1 Solution To Homework 5

Solution to problem 1(A):

Step 1: Find Critical Values
The function $f(x)$ is a polynomial, so we only need to consider the first type critical values: those numbers x in the domain satisfying $f^{\prime}(x)=0$.

$$
f^{\prime}(x)=3 x^{2}-12
$$

Solve the equation $f^{\prime}(x)=0$ for x and find that $x=-2$ or $x=2$. The domain is $[-5,5]$ and hence $x=-2,2$ both are in the domain, which implies that $x=2$ and $x=-2$ are critical values for $f(x)$ in the domain $[-5,5]$.

Step 2: Evaluate $f(x)$ at endpoints and criticals values

x	$f(x)$
-5	$f(-5)=-65$
-2	$f(-2)=16$
2	$f(2)=-16$
5	$f(5)=65$

Step 3: Compare function values in Step 2, find largest and smallest ones among all
From Step 2, we can see that the function $f(x)$ obtains the absolute maximum value 65 at $x=5$, absolute minimum value -65 at $x=-6$.

Solution to problem $1(B)$:
Step 1: Find Critical Values
From Step 1. in (A), we know that when $x=-2$ or $2, f^{\prime}(x)=0$. Since $-2,2$ are in $[-3,3]$, they are critical values for the function $f(x)$ with the domain $[-3,3]$.

Step 2: Evaluate $f(x)$ at endpoints and criticals values

x	$f(x)$
-3	$f(-3)=-9$
-2	$f(-2)=16$
2	$f(2)=-16$
3	$f(3)=9$

Step 3: Compare function values in Step 2, find largest and smallest ones among all
From Step 2, we can see that the function $f(x)$ obtains the absolute maximum value 16 at $x=-2$, absolute minimum value -16 at $x=2$.

Solution to problem $1(\mathrm{C})$:
Step 1: Find Critical Values
From Step 1. in (A), we know that when $x=-2$ or $2, f^{\prime}(x)=0$. Since -2 is in $[-3,1]$ and 2 is not, $x=-2$ is the only critical value for the function $f(x)$ with the domain $[-3,1]$.

Step 2: Evaluate $f(x)$ at endpoints and criticals values

x	$f(x)$
-3	$f(-3)=-9$
-2	$f(-2)=16$
1	$f(1)=-11$

Step 3: Compare function values in Step 2, find largest and smallest ones among all
From Step 2, we can see that the function $f(x)$ obtains the absolute maximum value 16 at $x=-2$, absolute minimum value -11 at $x=1$. This problem is similar to Problem 2 in Homework 4, so we don't repeat the steps here.

Solution to problem 3:

(A) All antiderivatives of $f(x)=3 x^{2}$ are $x^{3}+C$, where C is an arbitrary constant.
(B) See the figure 1 .

(C) The graphs of the three antiderivatives are the vertical shift of each other.

Solution to problem 4:

(A) $\int 3 d x=3 x+C$
(B) $\int 10 e^{t} d t=10 \int e^{t} d t=10 e^{t}+C$
(C) $\int 3 x^{4} d x=3 \int x^{4} d x=3 \times \frac{x^{5}}{5}+C=\frac{3}{5} x^{5}+C$
(D) By linearity, $\int\left(2 x^{5}-3 x^{2}+2\right) d x=2 \int x^{5} d x-3 \int x^{2} d x+2 \int 1 d x=\frac{2}{6} x^{6}-$ $x^{3}+2 x+C$
(E) By lineary, $\int\left(\frac{3}{x}-4 e^{x}\right) d x=3 \int \frac{1}{x} d x-4 \int e^{x} d x=3 \ln |x|-4 e^{x}+C$
(F) $\int \frac{x^{4}-8 x^{3}}{x^{2}} d x=\int\left(x^{2}-8 x\right) d x=\int x^{2} d x-8 \int x d x=\frac{x^{3}}{3}-4 x^{2}+C$
(G) Since $\left(x^{2}-1\right)(x+3)=x^{3}+3 x^{2}-x-3, \int\left(x^{2}-1\right)(x+3) d x=\int\left(x^{3}+3 x^{2}-\right.$ $x-3) d x=\frac{x^{4}}{4}+x^{3}-\frac{x^{2}}{2}-3 x+C$.
(H) Since $\sqrt{x}=x^{\frac{1}{2}}$ and $\frac{1}{\sqrt{x}}=x^{-\frac{1}{2}}$, it follows that $\int\left(8 \sqrt{x}-\frac{6}{\sqrt{x}}\right) d x=8 \int x^{\frac{1}{2}} d x-$ $6 \int x^{-\frac{1}{2}} d x=8 \frac{x^{3 / 2}}{3 / 2}-6 \frac{x^{1 / 2}}{1 / 2}+C=\frac{16}{3} x^{3 / 2}-12 x^{1 / 2}+C$

