
A Short Intro to
Strings in C++

Tianyi Qiu

C-style
Representations

Basics of the
String Class

Conversions from
and to
std::string

Memory Policy of
std::string

Siblings of
std::string

String Views

Uncovered Topics

A Short Intro to Strings in C++

Tianyi Qiu

Peking University

April 1, 2021

A Short Intro to
Strings in C++

Tianyi Qiu

C-style
Representations

Basics of the
String Class

Conversions from
and to
std::string

Memory Policy of
std::string

Siblings of
std::string

String Views

Uncovered Topics

Overview: 4 Ways of Representing a String

C-style I "abc" // string literal

I char s[4]; // char array

I char *s; // char pointer

Cpp-style I std:: string s; // string class

A Short Intro to
Strings in C++

Tianyi Qiu

C-style
Representations

Basics of the
String Class

Conversions from
and to
std::string

Memory Policy of
std::string

Siblings of
std::string

String Views

Uncovered Topics

Outline

C-style Representations

Basics of the String Class

Conversions from and to std::string

Memory Policy of std::string

Siblings of std::string

String Views

Uncovered Topics

A Short Intro to
Strings in C++

Tianyi Qiu

C-style
Representations

Basics of the
String Class

Conversions from
and to
std::string

Memory Policy of
std::string

Siblings of
std::string

String Views

Uncovered Topics

Outline

C-style Representations

Basics of the String Class

Conversions from and to std::string

Memory Policy of std::string

Siblings of std::string

String Views

Uncovered Topics

A Short Intro to
Strings in C++

Tianyi Qiu

C-style
Representations

Basics of the
String Class

Conversions from
and to
std::string

Memory Policy of
std::string

Siblings of
std::string

String Views

Uncovered Topics

Connections Between C-style Representations

"abc"

char[4]

char*

convert

convert

access

access

convert: Objects of the former type can be implicitly
converted to the latter type.

access: Contents in an object of the latter type can be
accessed with an object of the former type.

A Short Intro to
Strings in C++

Tianyi Qiu

C-style
Representations

Basics of the
String Class

Conversions from
and to
std::string

Memory Policy of
std::string

Siblings of
std::string

String Views

Uncovered Topics

Conversion: Literal to Array

I “String literal” is not a seperate type.

I Any string literal in the code, will automatically be
interpretted as const char[].

char s[5];

cout <<typeid(s).name(); // A5_c

cout <<typeid("abcd").name(); // A5_c

cout <<sizeof(s); // 5

cout <<sizeof("abcd"); // 5

A Short Intro to
Strings in C++

Tianyi Qiu

C-style
Representations

Basics of the
String Class

Conversions from
and to
std::string

Memory Policy of
std::string

Siblings of
std::string

String Views

Uncovered Topics

Conversion: Literal to Array

char s[5]="abcd"; // OK

char t[5]=s; // Error

I But how can this be explained?

I The "abcd" is not really a string literal.

I It’s an abbreviated initializer list.

⇐⇒ char s[5]={’a’,’b’,’c’,’d’,’\0’};

A Short Intro to
Strings in C++

Tianyi Qiu

C-style
Representations

Basics of the
String Class

Conversions from
and to
std::string

Memory Policy of
std::string

Siblings of
std::string

String Views

Uncovered Topics

Conversion: Literal to Array

char s[5]="abcd"; // OK

char t[5]=s; // Error

I But how can this be explained?

I The "abcd" is not really a string literal.

I It’s an abbreviated initializer list.

⇐⇒ char s[5]={’a’,’b’,’c’,’d’,’\0’};

A Short Intro to
Strings in C++

Tianyi Qiu

C-style
Representations

Basics of the
String Class

Conversions from
and to
std::string

Memory Policy of
std::string

Siblings of
std::string

String Views

Uncovered Topics

Conversion: Literal to Array

char s[5]="abcd"; // OK

char t[5]=s; // Error

I But how can this be explained?

I The "abcd" is not really a string literal.

I It’s an abbreviated initializer list.

⇐⇒ char s[5]={’a’,’b’,’c’,’d’,’\0’};

A Short Intro to
Strings in C++

Tianyi Qiu

C-style
Representations

Basics of the
String Class

Conversions from
and to
std::string

Memory Policy of
std::string

Siblings of
std::string

String Views

Uncovered Topics

Conversion: Array to Pointer

I “Array” is a seperate type.

