) is the pdf of s conditioned
on the model parameters Θ.

Efficient coding of such a source described by 3.1 is done in two steps. The first
step is to estimate a vector of model parameters that governs the statistical signal
model for the signal block. The estimation is performed according to the maximum
likelihood criterion,

θ̂(x) = argmax
θ

gx|Θ(x|θ) (3.2)

where θ̂(x) is the vector of estimated model parameters. Since the parameters need
to be known at the decoder side they need to be quantized for transmission. Let
the quantized model be denoted by θ, the quantized model can then be used to
calculate the adaptive codebook C which is used to quantize the signal.

21
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The approach yields a two-stage description of the signal. Each block is encoded
by a description including the quantized model parameters θ and a representation of
the quantized signal, where the quantizer is based on C. Such an approach falls into
the class of forward adaptive coding methods. The approach leads to a practical
coding architecture that is described in the following section.

3.2 Coder Architecture
A high-level overview of the audio coder can be seen in figure 3.1. The coder

estimate and quantize Signal Model (LPC, pitch parameters , gains)

perceptual 
weighting

KLT normalize DPQ de-normalize inverse KLT∑ ∑

prediction

perceptual
un-weighting

input speech

output speech

Figure 3.1: High-level view on the architecture of the flexible audio coder.

is implemented as a model driven forward-adaptive coding scheme. The coding is
performed on a block basis in the perceptually weighted domain. As the block di-
agram indicates the perceptual weighting is based on the signal model (specifically
on a quantized LPC model, see Section 3.2.2). To inter-block dependencies are
removed by the means of ringing subtractions. The ringing subtraction is imple-
mented in a closed-loop fashion (the estimation of ringing is based on the previously
reconstructed signal). The intra-block decencies are handled by a signal adaptive
transform. The perceptually weighted signal is transformed to a transform domain
yielding a vector of transform coefficients. The transform coefficients are quan-
tized by means of a scalar quantizer. Prior to quantization they are normalized.
Reconstruction comprises de-normalization, applying of an inverse transformation,
ringing addition and finally inverse weighting. These operations may be now divided
between the encoder and the decoder.

The encoding can be roughly divided into following operations:

- Estimation and quantization of the (probabilistic) signal model;

- Generation of the bit-stream for the description of the signal model;

- Weighting the input signal into a perceptually optimized domain;

- Computation of ringing and ringing subtraction;

- Calculation of the optimal adaptive transformation given the signal model;

- Signal normalization;
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- Signal transformation;

- (Scalar) quantization in the transformed domain;

- Generation of the bit-stream for the signal description (arithmetic coding).

The decoding operations include:

- Decoding of the signal model bit-stream;

- Computation of the perceptual model, the (inverse) adaptive transform and
the ringing signal based on the decoded signal model;

- Decoding of the bit-stream with the signal description;

- De-quantization and signal de-normalization;

- Inverse transformation of the de-quantized signal;

- Addition of the ringing signal;

- Inverse (perceptual) weighting yielding the final reconstruction of the signal.

The statistical model introduced in Section 3.2.1 needs to be specified in more
detail. A block of the input signal is modelled by a multivariate Gaussian model.
The model is estimated at the encoder. Since it must be known to the decoder
it is parameterized and quantized. The multivariate Gaussian model has two pa-
rameters: mean and covariance matrix. The parametrization of the multivariate
Gaussian model is obtained by representing its covariance matrix by means of an
AR model. The AR model is concatenated and consists of two parts. One part
model the short-term dependencies. This part may be conveniently described by
the linear prediction coefficients (LPC). The other part describes the long-term
dependencies. This part is based on the autoregressive pitch model that includes
pitch-lag and pitch-gain. The concept of usage of the statistical model is described
in more detail in Section 3.2.1.

3.2.1 Signal Model

As already stated in 3.1, the signal distribution can be approximated by a mixture
model. In the previous section the mixture component has been chosen to be a
multivariate Gaussian model. If the signal is zero-mean, the covariance matrix
becomes the only model parameter. The mixture component in equation 3.1 is
normally distributed according to

gx|Θ = N (µx, Σx), (3.3)

where each block is specified by the mean µx and the covariance matrix Σx. The
generic mixture model is now assumed to be a Gaussian mixture model (GMM).
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In order to parameterize a single model component, the mean and the covariance
matrix is needed. Since it is not efficient to encode and transmit the full covariance
matrix, the covariance matrix is represented with an aid of an AR model.

The AR model used for the parameterization is a concatenated model that
consists of two parts. The composite model used in this thesis is based on the
short-term AR model combined with a with the pitch model that accounts for long-
term signal dependencies 2.17:

σ

A(z)
= σ

1 + a1z−1 + ... + apz−p
× 1

1 − βz−T
(3.4)

where σ is the signal gain, an is the n-th LPC of a p-th order model, β is the LTP
coefficient (i.e. pitch gain) and T is the pitch lag. In practice the pitch lag can be
non integer, which can be efficiently handled by interpolation and the polynomial
in the denominator of the LTP filter would then use more than one tap.

The model is used to compute an impulse response h = h1, h2, ..., hk that in gen-
eral may be k-dimensional. This impulse response is then used to build a structured
matrix,

H =



1
h1 1 0

h1 1
. . . . . .

hk h1 1


(3.5)

which is a lower triangular Toeplitz matrix. The covariance matrix is then estimated
as:

Σx = HTH (3.6)

The mean vector µx is not explicitly transmitted. Instead the mean vector is
estimated at the decoder as µx = E{Xm|x̂m−1, x̂m−2, ..}. As such an estimate is
based on the previously decoded blocks, it is available at the decoder and in the local
decoder in the encoder. The estimation of µx can be interpreted as computation
of ringing. The ringing accounts for both: short term and long term dependencies
between the blocks.

