1 Solution To Homework 4

Solution to problem 1:

Step a. Analyze f(x).

The domain of the given function is its natural domain $(-\infty, \infty)$. The y intercept is f(0) = 10.

Step b. Analyze f'(x).

$$f'(x) = 4x^3 - 12x^2$$

Solve the equation f'(x) = 0 for x, and obtain two solutions x = 0 or x = 3, which are partition numbers for f'(x).

By performing first derivative test, we establish the following first derivative test:

intervals	$(-\infty,0)$	(0,3)	$(3,\infty)$
test numbers x	-1	1	4
f'(x)	_	_	+
behavior of $f(x)$	decreasing	decreasing	increasing

By the first derivative test, we know that the function f(x) has a local minimum f(3) = -17 at x = 3, is decreasing on intervals $(-\infty, 0)$ and (0, 3), and increasing on the interval $(3, \infty)$.

Step c. Analyze f''(x).

$$f''(x) = 12x^2 - 24x$$

Solve the equation f''(x) = 0 for x, and obtain two solutions x = 0 or x = 2, which are partition numbers for f''(x).

By performing second derivative test, we establish the following second derivative test:

intervals	$(-\infty,0)$	(0,2)	$(2,\infty)$
test numbers x	-1	1	3
f''(x)	+	_	+
behavior of $f(x)$	concave up	concave down	concave up

By the second derivative test, we know that the function f(x) has two inflection points: (0, 10), (2, -6). It is concave up on intervals $(-\infty, 0)$ and $(2, \infty)$, concave down on the interval (0, 2).

Step d. Sketch the graph for f. See the figure 1.

Solution to Problem 2:

Step 1. Analyze f(x)

The domain of the function f(x) is $(-\infty, 1) \cup (1, \infty)$. Intercepts: x-intercept and y-intercept occur at (0, 0). Since

$$\lim_{x \to \infty} f(x) = \lim_{x \to \infty} \frac{2x}{1-x} = -2$$

and

$$\lim_{x \to 1^+} f(x) = \lim_{x \to \infty} \frac{2x}{1 - x} = -\infty,$$

 $f(\boldsymbol{x})$ has two asymptotes, horizontal asymptote y=-2 and vertical asymptote $\boldsymbol{x}=1.$

Step 2. Analyze f'(x)

$$f'(x) = \frac{2}{(1-x)^2}.$$

Solve f'(x) = 0 for x and find no solution, which means there is no first type of partition number for f'(x). When x = 1, the derivative f'(x) does not exist, which implies that x = 1 is the second type of partition number for f'(x).

Next, we perform the first derivative test for f(x).

intervals	$(-\infty,1)$	$(1,\infty)$
test numbers x	0	2
f'(x)	+	+
behavior of $f(x)$	increasing	increasing

By the first derivative test, we know that the function f(x) is increasing on the interval $(-\infty, 1)$ and $(1, \infty)$.

Step 3. Analyze f''(x).

$$f''(x) = \frac{4}{(1-x)^3}.$$

It is easy to see that partition numbers for f''(x) is x = 1.

Next, we perform the second derivative test for f(x).

intervals	$(-\infty,1)$	$(1,\infty)$
test numbers x	0	2
f''(x)	_	+
behavior of $f(x)$	concave down	concave up

By the second derivative test, we know that the function f(x) is concave up on the interval $(-\infty, 1)$ and concave down on the interval $(1, \infty)$.

Step 4. Sketch the graph of f(x) See the figure 2.

Solution to Problem 3:

- (a) By LH Rule, we have $\lim_{x \to 0} \frac{\sqrt{1+x}-1}{x} = \lim_{x \to 0} \frac{\frac{1}{2}(1+x)^{-1/2}}{1} = \frac{\frac{1}{2} \times 1^{-1/2}}{1} = \frac{1}{2}$ (b) By LH Rule, we have $\lim_{x \to 4} \frac{e^x e^4}{x 4} = \lim_{x \to 4} \frac{e^x}{1} = e^4$ (c) By LH Pule and the pulse of the pul

- (c) By LH Rule, we have $\lim_{x \to 1} \frac{\ln x}{(x-1)^3} = \lim_{x \to 1} \frac{1/x}{3(x-1)^2} = \infty.$ (d) By LH Rule, we have $\lim_{x \to 0} \frac{e^{2x}-1-2x}{x^2} = \lim_{x \to 0} \frac{2e^{2x}-2}{2x} = \lim_{x \to 0} \frac{2e^{2x}}{1} = 2.$ (e) By LH Rule, we have $\lim_{x \to \infty} \frac{\ln x}{x} = \lim_{x \to \infty} \frac{1/x}{1} = 0.$