I An array can be implicitly converted to a pointer (that
points to its first element), but only when necessary.

char s[5];

char *t=s; // implicit conversion

cout <<typeid(s).name(); // A5_c

cout <<typeid(t).name(); // Pc

cout <<sizeof(s); // 5

cout <<sizeof(t); // 8

A Short Intro to
Strings in C++

Tianyi Qiu

C-style
Representations

Basics of the
String Class

Conversions from
and to
std::string

Memory Policy of
std::string

Siblings of
std::string

String Views

Uncovered Topics

Conversion: Array to Pointer

I Common operators don’t accept arrays as operands, but
may accept converted pointers.

I In such cases, implicit conversion takes place.

char s[5]="abcd";

char t[5]="abcd";

cout <<(s==t); // 0

A Short Intro to
Strings in C++

Tianyi Qiu

C-style
Representations

Basics of the
String Class

Conversions from
and to
std::string

Memory Policy of
std::string

Siblings of
std::string

String Views

Uncovered Topics

Accessing: Array by Pointer

I Array elements can be accessed with expressions like
p[2] or *(p+2), where p is a pointer to an element.

char s[5]="abcd";

char *p=s; // points to s[0]

cout <<*p<<*(p+1) <<*(p+2); // abc

cout <<p[0]<<p[1]<<p[2]; // abc

p=s+1; // points to s[1]

cout <<*p<<*(p+1) <<*(p+2); // bcd

cout <<p[0]<<p[1]<<p[2]; // bcd

I In fact, even expressions like s[2] are interpretted as
((char*)s)[2].

A Short Intro to
Strings in C++

Tianyi Qiu

C-style
Representations

Basics of the
String Class

Conversions from
and to
std::string

Memory Policy of
std::string

Siblings of
std::string

String Views

Uncovered Topics

Accessing: Literal by Pointer

const char *p;

p="abcd"; // points to ’a’

cout <<*p<<*(p+1) <<*(p+2); // abc

cout <<p[0]<<p[1]<<p[2]; // abc

p=p+1; // points to ’b’

cout <<*p<<*(p+1) <<*(p+2); // bcd

cout <<p[0]<<p[1]<<p[2]; // bcd

I Will receive warning if const is removed from line 1.

A Short Intro to
Strings in C++

Tianyi Qiu

C-style
Representations

Basics of the
String Class

Conversions from
and to
std::string

Memory Policy of
std::string

Siblings of
std::string

String Views

Uncovered Topics

Outline

C-style Representations

Basics of the String Class

Conversions from and to std::string

Memory Policy of std::string

Siblings of std::string

String Views

Uncovered Topics

A Short Intro to
Strings in C++

Tianyi Qiu

C-style
Representations

Basics of the
String Class

Conversions from
and to
std::string

Memory Policy of
std::string

Siblings of
std::string

String Views

Uncovered Topics

Why We Need a String Class

I Literals and char arrays: inconvenient in use; lacking
functionalities

I Char pointers: functionalities provided by cstring

library; but needing manual memory management

I String class: solves all the above!

A Short Intro to
Strings in C++

Tianyi Qiu

C-style
Representations

Basics of the
String Class

Conversions from
and to
std::string

Memory Policy of
std::string

Siblings of
std::string

String Views

Uncovered Topics

What is std::string

I A class defined in string library.

I Its name is string, while the prefix std:: is the
namespace it’s in.

I It does the same thing as the MyString class, the one
that you implemented in the homework.

A Short Intro to
Strings in C++

Tianyi Qiu

C-style
Representations

Basics of the
String Class

Conversions from
and to
std::string

Memory Policy of
std::string

Siblings of
std::string

String Views

Uncovered Topics

Demonstration: Basic Usage

#include <string >

using namespace std;

...

string s;

cin >>s; // abc

s[1]=’d’;

cout <<s; // adc

cout <<s.size(); // 3

A Short Intro to
Strings in C++

Tianyi Qiu

C-style
Representations

Basics of the
String Class

Conversions from
and to
std::string

Memory Policy of
std::string

Siblings of
std::string

String Views

Uncovered Topics

Demonstration: Querying Operations

string s="ababa";

cout <<s.find("ab"); // 0

cout <<s.find("ab" ,1); // 2

cout <<(s.find("abc")== string ::npos);

// 1

cout <<s.substr (1,3); // bab

I string::find() is implemented using brute force.