As stated before, the signal model needs to be transmitted as side information in
the form of a two-stage description of the signal. One question that may arise how
the available bit rate R should be distributed between the signal model parameters
θ and the signal itself. The problem of finding the optimal bit distribution between
the model and the signal is particularly important for the flexible coder. Since
there are infinitely many operating points the rate allocation cannot be optimized
experimentally for all these points. The high-rate theory provides a solution to this
problem. In the paper [25] it has been shown that under high-rate assumptions
the optimal model rate remains constant and independent from the mean signal
distortion. This strategy is used in the FAC implementation.
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3.2.2 Perceptual Weighting

The flexible coding architecture assumes quantization in the perceptually optimized
domain. The mapping to that domain is implemented by means of filtering with an
adaptive filter. In the considered architecture a state-of-the-art weighting method
is used. The weighting filter is derived from the AR model as follows

W (z) = Â(z/γ1)Hde−emph(z), (3.7)

where Â is the quantized AR model, γ1 is the perceptual weighting factor and
Hde−emph(z) is the de-emphasis filter [4]. Worth to note is that the weighting filter
is derived from the quantized model while in AMR-WB the weighting is based on
the unquantized model. This is due to the fact that the quantized model is used to
derive the adaptive transform.

3.2.3 Karhunen-Loève Transform

If the covariance matrix Σx of the input signal is estimated then the input signal de-
pendent optimal transform can be calculated (assuming Gaussianity). The optimal
transform in this case is the Karhunen-Loève Transform (KLT), which diagonal-
izes the covariance matrix of the input signal. It renders an uncorrelated signal
in the transform domain (if Gaussian assumption is valid, the transform are real-
izations of independent random variables). It can be shown that by diagonalizing
the covariance matrix the energy of transform coefficients is concentrated, which
helps to improve the MSE performance of scalar quantizers used to quantize the
transform coefficients. The calculation of the KLT transform involves eigenvalue
decomposition (EVD) of the covariance matrix,

Σx = UΛUT (3.8)

where UT is the KLT and Λ is a diagonal matrix with the eigenvalues. However
the EVD is computationally expensive as it has the computational cost of O(n3),
where n is the rank of the matrix. Therefore even that the KLT is the optimal
transform, it is not common in practical implementations that aim at real-time
operation. Due to that reason, some non-adaptive transformations are used that
attempt to approximate the effect of the KLT. In particular the MLT is often used.
To enable the usage of KLT in a operating audio coder the complexity needs to be
reduced. This is possible by exploiting the structure of the statistical signal model.
The covariance matrix is a normal matrix and positive semi-definite, therefore,
the singular value decomposition (SVD) may be used. In the implementation of
the KLT-computing block of the coder, the SVD algorithm is used, which has the
complexity O(n2 log(n)). The SVD is performed in two stages; first the matrix
is reduced to a tridiagonal matrix by using Lanczos method [26] which normally
has the complexity of O(n2 log(n)). Since the covariance matrix has a Toeplitz
structure, the tridiagonalizaion may be performed by using FFT, which reduces the
computational complexity. The second step solves the eigenvalues by the means
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of a QL-algorithm which has the complexity of O(n2). The total cost is therefore
O(n2 log(n)) compared to the ordinary cost O(n3) of a EVD which facilitates a codec
implementation of the algorithm which can operate in real-time with a limited block
length.

3.2.4 Distribution Preserving Quantization

When the signal is decorrelated by the transform, the coefficients needs to be quan-
tized. The quantization should preserve the signal values and minimize the dis-
tortion based on the distortion measure. A classical approach in this case would
be to use scalar quantizer with an MSE criterion. The distortion for the regular
entropy-constrained scalar quantizer (assuming high-rate) is given by

D = ∆2

12
, (3.9)

where ∆ is the step size of the quantizer. As the quantization step size ∆ increases,
the MSE also increases, thus the design trade-off between the distortion and the
rate can be made by adjusting the quantization step size.

A classical approach to implement a quantizer is by the usage of a rounding
operation, i.e.,

Q(x) =
[

x

∆

]
, (3.10)

where x is the coefficient, Q(x) denotes a index which is a quantized coefficient x
and [·] denotes the rounding operation. To de-quantize the index (i.e., reconstruct
the signal), the result is obtained by simply multiplying the index by the step size.

Due to energy concentration of the transform only a few transform coefficients
have variances that are large compared to the quantization step-size. Hence, in nor-
mal operation, many transform coefficients are reconstructed by their mean value.
This phenomenon is related to the reverse water-filling process that appears if quan-
tization is performed in the MSE-optimal way. The reconstruction with a mean
value may lead to several coding artifacts, which are especially severe in low-rate
audio coding. In order to combat these artifacts, the DPQ scheme has been pro-
posed [15].

