1 Solution To Homework 3

Solution to Problem 1(A):

Step 1. Find domain.

The domain of the given function is its natural domain $(-\infty, \infty)$. Step 2. Find partition numbers for f(x).

$$f'(x) = e^{-x}$$
$$f''(x) = -e^{-x}$$

We can conclude that f''(x) is well-defined and nonzero for all x in the domain $(-\infty, \infty)$, and hence there is no partition number for f(x). There is only one interval $(-\infty, \infty)$. In other words, the function f''(x) keeps the same sign in the domain $(-\infty, \infty)$.

Step 3. Second derivative test.

By perform second derivative test, we establish the following second derivative test:

Intervals	$(-\infty,\infty)$
x	0
f''(x)	$-e^0 = -1 < 0$
Concavity of $f(x)$	concave down

Step 4. Find Concavity.

From the Step 3., we can conclude that the function f(x) is concave down in the domain $(-\infty, \infty)$.

Solution to Problem 1(B):

Step 1. Find domain.

The domain of the given function is its natural domain $(0, \infty)$.

Step 2. Find partition numbers for g(x).

$$g'(x) = -\frac{1}{x}$$
$$g''(x) = \frac{1}{x^2}$$

We can conclude that g''(x) is well-defined and positive for all x in the domain $(0, \infty)$, and hence there is no partition number for g(x). There is only one interval $(0, \infty)$ that second derivative test to be performed on. In other words, the function g''(x) keeps the same sign in the domain $(0, \infty)$.

Step 3. Second derivative test.

By perform second derivative test, we establish the following second derivative test:

Intervals	$(0,\infty)$
Test numbers x	1
g''(x)	$\frac{1}{1^2} = 1 > 0$
Concavity of $g(x)$	concave up

Step 4. Find Concavity.

From Step 3., we can conclude that the function g(x) is concave up in the domain $(0, \infty)$.

Solution to Problem 1(C):

Step 1. Find domain.

The domain of the given function h(x) is its natural domain $(-\infty, \infty)$.

Step 2. Find partition numbers for h(x).

$$h'(x) = \frac{1}{3}x^{1/3-1} = \frac{1}{3}x^{-2/3} = \frac{1}{3x^{2/3}}$$
$$h''(x) = \frac{1}{3} \times \frac{-2}{3}x^{-2/3-1} = \frac{-2}{9x^{5/3}}$$

We can conclude that h''(x) has a partition number x = 0, which is of second type h''(x) DNE.

Step 3. Second derivative test.

By perform second derivative test, we establish the following table:

Intervals	$(-\infty,0)$	$(0,\infty)$
x	-1	1
h''(x)	$\frac{-2}{9 \times (-1)^{5/3}} > 0$	$\frac{-2}{9 \times (1)^{5/3}} < 0$
Concavity of $f(x)$	concave up	concave down

Step 4. Find Concavity.

From the Step 3., we can conclude that the function h(x) is concave up in the interval $(-\infty, 0)$ and concave down in the interval $(0, \infty)$.

Solution to Problem 2:

Step 1. Find the second derivative f''(x).

$$f'(x) = 12x^{2} + 42x + 36$$
$$f''(x) = 24x + 42$$

Step 2. Find partition numbers and corresponding intervals.

Solving the equation 24x + 42 = 0, we obtain that x = -7/4, which is the partition number for f''(x). It partitions the domain $(-\infty, \infty)$ into two intervals $(-\infty, -7/4)$ and $(-7/4, \infty)$.

Step 3. Second derivative test.

Intervals	$(-\infty, -7/4)$	$(-7/4,\infty)$
x	-2	0
f''(x)	_	+
Concavity of $f(x)$	concave down	concave up

Step 4. Concavity

From Step 3., we can conclude that the function f(x) is concave down in the interval $(-\infty, -7/4)$ and concave up in the interval $(-7/4, \infty)$.

Solution to Problem 3:

Step 1. Find the second derivative f''(x).

$$f'(x) = 3x^2 - 12x + 9$$
$$f''(x) = 6x - 12$$

Step 2. Find partition numbers and corresponding intervals. Solving the equation 6x - 12 = 0, we obtain that x = 2, which is the partition number for f''(x). It partitions the domain $(-\infty, \infty)$ into two intervals $(-\infty, 2)$ and $(2, \infty)$.

Step 3. Second derivative test.

Intervals	$(-\infty,2)$	$(2,\infty)$
x	0	3
f''(x)	_	+
Concavity of $f(x)$	concave down	concave up

Step 4. Inflection points

From Step 3., we can conclude that the function f(x) changes concavity across x = 2 and hence (2, f(2)) = (2, 3) is the inflection point.

Step 1. Find the critical values of f(x).

$$f'(x) = 3x^2 - 12$$

Solving the equation $3x^2 - 12 = 0$, we obtain x = -2 or x = 2, which are critical values.

Step 2. Evaluate the second derivative f''(x) at critical values and perform second derivative test for local extrema.

$$f''(x) = 6x.$$

At x = -2, f''(-2) = 6 * (-2) < 0, which implies that the function f(x) has a local maxima at x = -2. At x = 2, f''(2) = 6 * 2 > 0, which implies that the function f(x) has a local minima at x = 2.