A Short Intro to
Strings in C++

Tianyi Qiu

C-style
Representations

Basics of the
String Class

Conversions from
and to
std::string

Memory Policy of
std::string

Siblings of
std::string

String Views

Uncovered Topics

Demonstration: Modification Operations

string s="ab",t="cc";

cout <<s+t; // abcc

s+=t;

cout <<s; // abcc

s="ababa";

s.replace(1,3,"rr");

cout <<s; // arra

A Short Intro to
Strings in C++

Tianyi Qiu

C-style
Representations

Basics of the
String Class

Conversions from
and to
std::string

Memory Policy of
std::string

Siblings of
std::string

String Views

Uncovered Topics

Demonstration: Modification Operations

s="ababa";

s.insert(1,"rr");

cout <<s; // arrbaba

s="ababa";

s.erase (1,3);

cout <<s; // aa

A Short Intro to
Strings in C++

Tianyi Qiu

C-style
Representations

Basics of the
String Class

Conversions from
and to
std::string

Memory Policy of
std::string

Siblings of
std::string

String Views

Uncovered Topics

Demonstration: Comparison Operations

string s="ab",t="ac";

cout <<(s==t); // 0

cout <<(s<t); // 1

I operator < compares in lexicographical order, i.e. the
order of words in a dictionary.

A Short Intro to
Strings in C++

Tianyi Qiu

C-style
Representations

Basics of the
String Class

Conversions from
and to
std::string

Memory Policy of
std::string

Siblings of
std::string

String Views

Uncovered Topics

Tip: size type and npos in std::string

I size type is a member type of std::string.

I size type is an alias of unsigned int or unsigned

long long.

I Builtin std::string functions that return a size or
index usually have a return type of size type.
(same goes for formal parameters)

I npos is a static constant member of std::string,
with type size type.

I npos equals the max value of type size type.

I When npos is returned, it means “desired index can’t
be found”.

A Short Intro to
Strings in C++

Tianyi Qiu

C-style
Representations

Basics of the
String Class

Conversions from
and to
std::string

Memory Policy of
std::string

Siblings of
std::string

String Views

Uncovered Topics

Tip: Complexity of operator + and +=

s=s+"123"; // s: string

I operator + creates a temporary string object to
store the result.

I Time complexity: O(|s|) (Slow)

s+="123"; // s: string

I operator += does not create temporary objects.

I Time complexity: O(1) (Fast)

A Short Intro to
Strings in C++

Tianyi Qiu

C-style
Representations

Basics of the
String Class

Conversions from
and to
std::string

Memory Policy of
std::string

Siblings of
std::string

String Views

Uncovered Topics

Outline

C-style Representations

Basics of the String Class

Conversions from and to std::string

Memory Policy of std::string

Siblings of std::string

String Views

Uncovered Topics

A Short Intro to
Strings in C++

Tianyi Qiu

C-style
Representations

Basics of the
String Class

Conversions from
and to
std::string

Memory Policy of
std::string

Siblings of
std::string

String Views

Uncovered Topics

Between std::string and Numeric Types

I Available only since C++11.

string s=to_string (-1926),

t=to_string (1926.08);

cout <<s; // -1926

cout <<t; // 1926.080000

s=" -1926";

int a=stoi(s);

cout <<a; // -1926

s="1926.08";

double d=stod(s);

cout <<d; // 1926.08

A Short Intro to
Strings in C++

Tianyi Qiu

C-style
Representations

Basics of the
String Class

Conversions from
and to
std::string

Memory Policy of
std::string

Siblings of
std::string

String Views

Uncovered Topics

From std::string to C-style

string s="abc";

const char *s1=s.c_str (),

*s2=s.data();

// "const" is necessary

printf("%s",s1); // abc

printf("%s",s2); // abc

I string::c str() and string::data() do the same
thing.

I string::data() is available only since C++11.

I Both have complexity O(1).

A Short Intro to
Strings in C++

Tianyi Qiu

C-style
Representations

Basics of the
String Class

Conversions from
and to
std::string

Memory Policy of
std::string

Siblings of
std::string

String Views

Uncovered Topics

From C-style to std::string

Using constructors:

cout <<string(3,’a’); // aaa

cout <<string("abc"); // abc

char t[5]="abcd";

cout <<string(t+1,2); // bc

I Constructors copy from the parameter, instead of
reusing the parameter object.