Every coefficient is assumed to be independent due to KLT and normally dis-
tributed, the optimal configuration of the scalar quantizer in equation 3.10 results
in the reverse water-filling process. The process determine the rate distribution
between the coefficients [16] assigning the coefficients that have a variance above
some threshold (defined by the step size) with a non-zero rate and all the remaining
coefficients are allocated with a zero rate. This means that if a transform coefficient
has a lower variance than the "water level" [16], it is reconstructed by its mean. As
this is optimal in the MSE sense this leads to distortions and low perceptual quality
at lover rates (when the step size is high). These distortions is commonly described
as "birdies" and "mumbling" [27]. The "birdies" is a effect of the coefficients recon-
structed as the mean and the variation of the energy between block, this variation
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introduces holes in the spectrum that appear as audible transform artifacts. The
"mumbling" is generated by bandwidth reduction.

To prevent this distortions at a lower rate a DPQ scheme [15] has been im-
plemented. The DPQ scheme preserves the distribution of the source signal while
keeping the MSE at the possible minimum. This yields a scheme which provides
good perceptual performance at a low rate while providing a MSE-optimal quan-
tizer at high rates. The scheme is based on two important steps, first a subtractive
dither followed by a distribution preserving transformation, see figure 3.2 where

Scalar 
Quantizer ∑ ∑ 

�

Z

X
g(·)

XX
~^

Figure 3.2: Diagram of DPQ.

X is the transform coefficients, Z is the additive dither, X̂ is the quantized input
with subtracted dither. The dither is added before the quantization described in
equation 3.10. This gives a quantization index computed from

Q(x + z) =
[

x + z

∆

]
, (3.11)

where z denotes the dither value. The dither value is a realization of pseudo random
uniformly distributed random variable, i.e. Z ∼ U(0, ∆). In the decoder this
dither is subtracted after dequantization. Since subtractive dithering is used, the
reconstruction is computed upon subtracting a realization of dither, i.e.,

x̂ = Q(x + z) · ∆ − z.

Finally the transformation g(·) is performed on x̂, this yields an the final recon-
struction x̃. The transform g(·) is given by,

g(x̂) = F −1
X

(
1
∆

∫ ∆
2

− ∆
2

FX(x̂ − τ)dτ

)
, (3.12)

where FX(·) is the cumulative distribution function (CDF) of X and FX(·)−1 is its
inverse. See [15] for more details.

The usage of DPQ implies that a suitable mechanism for maintaining a syn-
chronicity between the encoder and the decoder must be developed to be able to
use the dither. In addition, since the quantization indices are encoded by means of
an entropy coder, a method for accounting for the dithering during entropy coding
must be established. These practical problems were solved within this thesis.

A pseudo random nature of the dither means that the dither possesses statisti-
cal properties of a random variable Z, however, it is known by both encoder and
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decoder. It has been found that in a practical implementation the generator of
the dither signal may be restarted every 20 ms, therefore the dither values may be
stored in the memory of encoder and decoder. Every frame a pointer to a current
dither value may be restarted, so the encoder and decoder can stay in sync.

The DPQ has a property that at high bit-rates it is equivalent to the classi-
cal entropy constrained quantization. Since DPQ involves a transformation that
depends on the signal, it is computationally more expensive that the classical quan-
tization. In addition, DPQ requires a very accurate signal model. If such a model
is not available DPQ will introduce some additional distortion. In the proposed
implementation of FAC, the usage of DPQ is heuristically tuned aiming at achiev-
ing the best possible coding performance. At low bit-rates DPQ is used for all
the transform coefficients. As the bit-rate increases the transform coefficients with
the largest variances are quantized by the classical entropy quantization and all
the remaining coefficients are quantized by DPQ. This scheme is implemented by a
function that determines the number of highest variance coefficients that are quan-
tized by a regular quantization based on a value of the step size. By this measure
no additional transmission is needed. The usage of a combination of DPQ with a
classical entropy constrained quantization has been experimentally tuned to achieve
the best possible coding performance.

The implementation made during the thesis work includes both the classic
entropy-constrained approach together with the new DPQ scheme.

3.2.5 Arithmetic Coding

Once the coefficients are quantized the indices needs to be losslessly coded, in this
implementation an arithmetic coder [28] is used. Since the signal is assumed to
be Gaussian distributed, the error function (erf) can be used to calculate the high
and the low probabilities for the symbol. The implementation also needed to be
modified to take the dithering in the DPQ into account. The CDF of a Gaussian
distribution that is zero mean is given by,

Φ(x

σ
) = 1

2

(
1 + erf( x

σ
√

2
)
)

(3.13)

where x is the quantized coefficient and σ is the standard deviation for that coeffi-
cient. Since the input to the arithmetic coder is the indices Q(x), where Q(·) denotes
quantization. They need to be dequantized and the dither should be subtracted for
probabilities of the low and high.

xhigh = (Q(x(n)) + 0.5 − z(n)) · ∆ (3.14)

xlow = (Q(x(n)) − 0.5 − z(n)) · ∆ (3.15)
where z(n) is dither.

The dither z(n) needs to be in sync with the DPQ, the pseudo random dither
used in the arithmetic encoder and decoder is the same used in the DPQ, i.e., the
arithmetic coder is synchronized with the distribution preserving quantizer.
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As the numerical precision is limited, which should be taken into account during
implementation. The indices that appear on the tail of the signal distribution need
to be carefully handled, i.e., one should prevent the situation when index probability
is essentially 0. One way to deal with too low probability values is by scaling the
coefficients. If it turns out that the probability is too low to, a scaling is applied to
the coefficient and it is quantized again.

In the decoder the CDF is calculated in the same way as in the encoder and
the bitstream is decoded into indices. The described implementation was originally
written in C++ [28] so it was rewritten to ANSI C as the reference implementation
of AMR-WB is provided in ANSI C.

