1 Solution To Homework 3

Solution to Problem 1(A):

Step 1. Find domain.
The domain of the given function is its natural domain $(-\infty, \infty)$.
Step 2. Find partition numbers for $f(x)$.

$$
\begin{gathered}
f^{\prime}(x)=e^{-x} \\
f^{\prime \prime}(x)=-e^{-x}
\end{gathered}
$$

We can conclude that $f^{\prime \prime}(x)$ is well-defined and nonzero for all x in the domain $(-\infty, \infty)$, and hence there is no partition number for $f(x)$. There is only one interval $(-\infty, \infty)$. In other words, the function $f^{\prime \prime}(x)$ keeps the same sign in the domain $(-\infty, \infty)$.

Step 3. Second derivative test.
By perform second derivative test, we establish the following second derivative test:

Intervals	$(-\infty, \infty)$
x	0
$f^{\prime \prime}(x)$	$-e^{0}=-1<0$
Concavity of $f(x)$	concave down

Step 4. Find Concavity.
From the Step 3., we can conclude that the function $f(x)$ is concave down in the domain $(-\infty, \infty)$.

Solution to Problem 1(B):

Step 1. Find domain.
The domain of the given function is its natural domain $(0, \infty)$.
Step 2. Find partition numbers for $g(x)$.

$$
\begin{aligned}
g^{\prime}(x) & =-\frac{1}{x} \\
g^{\prime \prime}(x) & =\frac{1}{x^{2}}
\end{aligned}
$$

We can conclude that $g^{\prime \prime}(x)$ is well-defined and positive for all x in the domain $(0, \infty)$, and hence there is no partition number for $g(x)$. There is only one interval $(0, \infty)$ that second derivative test to be performed on. In other words, the function $g^{\prime \prime}(x)$ keeps the same sign in the domain $(0, \infty)$.

Step 3. Second derivative test.
By perform second derivative test, we establish the following second derivative test:

Intervals	$(0, \infty)$
Test numbers x	1
$g^{\prime \prime}(x)$	$\frac{1}{1^{2}}=1>0$
Concavity of $g(x)$	concave up

Step 4. Find Concavity.
From Step 3., we can conclude that the function $g(x)$ is concave up in the domain $(0, \infty)$.

Solution to Problem 1(C):
Step 1. Find domain.
The domain of the given function $h(x)$ is its natural domain $(-\infty, \infty)$.
Step 2. Find partition numbers for $h(x)$.

$$
\begin{aligned}
& h^{\prime}(x)=\frac{1}{3} x^{1 / 3-1}=\frac{1}{3} x^{-2 / 3}=\frac{1}{3 x^{2 / 3}} \\
& h^{\prime \prime}(x)=\frac{1}{3} \times \frac{-2}{3} x^{-2 / 3-1}=\frac{-2}{9 x^{5 / 3}}
\end{aligned}
$$

We can conclude that $h "(x)$ has a partition number $x=0$, which is of second type $h "(x)$ DNE.

Step 3. Second derivative test.
By perform second derivative test, we establish the following table:

Intervals	$(-\infty, 0)$	$(0, \infty)$
x	-1	1
$h "(x)$	$\frac{-2}{9 \times(-1)^{5 / 3}}>0$	$\frac{-2}{9 \times(1)^{5 / 3}}<0$
Concavity of $f(x)$	concave up	concave down

Step 4. Find Concavity.
From the Step 3., we can conclude that the function $h(x)$ is concave up in the interval $(-\infty, 0)$ and concave down in the interval $(0, \infty)$.

Solution to Problem 2:

Step 1. Find the second derivative $f^{\prime \prime}(x)$.

$$
\begin{gathered}
f^{\prime}(x)=12 x^{2}+42 x+36 \\
f^{\prime \prime}(x)=24 x+42
\end{gathered}
$$

Step 2. Find partition numbers and corresponding intervals.
Solving the equation $24 x+42=0$, we obtain that $x=-7 / 4$, which is the partition number for $f^{\prime \prime}(x)$. It partitions the domain $(-\infty, \infty)$ into two intervals $(-\infty,-7 / 4)$ and $(-7 / 4, \infty)$.

Step 3. Second derivative test.

Intervals	$(-\infty,-7 / 4)$	$(-7 / 4, \infty)$
x	-2	0
$f^{\prime \prime}(x)$	-	+
Concavity of $f(x)$	concave down	concave up

Step 4. Concavity
From Step 3., we can conclude that the function $f(x)$ is concave down in the interval $(-\infty,-7 / 4)$ and concave up in the interval $(-7 / 4, \infty)$.

Solution to Problem 3:

Step 1. Find the second derivative $f^{\prime \prime}(x)$.

$$
\begin{gathered}
f^{\prime}(x)=3 x^{2}-12 x+9 \\
f^{\prime \prime}(x)=6 x-12
\end{gathered}
$$

Step 2. Find partition numbers and corresponding intervals.
Solving the equation $6 x-12=0$, we obtain that $x=2$, which is the partition number for $f^{\prime \prime}(x)$. It partitions the domain $(-\infty, \infty)$ into two intervals $(-\infty, 2)$ and $(2, \infty)$.

Step 3. Second derivative test.

Intervals	$(-\infty, 2)$	$(2, \infty)$
x	0	3
$f^{\prime \prime}(x)$	-	+
Concavity of $f(x)$	concave down	concave up

Step 4. Inflection points
From Step 3., we can conclude that the function $f(x)$ changes concavity across $x=2$ and hence $(2, f(2))=(2,3)$ is the inflection point.

Solution to Problem 4:
Step 1. Find the critical values of $f(x)$.

$$
f^{\prime}(x)=3 x^{2}-12
$$

Solving the equation $3 x^{2}-12=0$, we obtain $x=-2$ or $x=2$, which are critical values.

Step 2. Evaluate the second derivative $f^{\prime \prime}(x)$ at critical values and perform second derivative test for local extrema.

$$
f^{\prime \prime}(x)=6 x .
$$

At $x=-2, f^{\prime \prime}(-2)=6 *(-2)<0$, which implies that the function $f(x)$ has a local maxima at $x=-2$. At $x=2, f^{\prime \prime}(2)=6 * 2>0$, which implies that the function $f(x)$ has a local minima at $x=2$.

