1 Solution To Homework 4

Solution to problem 1:

Step a. Analyze $f(x)$.
The domain of the given function is its natural domain $(-\infty, \infty)$.
The y intercept is $f(0)=10$.
Step b. Analyze $f^{\prime}(x)$.

$$
f^{\prime}(x)=4 x^{3}-12 x^{2}
$$

Solve the equation $f^{\prime}(x)=0$ for x, and obtain two solutions $x=0$ or $x=3$, which are partition numbers for $f^{\prime}(x)$.

By performing first derivative test, we establish the following first derivative test:

intervals	$(-\infty, 0)$	$(0,3)$	$(3, \infty)$
test numbers x	-1	1	4
$f^{\prime}(x)$	-	-	+
behavior of $f(x)$	decreasing	decreasing	increasing

By the first derivative test, we know that the function $f(x)$ has a local minimum $f(3)=-17$ at $x=3$, is decreasing on intervals $(-\infty, 0)$ and $(0,3)$, and increasing on the interval $(3, \infty)$.

Step c. Analyze $f^{\prime \prime}(x)$.

$$
f^{\prime \prime}(x)=12 x^{2}-24 x
$$

Solve the equation $f^{\prime \prime}(x)=0$ for x, and obtain two solutions $x=0$ or $x=2$, which are partition numbers for $f^{\prime \prime}(x)$.

By performing second derivative test, we establish the following second derivative test:

intervals	$(-\infty, 0)$	$(0,2)$	$(2, \infty)$
test numbers x	-1	1	3
$f^{\prime \prime}(x)$	+	-	+
behavior of $f(x)$	concave up	concave down	concave up

By the second derivative test, we know that the function $f(x)$ has two inflection points: $(0,10),(2,-6)$. It is concave up on intervals $(-\infty, 0)$ and $(2, \infty)$, concave down on the interval $(0,2)$.

Step d. Sketch the graph for f. See the figure 1.

Solution to Problem 2:

Step 1. Analyze $f(x)$
The domain of the function $f(x)$ is $(-\infty, 1) \cup(1, \infty)$. Intercepts: x-intercept and y-intercept occur at $(0,0)$.
Since

$$
\lim _{x \rightarrow \infty} f(x)=\lim _{x \rightarrow \infty} \frac{2 x}{1-x}=-2
$$

and

$$
\lim _{x \rightarrow 1^{+}} f(x)=\lim _{x \rightarrow \infty} \frac{2 x}{1-x}=-\infty
$$

$f(x)$ has two asymptotes, horizontal asymptote $y=-2$ and vertical asymptote $x=1$.

Step 2. Analyze $f^{\prime}(x)$

$$
f^{\prime}(x)=\frac{2}{(1-x)^{2}}
$$

Solve $f^{\prime}(x)=0$ for x and find no solution, which means there is no first type of partition number for $f^{\prime}(x)$. When $x=1$, the derivative $f^{\prime}(x)$ does not exist, which implies that $x=1$ is the second type of partition number for $f^{\prime}(x)$.

Next, we perform the first derivative test for $f(x)$.

intervals	$(-\infty, 1)$	$(1, \infty)$
test numbers x	0	2
$f^{\prime}(x)$	+	+
behavior of $f(x)$	increasing	increasing

By the first derivative test, we know that the function $f(x)$ is increasing on the interval $(-\infty, 1)$ and $(1, \infty)$.

Step 3. Analyze f " (x).

$$
f^{\prime \prime}(x)=\frac{4}{(1-x)^{3}}
$$

It is easy to see that partition numbers for $f^{\prime \prime}(x)$ is $x=1$.
Next, we perform the second derivative test for $f(x)$.

intervals	$(-\infty, 1)$	$(1, \infty)$
test numbers x	0	2
$f^{\prime \prime}(x)$	-	+
behavior of $f(x)$	concave down	concave up

By the second derivative test, we know that the function $f(x)$ is concave up on the interval $(-\infty, 1)$ and concave down on the interval $(1, \infty)$.

Step 4. Sketch the graph of $f(x)$ See the figure 2.

Solution to Problem 3:

(a) By LH Rule, we have $\lim _{x \rightarrow 0} \frac{\sqrt{1+x}-1}{x}=\lim _{x \rightarrow 0} \frac{\frac{1}{2}(1+x)^{-1 / 2}}{1}=\frac{\frac{1}{2} \times 1^{-1 / 2}}{1}=\frac{1}{2}$
(b) By LH Rule, we have $\lim _{x \rightarrow 4} \frac{e^{x}-e^{4}}{x-4}=\lim _{x \rightarrow 4} \frac{e^{x}}{1}=e^{4}$
(c) By LH Rule, we have $\lim _{x \rightarrow 1} \frac{\ln x}{(x-1)^{3}}=\lim _{x \rightarrow 1} \frac{1 / x}{3(x-1)^{2}}=\infty$.
(d) By LH Rule, we have $\lim _{x \rightarrow 0} \frac{e^{2 x}-1-2 x}{x^{2}}=\lim _{x \rightarrow 0} \frac{2 e^{2 x}-2}{2 x}=\lim _{x \rightarrow 0} \frac{2 e^{2 x}}{1}=2$.
(e) By LH Rule, we have $\lim _{x \rightarrow \infty} \frac{\ln x}{x}=\lim _{x \rightarrow \infty} \frac{1 / x}{1}=0$.