3.3 Implementation based on AMR-WB
For the implementation of the key-technologies of the flexible audio coder the state-
of-the-art codec AMR-WB was chosen as a core. AMR-WB is well known and the
main advantage of implementing based on the functional block of this codec is that
it has carefully tuned model estimators and quantizers that provide state-of-the-art
performance. These blocks can be combined with the flexible coding core yielding
a complete audio coder.

This section will provide some introduction to the AMR-WB codec and also
the specifics around the new implemented components. For more comprehensive
information about AMR-WB see [4, 3].

3.3.1 Encoder

The encoder diagram in figure 3.3, is a modified version of the diagram of the
AMR-WB encoder that can be seen in [3]. The source code for AMR-WB provides a
floating point implementation of the encoder, but the decoder and the local decoder
in the encoder is implemented in a fixed point convention.

The input audio is processed in frames of length of 320 samples, which cor-
responds to 20 ms at a sampling-rate of 16 kHz. The signal is pre-proceeded by
down-sampling to 12.8 kHz, which is the internal sampling rate used by the core
codec. This results in a reduction of a frame size to 256 samples.

The input signal is filtered by a high-pass filter with a cut-off frequency at 50 Hz.
This operation removes DC component and attenuates unwanted low frequencies.
The high-pass filter is followed by a pre-emphasis filter. The pre-emphasis is a first
order high-pass filter. This filter emphasize the higher frequencies by introducing
a so-called spectral tilt. This spectral tilt allows for better modeling of the higher
frequencies by means of LP.

The LP analysis is done every frame using the autocorrelation method. First,
the signal is windowed by an asymmetric window. The window uses 5ms look-ahead
and 5ms memory resulting in a 30 ms frame that is used for computation of LPC.
The 5 ms lookahead is increases the total algorithmic delay of the codec to a gross
delay of 25 ms. The autocorrelation sequence from the windowed frame is used to
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Figure 3.3: Detailed block diagram of the flexible audio encoder.

compute the LPC by using the Levinson-Durbin algorithm. As the LP coefficients
need to be quantized, they are converted to Immittance Spectral Pair (ISP) and
quantization is performed in the ISP domain to ensure stability. The LPC-based
model is quantized by split-multistage vector quantization (S-MSVQ). Since the
encoder is operating on sub-frame basis the quantized LP coefficients is interpolated
for the three first subframes by linear interpolation [4]. The asymmetrical shape of
the window provides a good model of the fourth subframe and therefore the model
is not interpolated for that frame.

The interpolated LPC-based model is obtained from the pre-emphasized sig-
nal. The model is used to compute weights of a perceptual weighting filter. The
weighting operation accounts for the spectral tilt introduced in model estimation.

The weighted signal is used for estimation of parameters of the pitch model. The
parameters of the pitch model are estimated in two steps The first step comprises
open-loop estimation of a pitch lag. The signal is analyzed every other subframe
(10 ms intervals) to find the open-loop pitch lag. After this initial estimation the
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pitch lag estimation is further refined by a closed-loop estimation algorithm. While
performing the refinement the pitch estimator operates on subframes (5 ms).

The first target signal x1(n) (see figure 3.3) is calculated by weighting the
pre-emphasized signal by the analysis filter based on the quantized LPC-based
model. This operation is followed by ringing subtraction (zero input response of
the weighted syntesis filter is used as ringing). In the standard configuration of
AMR-WB the unquantized signal model is used since it turns out that the codec
has better perceptual performance by introducing a mismatch between the corre-
sponding operations at the encoder and decoder. In the case of the implementation
of the flexible audio coder, an adaptive transformation is used, which requires that
the mismatch is eliminated. Therefore the adaptive transform is derived from the
quantized model. In addition the quantized model is also used for the weighting of
the signal as the usage of the unquantized model turned out to result in a worse
performance.

The closed-loop pitch analysis is performed to find both the pitch lag and pitch
gain. The lag is searched around the open-loop pitch lag and the resolution is
fractional by 1/4 of the sample. The adaptive codebook index (previous decoded
blocks) is encoded and the adaptive codebook contribution is removed from the
target signal x1(n) which creates the new target signal x2(n). This signal is in the
weighted signal domain with the mean removed which is the adaptive transform is
applied on.

Computation of the signal-adaptive transform that is used in the flexible coding
core requires a composite signal model that will be used to obtain an estimate of
a covariance matrix. The composite signal model is calculated with the method-
ology described in 3.2.1 and the adaptive transform is calculated every subframe
by the method described in 3.2.3. The standard deviation σ from the model is
given by the SV D, which is used by both the distribution preserving quantization
and the entropy coder. The signal is then quantized by the means of DPQ which
was described in 3.2.4. The dequantized indices (i.e., the reconstructed transform
coefficents) are transformed back to the weighted signal domain. The frame is then
filtered by the analysis filter to obtain a representation in the excitation domain.
This step is necessary to be able to re-use pitch estimation routines that are available
in AMR-WB.

The signal gain is calculated using an algorithm of AMR-WB and quantized
together with the pitch gain with a gain vector quantizer. The filter memories are
finally updated and the next subframe is read for processing.

