1 Solution To Homework 6

Solution to problem 1:

(A)

$$
\begin{array}{rlr}
\int \frac{e^{x}-3 x}{4} d x & = & \int\left(\frac{e^{x}}{4}-\frac{3 x}{4}\right) d x \\
& = & \frac{1}{4} \int e^{x} d x-\frac{3}{4} \int x d x \\
& = & \frac{1}{4} e^{x}-\frac{3}{4} \times \frac{x^{2}}{2}+C \\
& = & \frac{1}{4} e^{x}-\frac{3}{8} x^{2}+C
\end{array}
$$

(B) Since $\frac{1}{\sqrt{u}}=u^{-1 / 2}, \int \frac{d u}{\sqrt{u}}=\int u^{-1 / 2} d u=2 u^{1 / 2}+C$.
(C)

$$
\begin{array}{rlr}
\int \frac{1-3 x^{4}}{x^{2}} d x & = & \int\left(\frac{1}{x^{2}}-3 x^{2}\right) d x \\
& = & \int x^{-2} d x-3 \int x^{2} d x \\
& = & -\frac{1}{x}-x^{3}+C
\end{array}
$$

(D) $\int \frac{6 d m}{m^{2}}=6 \int m^{-2} d m=-6 m^{-1}+C=-\frac{6}{m}+C$.

Solution to problem 2:
(A) The general solution for the differential equation $C^{\prime}(x)=6 x^{2}-4 x$ is

$$
\begin{array}{rlr}
C(x) & = & \int C^{\prime}(x) d x \\
& = & \int\left(6 x^{2}-4 x\right) d x \\
& = & 6 \int x^{2} d x-4 \int x d x \\
& = & 6 \times \frac{x^{3}}{3}-4 \times \frac{x^{2}}{2}+C \\
& = & 2 x^{3}-2 x^{2}+C
\end{array}
$$

, where the constant C is specified by the initial condition $C(0)=3000$: when $x=0, C(0)=2 \times 0^{3}-2 \times 0^{2}+C=3000$ and hence $C=3000$. In summary, $C(x)=2 x^{3}-2 x^{2}+3000$.
(B) The general solution for the differential equation $\frac{d x}{d t}=4 e^{t}-2$ is

$$
\begin{aligned}
x(t) & = & \int\left(4 e^{t}-2\right) d t \\
& = & 4 \int e^{t} d t-2 \int d t \\
& = & 4 e^{t}-2 t+C
\end{aligned}
$$

, where the constant C is specified by the initial condition $x(0)=1$ as follows. $x(0)=4 \times e^{0}-2 \times 0+C=1$, which implies that $C=1-4=-3$. In summary, $x(t)=4 e^{t}-2 t-3$.

Solution to problem 3:
(A) Let $u=2 x^{3}-3$, then $d u=6 x^{2} d x$. By substitution,

$$
\begin{array}{rlr}
\int\left(2 x^{3}-3\right)^{4}\left(6 x^{2}\right) d x & = & \int u^{4} d u \\
& = & \frac{u^{5}}{5}+C \\
& = & \frac{\left(2 x^{3}-3\right)^{5}}{5}+C .
\end{array}
$$

(B) Let $u=x^{2}-9$, then $d u=2 x d x, x d x=\frac{1}{2} d u$. By substitution,

$$
\begin{array}{rlr}
\int \frac{x}{x^{2}-9} d x & = & \int \frac{1 / 2 d u}{u} \\
& = & 1 / 2 \int \frac{d u}{u} \\
& = & \frac{1}{2} \ln |u|+C \\
& = & \frac{1}{2} \ln \left|x^{2}-9\right|+C
\end{array}
$$

(C) Let $u=t^{3}+4$, then $d u=3 t^{2} d t, t^{2} d t=\frac{1}{3} d u$. By substitution,

$$
\begin{array}{rlr}
\int 5 t^{2}\left(t^{3}+4\right)^{-2} d t & = & \int 5 u^{-2} \times \frac{1}{3} d u \\
& = & \frac{5}{3} \int u^{-2} d u \\
& = & \frac{5}{3} \times \frac{u^{-1}}{-1}+C \\
& = & -\frac{5}{3\left(t^{3}+4\right)}+C
\end{array}
$$

(D) Let $u=x+1$, then $d u=d x$. By substitution,

$$
\begin{array}{rlr}
\int x \sqrt{x+1} d x & = & \int(u-1) \sqrt{u} d u \\
& = & \int\left(u^{3 / 2}-u^{1 / 2}\right) d u \\
& = & \int u^{3 / 2} d u-\int u^{1 / 2} d u \\
& = & \frac{u^{5 / 2}}{5 / 2}-\frac{u^{3 / 2}}{3 / 2}+C \\
& = & \frac{2(x+1)^{5 / 2}}{5}-\frac{2(x+1)^{3 / 2}}{3}+C .
\end{array}
$$

(E) Let $u=1-x$, then $d u=-d x$. By substitution,

$$
\begin{array}{rlr}
\int e^{1-x} d x & = & \int e^{u}(-d u) \\
& = & -\int e^{u} d u \\
& = & -e^{u}+C \\
& = & -e^{1-x}+C .
\end{array}
$$

(F) Let $u=\ln x$, then $d u=\frac{d x}{x}$. By substitution,

$$
\begin{array}{rlr}
\int \frac{(\ln x)^{3}}{x} d x & = & \int u^{3} d u \\
& = & \frac{u^{4}}{4}+C \\
& = & \frac{(\ln x)^{4}}{4}+C
\end{array}
$$

Solution to problem 4:

(A) Since the partition is obtained by dividing the interval $[0,3]$ into three subintervals of equal length, the length of each subinterval Δx is $\Delta x=\frac{3-0}{3}=1$. Endpoints of each subintervals are: $x_{0}=0, x_{1}=1, x_{2}=2, x_{3}=3$.

Therefore the partition is $P_{3}: x_{0}=0<x_{1}=1<x_{2}=2<x_{3}=3$. The Riemann sum in this case is:

$$
\begin{array}{rrr}
S_{3} & = & f\left(c_{1}\right) \Delta x+f\left(c_{2}\right) \Delta x+f\left(c_{3}\right) \Delta x \\
& = & f(0.7) \times 1+f(1.8) \times 1+f(2.4) \times 1 \\
& = & 0.49+3.24+5.76 \\
& & 9.49
\end{array}
$$

(B) In this question (B), the partition is the same as in (A), which is P_{3} : $x_{0}=0<x_{1}=1<x_{2}=2<x_{3}=3$. Now the smaple points are the right endpoints of each subintervals. In other words, those sample points are $c_{1}=x_{1}=1, c_{2}=x_{2}=2, c_{3}=x_{3}=3$.

So the Riemann sum in this case is:

$$
\begin{array}{rrr}
S_{3} & = & f\left(c_{1}\right) \Delta x+f\left(c_{2}\right) \Delta x+f\left(c_{3}\right) \Delta x \\
& = & f(1) \times 1+f(2) \times 1+f(3) \times 1 \\
& = & 14
\end{array}
$$