A Short Intro to
Strings in C++

Tianyi Qiu

C-style
Representations

Basics of the
String Class

Conversions from
and to
std::string

Memory Policy of
std::string

Siblings of
std::string

String Views

Uncovered Topics

From C-style to std::string

Using operators:

string s;

char t[4]="abc";

s=’a’;

s="abc";

s=t;

s+=’a’;

s+="abc";

s+=t;

s=’a’+s;

s="abc"+s;

s=t+s;

A Short Intro to
Strings in C++

Tianyi Qiu

C-style
Representations

Basics of the
String Class

Conversions from
and to
std::string

Memory Policy of
std::string

Siblings of
std::string

String Views

Uncovered Topics

Tip: Order of Operands in Successive Pluses

s+’a’+"abc"; // OK

’a’+s+"abc"; // OK

’a’+"abc"+s; // Error

’a’+("abc"+s); // OK

A Short Intro to
Strings in C++

Tianyi Qiu

C-style
Representations

Basics of the
String Class

Conversions from
and to
std::string

Memory Policy of
std::string

Siblings of
std::string

String Views

Uncovered Topics

Outline

C-style Representations

Basics of the String Class

Conversions from and to std::string

Memory Policy of std::string

Siblings of std::string

String Views

Uncovered Topics

A Short Intro to
Strings in C++

Tianyi Qiu

C-style
Representations

Basics of the
String Class

Conversions from
and to
std::string

Memory Policy of
std::string

Siblings of
std::string

String Views

Uncovered Topics

Illustration: How the Memory Changes

a

Used: 1

Allocated: 1

A Short Intro to
Strings in C++

Tianyi Qiu

C-style
Representations

Basics of the
String Class

Conversions from
and to
std::string

Memory Policy of
std::string

Siblings of
std::string

String Views

Uncovered Topics

Illustration: How the Memory Changes

a c

Used: 2

Allocated: 2

A Short Intro to
Strings in C++

Tianyi Qiu

C-style
Representations

Basics of the
String Class

Conversions from
and to
std::string

Memory Policy of
std::string

Siblings of
std::string

String Views

Uncovered Topics

Illustration: How the Memory Changes

a c e

Used: 3

Allocated: 4

A Short Intro to
Strings in C++

Tianyi Qiu

C-style
Representations

Basics of the
String Class

Conversions from
and to
std::string

Memory Policy of
std::string

Siblings of
std::string

String Views

Uncovered Topics

Illustration: How the Memory Changes

a c e a

Used: 4

Allocated: 4

A Short Intro to
Strings in C++

Tianyi Qiu

C-style
Representations

Basics of the
String Class

Conversions from
and to
std::string

Memory Policy of
std::string

Siblings of
std::string

String Views

Uncovered Topics

Illustration: How the Memory Changes

a c e a c

Used: 5

Allocated: 8

A Short Intro to
Strings in C++

Tianyi Qiu

C-style
Representations

Basics of the
String Class

Conversions from
and to
std::string

Memory Policy of
std::string

Siblings of
std::string

String Views

Uncovered Topics

Illustration: How the Memory Changes

a c e a c c

Used: 6

Allocated: 8

A Short Intro to
Strings in C++

Tianyi Qiu

C-style
Representations

Basics of the
String Class

Conversions from
and to
std::string

Memory Policy of
std::string

Siblings of
std::string

String Views

Uncovered Topics

Illustration: How the Memory Changes

a c e a c c e

Used: 7

Allocated: 8

A Short Intro to
Strings in C++

Tianyi Qiu

C-style
Representations

Basics of the
String Class

Conversions from
and to
std::string

Memory Policy of
std::string

Siblings of
std::string

String Views

Uncovered Topics

Illustration: How the Memory Changes

a c e a c c e c

Used: 8

Allocated: 8

A Short Intro to
Strings in C++

Tianyi Qiu

C-style
Representations

Basics of the
String Class

Conversions from
and to
std::string

Memory Policy of
std::string

Siblings of
std::string

String Views

Uncovered Topics

Illustration: How the Memory Changes

a c e a c c e c a · · ·

Used: 9

Allocated: 16

A Short Intro to
Strings in C++

Tianyi Qiu

C-style
Representations

Basics of the
String Class

Conversions from
and to
std::string

Memory Policy of
std::string

Siblings of
std::string

String Views

Uncovered Topics

size() and capacity()

I string::size() returns the number of chars used.

I string::capacity() returns the number of chars
allocated.