When processing of all subframes is completed, a full frame of the indices from
the quantizer is losslessly coded into a bitstream. The flexible coding approaches
uses a constant model bit-rate. As AMR-WB is using a constant bit-rate for the
model parameters for its modes associated with higher bitrates [3, 4], quantization
from these modes can be used directly in flexible coding.Finally the bitstream is
combined with a bitstream of the signal model, as the signal model is coded by a
fixed rate. Only the length of the total number of bits needs to be transmitted. The
fixed-rate bit-stream needs to be combined with a signal representation that uses a
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variable bit-rate into a single variable bit-stream. This was one of the implementa-
tion tasks in this thesis. The encoder output parameters that are included in the
generated bit-stream are shown in table 3.1 where X is the total number of bits in
the signal bitstream including the 109 bits from the model. The bits are structured
by a fixed bit-mask into octets. As the original bitmask from AMR-WB could not
be used, a new bitmask was implemented. The new mask is shown in table 3.1. If
the total number of bits is not a multiple of the number octets, the last octet of
bits is padded with zeros.

Table 3.1: Encoder output parameters.

Bits Description
1 VAD-flag

2-9 index of 1st ISP subvector
10-17 index of 2nd ISP subvector
18-23 index of 3rd ISP subvector
24-30 index of 4th ISP subvector
31-37 index of 5th ISP subvector
38-42 index of 6th ISP subvector
43-47 index of 7th ISP subvector

48 – 56 adaptive codebook index
57 LTP-filtering-flag

58-64 codebook gains
65-70 adaptive codebook index (relative)

71 LTP-filtering-flag
72-78 codebook gains
79-87 adaptive codebook index

88 LTP-filtering-flag
89-95 codebook gains
96-101 adaptive codebook index (relative)

102 LTP-filtering-flag
103-109 codebook gains
110-X signal bitstream

3.3.2 Decoder

The decoder diagram in figure 3.4, is a modified version of the diagram of the
AMR-WB decoder that can be seen in [3].

As mentioned in the previous section the decoder of AMR-WB is implemented
in the fixed point arithmetics, which introduces a problem as the encoder codebook
for the LPC coefficients uses a floating point representation. To solve this prob-
lem, the decoding counterpart of the original floating-point encoding blocks was
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Figure 3.4: Detailed block diagram of the flexible audio decoder.

implemented. The new floating-point functional blocks were used at the decoder to
ensure bit-exactness between the encoder and the decoder. This is necessary as the
transform that is calculated from the model needs to be the same at the encoder
and the decoder to ensure that the encoder and the decoder are in sync.

Once the LPC coefficients are decoded, the covariance matrix is computed. Then
the transform and a vector of standard deviations are calculated for the first sub-
frame using the KLT. The entropy encoding was done on a frame basis but the
decoding is done on subframe basis. This is since the LTP coefficient (pitch gain) is
calculated with dependency on the previous subframe. The LTP coefficient affects
the impulse response h which of course affects the SVD, and which finally gives the
standard deviation for the arithmetic decoder.

After the bitstream for the first subframe has been decoded into indices they are
dequantized. Then the coefficients are transformed back to weighted signal domain.
The reconstructed signal is then transformed (filtered) to the excitation domain,
where the ringing is added. Then the signal synthesis is performed. Finally, the
signal is de-emphasized and up-sampled, which concludes the decoding of a sub-
frame. The same approach is used for the remaining three subframes within a 20ms
frame.





Chapter 4

VoIP application

In this chapter, a description of the implementation of the FAC codec in a real-
time hardware demonstrator will be provided. The demonstrator is a basic VoIP
application that provides full-duplex communications between two computers over
a network. The demonstrator operates in real-time and facilitates adaptation to
any target bitrate between 8 and 32 kbps. The main goal for the demonstrator is to
enable assessment of the flexible operation of the flexible audio coder. A secondary
goal is to demonstrate and evaluate the impact of DPQ on the perceptual quality
obtained with the flexible audio coder. The demonstrator consists of two PCs
operating with Linux. In addition, the demonstrator also facilitates operation with a
single PC in a local decoding mode (obtained by a loopback network configuration).
If two PC are used, they should be connected with fixed local area network (LAN)
on a local network setup that is assumed to provide no packet losses and low delay.
See figure 4.1 for a diagram of the setup.

Local Mode

Near End
Client

Far End
Client

Network

Loopback

HeadsetHeadset

Figure 4.1: Demonstrator setup.

The audio from a laptop computer is commonly routed out through a headset or
the internal loudspeaker, while the input audio is provided through a microphone
that can either be built in or in an external headset.

Since there is no acoustic echo cancellation (AEC) implemented in the applica-
tion, headphones must be used to avoid acoustic feedback into the microphone. The
demonstrator provides the possibility to control the bitrate and the DPQ from the

35
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transmitter to the sender, however if the application is used over a network with
full-duplex each transmitter controls the bitrate and the DPQ separately.

The media handling in the demonstrator is provided by the media framework
GStreamer, which allows for real-time processing of audio. The media handling in
this setup includes audio capture from an audio source at a desired sampling rate,
audio playback on selected device and also transmission and reception of data over
the network.

The graphical user interface (GUI) is written in GTK+ [29] and therefore it is
preferred to use the demonstrator under Gnome or Xfce environment. The GUI
provides controls for setting of the target bitrate and a switch to enable and disable
DPQ. This enables a comparison of a quality of two available configurations of the
platform, DPQ and entropy constrained quantization.

4.1 GStreamer
GStreamer is an open-source media framework which can be used for creating
streaming media applications [30]. The framework is flexible and can process any
kind of dataflow, however it targets at audio and video applications. GStreamer
provides means for constructing a media pipeline that may consist of a number of
plug-ins that facilitate data processing within the pipeline.

