1 Solution To Homework 6

Solution to problem 1:
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Solution to problem 2:
(A) The general solution for the differential equation C’(z) = 62 — 4z is
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, where the constant C' is specified by the initial condition C(0) = 3000: when
r=0,C(0) =2x0%-2x 02+ C = 3000 and hence C' = 3000. In summary,
C(x) = 22® — 222 + 3000.

(B) The general solution for the differential equation % =4et — 2 is
z(t) = /(4et — 2)dt
= 4 / eldt — 2 / dt
= det —2t+C



, where the constant C' is specified by the initial condition 2(0) = 1 as follows.
2(0) =4 x e’ —2x0+C = 1, which implies that C' = 1—4 = —3. In summary,
x(t) = 4et — 2t — 3.

Solution to problem 3:
(A) Let u = 22 — 3, then du = 62%dz. By substitution,
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(B) Let u = 2% — 9, then du = 2zdx, xdx = %du. By substitution,
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(C) Let u = t3 4 4, then du = 3t?dt, t*dt = 1du. By substitution,
1
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(D) Let u = x + 1, then du = dx. By substitution,
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(E) Let u =1 — z, then du = —dx. By substitution,
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= —el7 4 C.

(F) Let u = Inz, then du = %€, By substitution,
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Solution to problem 4:
(A) Since the partition is obtained by dividing the interval [0, 3] into three
subintervals of equal length, the length of each subinterval Az is Az = 3—50 =1.
Endpoints of each subintervals are: g =0, x1 =1, 2 = 2, x3 = 3.

Therefore the partition is P : 20 = 0 < xz1 =1 < 292 = 2 < 23 = 3. The
Riemann sum in this case is:

Ss = fle)Az + f(co)Ax + f(es)Ax
= FO.7) x 1+ f(1.8) x 14 f(2.4) x1
= 0.49 + 3.24 4+ 5.76
= 9.49

(B) In this question (B), the partition is the same as in (A), which is P :
g =0< x1 =1 < 23 =2 < z3 = 3. Now the smaple points are the
right endpoints of each subintervals. In other words, those sample points are
C1 =21 :1,62:$2:2703:£E3:3.

So the Riemann sum in this case is:

Sz = fle1)Az + f(e2)Az + f(es)Ax

= FO)x1+f2)x1+f3)x1
= 14



