Show all your work. Due April 25th, 2017.

Name:
 Student ID:

1. (More Indefinite Integrals)

Find each indefinite integral. (check by differentiation.) A) $\int \frac{e^{x}-3 x}{4} d x$
B) $\int \frac{d u}{\sqrt{u}}$
C) $\int \frac{1-3 x^{4}}{x^{2}} d x$
D) $\int \frac{6 d m}{m^{2}}$
2. (Initial Differential Equations)

Find the particular antiderivative of each derivative that satisfies the given condition:
A) $C^{\prime}(x)=6 x^{2}-4 x ; \quad C(0)=3000$
B) $\frac{d x}{d t}=4 e^{t}-2 ; \quad x(0)=1$
3. (Integral by Substitution) Use a substitution to find each indefinite integral:
A) $\int\left(2 x^{3}-3\right)^{4}\left(6 x^{2}\right) d x$
B) $\int \frac{x}{x^{2}-9} d x$
C) $\int 5 t^{2}\left(t^{3}+4\right)^{-2} d t$
D) $\int x \sqrt{x+1} d x$
E) $\int e^{1-x} d x$
F) $\int \frac{(\ln x)^{3}}{x} d x$
4. (Riemann Sum) Calculate the indicated Riemann sum S_{n} for the function $f(x)=x^{2}$ when the partition and sample points are specified as follows:
A) Partition $[0,3]$ into three subintervals of equal length, and let the sample points be $c_{1}=0.7$, $c_{2}=1.8$, and $c_{3}=2.4$.
B) Partition $[0,3]$ into three subintervals of equal length, and let the sample points be the right endpoint of each subinterval, in other words, for k -th subinterval $\left[x_{k-1}, x_{k}\right]$, choose the sample point $c_{k}=x_{k}$.