The plug-in is a library providing a collection of subroutines that implement
services within the pipeline. These subroutines are called elements. The elements
provide their functionality after inserting them into pipeline and linking appropri-
ately. The most important types of elements and their respective functionalities are
as follows:

• Source element: Produce data for the pipeline.

• Sink element: Consumes data from the pipeline.

• Filter element: Process a stream of data in the pipeline.

• Bin element: Contains other elements.

See figure 4.2 for a typical system diagram employing these types of elements.
Sources are usually located at the start of the pipeline where input data is

generated. The input data can be read from files, sound sources or network interface
for example. There are also sources that generate data by themselves such as
elements creating test signals. An element is called a filter if it process incoming
data in some way and then sends it further downstream in a pipeline. The filter
element can be used to implement signal filters, transforms, codecs or muxers for
example. Finally the sink is the output of the pipeline, this element consumes the
data stream and may write the data to a file or send the output to a soundcard or
network interface. The input and the outputs of the elements are called pads. The
pads have properties that are called "caps". The "caps" describe the data that is
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Figure 4.2: Three linked GStreamer elements in a pipeline bin.

flowing out of source pads into sink pads. This implies that the "caps" on the output
and input pads between the elements need to be compatible. To transfer the data
between elements the data is allocated in a buffer defined as a structure that also
contains auxiliary information such as a size of data, time-stamp, duration, caps
and offset. To ensure the playback is done in sync, the source element assigns the
buffer with a time-stamp that provides the sink element when the samples should
be played. A bin is a container for linked elements and a pipeline is sub-type of a
bin that controls the state of all elements in the bin, i.e. one can change the state
to all elements by changing the state of the pipeline. The different states for an
element are:

• NULL: the default state, deallocate all memory hold by the element.

• READY: in the ready state, all memory is allocated but all properties of the
element are reset.

• PAUSED: in the pause state, all properties are initiated but the clock is not
running, which means that the elements are not processing the data stream.

• PLAYING: same state as pause, but the clock is now running and the data
stream in processed.

To allow the pipeline to communicate with the application, the elements can
send messages out to a bus. The bus is a system that forwards messages from the
pipeline to an application. Every pipeline creates a bus automatically but a message
handler needs to be initiated on the bus. This allows the bus to periodically check
for messages that have been sent to the bus from the pipeline and forward them
to the application. When the application gets a message from the bus a callback
function is called which then can check the type of message and then perform the
proper operation. This can, for example, be to update the current bitrate to the
GUI.
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4.1.1 FAC Encoder

To be able to use the FAC coder in full duplex, the encoder and decoder was
implemented in two separate plug-ins. A diagram of the encoder plug-in that is
named "amrflexenc" can be seen in figure 4.3. The input to the element is a mono
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sink srcFAC
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bitrate
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nr of bits
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mode

target bitrate

Figure 4.3: Shows the plugin implementation of the FAC encoder.

audio signal with sampling rate 16 kHz. However this does not guarantee that
the input buffer to the element has the same size as the input frame to the FAC
encoder. To ensure the input frame was always fixed at 320 samples each frame, a
class from GStreamer called GstAdapter was used. This object extracts 320 samples
from the input buffer to use as an input to the FAC encoder. This is performed
in a loop which iterates until the number of bytes available in the buffer is less
than the input size N. The bitrate and the modes of the encoder are controlled by
two element properties, mode and target bit-rate. The available modes are entropy
constrained scalar quantizer and DPQ, the target-bitrate is the maximum encoding
bitrate between 8 to 32 kbps. The bitrate control uses feedback to increase and
decrease the step size in steps of 0.1 depending whether the bitrate is below or over
the target bitrate. The average bitrate is calculated over 50 frames. See algorithm
1 for pseudocode.

Algorithm 1 Bitrate Control
Require: frame = 0, bps = 0

repeat
encode frame and update frame counter
update bps := bps + nr of bits

until frame = 50
error = target bps - bps
if error <= 0 then

increase step size to decrease bitrate.
else

decrease step size to increase bitrate
end if

The output data is added to the output buffer along with the length of the pack-
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age. At the decoder, all information about the incoming package can be read from
the package header and the buffer (there are no parameters needing to be specified
here). See figure 4.4 for a diagram of the decoder plug-in called "amrflexdec".

amrflexdec

sink src
FAC

decoder

Figure 4.4: Shows the plugin implementation of the FAC decoder.

4.1.2 Real-time Protocol

For the decoder to successfully decode, three additional parameters needs to be
transmitted to the decoder. Firstly the step size needs to be transmitted for the
dequantization, secondly the mode which indicates if DPQ is used or not and finally
the length of the packets.

The length of the packets is simply specified by setting the length of the buffer
within GStreamer. The mode is decoded with one bit and finally the step size is
simply transmitted as it is. However, the step size is limited between 1 and 26.5
which corresponds to 256 different step size and therefore uses one octet in the
packet header.

4.1.3 Client Pipeline

The client pipeline that handles the media can be seen in figure 4.5.

client pipeline

audioconvert

sink src

jackaudiosrc

src

tcpclientsink

sink

audioresample

sink src

amrflexenc

sink src

Figure 4.5: Client-pipeline.

