1 Solution To Homework 2

Solution to Problem 1:

Step 1. Find the domain.
The domain of the function $f(x)$ is not specified, so the domain here is the natural domain, which is $(0, \infty)$.
Step 2. Find the derivative $f^{\prime}(x)$.

$$
\begin{equation*}
f^{\prime}(x)=\frac{8}{x}-2 x \tag{1}
\end{equation*}
$$

Step 3. Find the partition numbers.
Type 1: $f^{\prime}(x)=0$. From the equation (1), we have that

$$
\begin{equation*}
\frac{8}{x}-2 x=0 \tag{2}
\end{equation*}
$$

Solve the equation ((2) and obtain that $x=-2$, or $x=2$. Since -2 is not in the domain $(0, \infty)$ and does not partition the domain into intervals, $x=-2$ is not a partition number. The onlye type 1 partition number is -2 . Type 2 : $f^{\prime}(x)$ DNE. When $x=0, f^{\prime}(x)$ DNE. However, 0 does not partition the domain $(0, \infty)$ into intervals, which means 0 is not a partition number.

Overall, the only partition number is $x=2$.
Step 4. Find Critical Values of $f(x)$.
$x=2$ is the only partition number and it is in the domain $(0, \infty)$. Therefore, $x=2$ is the only critical value of $f(x)$.

Solution to Problem 2(a):
Step 1. Find the derivative of f^{\star}.

$$
f^{\prime}(x)=3 x^{2}-18 x+24
$$

Step 2. Find the critical values of $f(x)$.
For a polynomial, the possible critical values should be Type I: $f^{\prime}(x)=0$. Therefore, we solve the following equation for x :

$$
3 x^{2}-18 x+24=3(x-2)(x-4)=0
$$

and find solutions are $x=2$ or $x=4$, which are critical values for the function $f(x)$. Meanwhile, those two critical values $x=2$ or $x=4$ are also partition numbers.

Solution to Problem 2(b):
Step 1. Perform first derivative test.

Intervals	$(-\infty, 2)$	$(2,4)$	$(4, \infty)$
test numbers x	0	3	5
$f^{\prime}(x)$	+	-	+
$f(x)$	increasing	decreasing	increasing

Step 2. Find the local maxima and minima.
The first derivative test above tells us the function $f(x)$ has a local maxima $f(2)=10$ at $x=2$, and a local minima $f(4)=6$ at $x=4$.

Step 3. Sketch the graph of $f(x)$.

Solution to Problem 2(b):

Step 1. Find the derivative of the function.

$$
\begin{equation*}
y^{\prime}=F^{\prime} S+F S^{\prime}=4 x \sqrt{x}+\left(2 x^{2}-4\right) \frac{1}{2} x^{-1 / 2}=4 x \sqrt{x}+\left(x^{2}-2\right) x^{-1 / 2} \tag{3}
\end{equation*}
$$

Step 2. Find the corresponding differential.

$$
\begin{equation*}
d y=\left(4 x \sqrt{x}+\left(x^{2}-2\right) x^{-1 / 2}\right) d x \tag{4}
\end{equation*}
$$

Solution to Problem 3(a):

Step 1. Find the critical values of $f(x)$.
Since $f^{\prime}(x)=3 / 2$ for all x in the domain $[-2,3]$, there is no critical value in the domain.

Step 2. Evaluate the function $f(x)$ at critical values and endpoints.
From Step 1, we know that the function $f(x)$ has no critical value in the domain, so we only need to evaluate the function $f(x)$ at endpoints, which are: $f(-2)=\frac{3}{2} *(-2)-5=-8$ and $f(3)=\frac{3}{2} * 3-5=-\frac{1}{2}$.

Step 3. Compare function values in Step 2. and find absolute max and min.

By compare the function values $-\frac{1}{2}$ and -8 , we conclude that the absolute maximum value of $f(x)$ is $-\frac{1}{2}$, and the absolute minimum value of $f(x)$ is -8 .

Solution to Problem 3(b):

Solution to Problem 4(a):
Step 1. Find the critical values of $f(x)$.
Since $f^{\prime}(x)=\frac{2}{x^{3}}>0$ for all x in the domain $[0.5,2]$, there is no critical value in the domain.

Step 2. Evaluate the function $f(x)$ at critical values and endpoints.
From Step 1, we know that the function $f(x)$ has no critical value in the domain, so we only need to evaluate the function $f(x)$ at endpoints, which are: $f(0.5)=-\frac{1}{0.5^{2}}=-4$ and $f(2)=-\frac{1}{2^{2}}=-0.25$.

Step 3. Compare function values in Step 2. and find absolute max and min.

By compare the function values -0.25 and -4 , we conclude that the absolute maximum value of $f(x)$ is -0.25 , and the absolute minimum value of $f(x)$ is -4 .

Solution to Problem 4(b): See the figure