The first element in the client pipeline is the audio source element, this generate
the data from an external audio source such as a microphone. The next two elements
ensure that the input to the encoder element has 16 bit input and 16 kHz sampling
rate. The audio is then encoded with the encoder element and finally sent out to
the destination with the transmission control protocol (TCP) sink. One may ask
why TCP was chosen and not UDP which should be an obvious choice for a VoIP
application. The reasons were the following, no forward-error-correction scheme is
implemented, if TCP is used this allows for error free packages which can be decoded
in order and no jitter buffering needs to be considered. The additional delay that
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TCP introduces is not an issue since the demonstrator is supposed to be used on
LAN with low delay.

4.1.4 Server Pipeline

The server pipeline that handles the media can be seen in figure 4.6.

server pipeline

capsfilter

sink src

tcpserversrc

src

jackaudiosink

sink

amrflexdec

sink src

audioresample

sink src

audioconvert

sink src

Figure 4.6: Server-pipeline.

The TCP source generates the data from the network and is then sent through
a so-called caps filter. The reason why this caps filter is needed is because the
caps properties of the data is not preserved over network transfer and had to be
reassigned to the buffer to be compatible with the decoder element. The data stream
is decoded and finally converted and sent out to playback by the audio element. The
chosen sink and source elements is JACK plugins. JACK is a real-time, low latency
audio system [31]. It was used since the Linux standard solution for audio ALSA
had upsampling problems which caused distortions in the playback.

4.2 GUI
For the GUI implementation, GTK+ was chosen since it is built on GLib 2.0, as
is GStreamer. Therefore the API was similar and the coding convention through
the application was consistent. See figure 4.2 for a flowchart of the application and
a mockup of the GUI. In the left figure in figure 4.2, the flowchart of the main
function is shown. Initially GStreamer and GTK+ are initialized. Then the client
and server pipeline is set up, to configure the IP settings on the pipelines an IP
settings dialog comes up. To use the local mode, one presses OK and usees the
current settings. If a full duplex setup with two clients is desired then fill in the IP
addresses and ports. When the settings for the connections are provided the server
is automatically started, followed by creating the main windows and showing it. The
program then enters the main loop. Here the application just idling and listening
for signals from the GUI. Signals are activated when some task is performed in
the GUI, like pressing a button. If a button is pressed the corresponding callback
function is called, for example the client pipeline is started when the connect toggle
button is pressed. The DPQ toggle buttons changes the mode in the encoder in
the pipeline, the slider adjusts the target bitrate and the operating average bitrate
label reports the current bitrate every second. To increase the convergence speed
of the bitrate control, the step size is adjusted for every new frame when the slider
has been moved instead of once per second.
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int main()

init gst/gtk+

pipeline setup

VOIP settings
dialog

start server
pipeline

main window

g_main_loop

clean up

return 0;

Figure 4.7: Left: a flowchart of the application. Right: mockups of the GUI.

In addition to the VoIP application a local file stream application was imple-
mented to allow encoding and decoding of an audio file.





Chapter 5

Results

In this chapter, evaluation of the FAC and the real-time implementation is pre-
sented. The subjective test of the codec was performed with an informal MUSHRA
test and the demonstrator performance was evaluated using practical testing. At
the end of this chapter, some discussion is included about the different attributes
such as complexity, delay, bit-rate and transmission-error sensitivity.

5.1 Test Plan

The test goal for the evaluation of FAC is to demonstrate its on-par performance
to the existing state-of-the-art audio codec. The codec is compared to comparable
standardized codecs by means of a subjective listening test to evaluate the rela-
tive performance. The performance is understood in terms of subjective quality
in combination with attributes such as complexity, delay operating bit-rates and
frame concealment robustness. Different workgroups have different criterions and
test plans to evaluate their standardized codecs. In the following sections the de-
scription of the testplan is provided. Before any subjective test is utilized objective
measurements such as PESQ can be used. As time and resources are limited an
MUSHRA test was conducted instead of a ACR test. This allowed for a lower
number of listeners. Also the number of test excerpts are limited due to limited
resources for conducting the listening test.

5.1.1 Subjective Codec Test

For the subjective test a MUSHRA test was chosen as a subjective test. The test
is effective because it includes a hidden reference and a bandwidth limited anchor
signal. The anchor signal is the reference signal downsampled to have a cut-off
frequency of 3.5 kHz. This allows the subjects to experience a low quality reference
as well as high quality reference. At higher bit-rates, if the codec have a good
performance it can be hard to distinguish the reference from an excerpt with good
quality.
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See figure 5.1 for an example mockup for a MUSHRA GUI. As seen in the

Figure 5.1: Example mockup of MUSHRA GUI.

mockup there are three vertical sliders which indicates that it is one excerpt that
is going to be rated against the reference and the anchor. The buttons below the
sliders are used to play the excerpts. The horizontal slider at the bottom can be
used to narrow down signal to specific parts. When all signals are rated, the subject
can go on to the next test signal in the test database.

5.1.2 Codecs Under Test and Selection of the Test Items

The FAC is compared to AMR-WB and G.729.1 which gives a direct indication
how the flexible quantization performs against the vector quantizer of AMR-WB
and the hybrid coding scheme of G.729.1 (a combination of transform coding and
CELP).

To keep the test time low the number of excerpts was limited to five and the
number of condition was limited to two 16 kbps and 24 kbps. The excerpts were
chosen from the MPEG database and can be seen in table 5.1

Table 5.1: Test items.
Type File Name Description
Speech es02.wav Male German speech
Speech es03.wav Female English speech
Complex Sound Mixture sc01.wav trumpet solo and orchestra
Single Instrument si01.wav harpsichord
Simple Sound Mixture sm01.wav bagpipes
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5.1.3 Processing of the test samples

All processing of the samples was performed with tools from the ITU-T toolset
G.191 [32]. Firstly the samples were downsampled to 16 kHz and prefiltered by a
P341 filter from the ITU-T toolset. Then the samples were processed by the codecs
at two different operating bit-rates 16 kbps and 23 kbps. For AMR-WB these bit-
rates correspond to modes 4 and 7 [4]. The target bit-rates were calculated for
FAC as the average target bit-rate with a fixed step size for the whole excerpt. The
anchor signal was created by downsampling the reference signal to 7 kHz. Finally
all the coded excerpts were upsampled to 48 kbps as a requirement for the test
setup. The codecs are mono so the files are played out in a diotic presentation.

5.1.4 Listening Panel and Test setup

Since the test subject could not be compensated for their time spent, it was accept-
able with any number of participants with any experience of listening test. The
listening panel that participated in the MUSHRA test consisted of 10 listeners with
previous experience in listening tests based on MUSHRA. The listeners had no
training before the session and were asked to evaluate the perceived quality of the
excerpts compared to the reference.

The playback device was a laptop PC. The PC had an external soundcard Phase
26 from Terratec with headphones DT 770 PRO from Beyerdynamic. The listeners
could adjust the loudness to a comfortable level.

5.2 Results of Subjective Test

The subjective tests were done in two sessions, first a test with excerpts coded at
16 kbps followed by a test at 24 kbps. All of the listeners identified the references
in both tests without errors. The test results for 16 kbps can be seen in Figure 5.2.
The average value is used with 95% confidence intervals for the 10 test subjects.
Here it can be seen that AMR-WB get a slightly higher score than the FAC, but
both of these get a higher score than G.729.1. In the 24 kbps test FAC performed
better than both AMR-WB and G.729.1 and the result can be seen in Figure 5.3

A relatively large extent of 95% confidence intervals is due to a small number of
test excerpts that were used.

5.3 Results of Objective Test

Due to limited resources the perceptual evaluation of FAC was used only for two
operating bit-rates. In order to demonstrate that trade-off between the rate and
the quality achieved by FAC an objective quality assessment tool was used. The
codec has been evaluated for the speech excerpts by means of PESQ, which is an
objective quality evaluation tool for speech.
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Figure 5.2: Subjective scores from MUSHRA test.

PESQ measurements were done to ensure that the quality improved when the
bit-rate increased. The MOS scores is plotted in Figure 5.4. The objective results
indicates that the objective quality indeed increases with increasing bit-rate.

5.4 Real-time Demonstrator
The real-time demonstrator operates in real-time. The coding delay of the demon-
strator consists mostly of the algorithmic delay of 25 ms of the codec and that
the audio interface JACK. The operating bit-rates were between 7 and 32 kbps.
However, as hinted previously, the encoder and decoder has high complexity due
to the SVD and the DPQ scheme. On a laptop with a dual core CPU where each
core is operating at 1800 MHz, the implemented FAC application utilized approxi-
mately 50% of each core. It should be noted that no hand optimizations were made
and it is probably possible to reduce the complexity. Unfortunately, the transmis-
sion error sensitivity is limited, as each composite model is dependent on previous
blocks pitch-gain. If this is not correct the encoder and decoder loses sync and
never recovers due to the transform. This can be prevented by restructuring the
core of AMR-WB, and quantize the pitch gain before the signal quantization. This
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Figure 5.3: Subjective scores from MUSHRA test.

is however complex and was not attempted in this implementation.
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Figure 5.4: Objective MOS score from PESQ.



Chapter 6

Discussion and Conclusions

6.1 Real-time Demonstrator

The real-time demonstrator shows that the proposed coding scheme can be used
in real-time operation. The demonstrator was implemented as a VoIP application,
which could operate in real-time in a local mode or in a network communications
mode. In addition another application, that could playback audio files was imple-
mented for easier demonstration of the FAC.

6.2 Codec Performance

The conclusion from the MUSHRA test is that this specific implementation of the
FAC performs comparable to the state-of-the-art codecs such as AMR-WB and
G.729.1 in terms of subjective quality. It is worth noting that the state-of-the-art
codecs were highly optimized for their respective operating points, while the FAC
facilitates operation at any bit-rate.

6.3 Conclusions

The work of this thesis demonstrates that it is possible to apply the flexible audio
coding scheme for an audio communication over a network. In addition, it is possi-
ble to obtain an audio coding system that can be redesigned on the fly in a response
to a constraint on the operating bit-rate achieving at least the state-of-the-art per-
formance.

A demonstrator was implemented in Linux with aid of the GStreamer framework
and a GUI was implemented. The application demonstrated real-time operation and
also instant re-optimization of the scheme. The coding performance was on-pair
with non-flexible schemes at two bit-rates.
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6.4 Future Work
Due to lack of time some parts could not be improved. Some proposals are described
below

6.4.1 Real-time Demonstrator

The real-time demonstrator could be improved in a number of ways. Some sugges-
tions is to.

• Better step size quantizer

• Create a feedback channel and let the decoder decide the operating bit-rate

• Implement using UDP with jitter buffer

• Improve stability and robustness of the application

6.4.2 Codec

Instead of using AMR-WB, another codec might be used as a core such as SILK and
replace the DDNSQ with the one used in this thesis. Care can be taken to ensure
that there are no block dependencies for calculation of the adaptive transform.
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