I Both functions have a return type of size type.

A Short Intro to
Strings in C++

Tianyi Qiu

C-style
Representations

Basics of the
String Class

Conversions from
and to
std::string

Memory Policy of
std::string

Siblings of
std::string

String Views

Uncovered Topics

Demonstration: How capacity() Changes

string s="aaa";

cout <<s.size()<<’ ’<<s.capacity ();

// 3 3

s+="aaaaa";

cout <<s.size()<<’ ’<<s.capacity ();

// 8 8

s+="a";

cout <<s.size()<<’ ’<<s.capacity ();

// 9 16

s.erase (4,5);

cout <<s.size()<<’ ’<<s.capacity ();

// 4 16

s.clear (); // equivalent to s="";

cout <<s.size()<<’ ’<<s.capacity ();

// 0 16

A Short Intro to
Strings in C++

Tianyi Qiu

C-style
Representations

Basics of the
String Class

Conversions from
and to
std::string

Memory Policy of
std::string

Siblings of
std::string

String Views

Uncovered Topics

The Memory Policy

I After initialization size() equals capacity().

I For any operation that will increase size():

1. Before the operation, the program checks whether
current capacity() will be exceeded.

2. If yes, string content will be moved to a newly-allocated
segment of memory, and the old one will be
de-allocated.

3. Size of the new segment will be a minimum possible
power of 2.

I Operations that decrease size() will not affect
capacity().

I Details vary across compilers, e.g. in other compilers
the segment size may be power of 3 intead of 2.

A Short Intro to
Strings in C++

Tianyi Qiu

C-style
Representations

Basics of the
String Class

Conversions from
and to
std::string

Memory Policy of
std::string

Siblings of
std::string

String Views

Uncovered Topics

Why such policy?

I Static structures don’t support the changing of length,
so we have to rebuild the structure at certain times.

I However, rebuilding at every length-changing operation
would be too time-consuming.

I The “power of two” policy limits frequency of
rebuilding. Meanwhile it guarantees that capacity()
won’t get too large.

I Operations that trigger rebuilding will get very slow, but
in average the decline in speed won’t be too large.

I If you know amortized complexity, the whole thing is
obvious.

A Short Intro to
Strings in C++

Tianyi Qiu

C-style
Representations

Basics of the
String Class

Conversions from
and to
std::string

Memory Policy of
std::string

Siblings of
std::string

String Views

Uncovered Topics

How to reduce memory usage?

string s(10,’a’);

cout <<s.size()<<’ ’<<s.capacity ();

// 10 10

s.erase (5,5);

cout <<s.size()<<’ ’<<s.capacity ();

// 5 10

s.shrink_to_fit ();

cout <<s.size()<<’ ’<<s.capacity ();

// 5 5

I string::shrink to fit() is available only since
C++11.

A Short Intro to
Strings in C++

Tianyi Qiu

C-style
Representations

Basics of the
String Class

Conversions from
and to
std::string

Memory Policy of
std::string

Siblings of
std::string

String Views

Uncovered Topics

Tip: Pointer Validity

string s="a";

char *p=&s[0];

cout <<(p==&s[0]); // 1

s+=’a’;

cout <<(p==&s[0]); // 0

I Why? Because s was rebuilt at line 4.

A Short Intro to
Strings in C++

Tianyi Qiu

C-style
Representations

Basics of the
String Class

Conversions from
and to
std::string

Memory Policy of
std::string

Siblings of
std::string

String Views

Uncovered Topics

Outline

C-style Representations

Basics of the String Class

Conversions from and to std::string

Memory Policy of std::string

Siblings of std::string

String Views

Uncovered Topics

A Short Intro to
Strings in C++

Tianyi Qiu

C-style
Representations

Basics of the
String Class

Conversions from
and to
std::string

Memory Policy of
std::string

Siblings of
std::string

String Views

Uncovered Topics

The Template std::basic string

I This template is a generalization of std::string.

I std:string is an alias of std::basic string<char>.

template <

class CharT ,

class Traits = char_traits <CharT >,

class Allocator = allocator <CharT >

> class basic_string;

CharT: the character type.

Traits: a class that specifies how to compare characters.

Allocator: a class that specifies how new memory will be
allocated.

A Short Intro to
Strings in C++

Tianyi Qiu

C-style
Representations

Basics of the
String Class

Conversions from
and to
std::string

Memory Policy of
std::string

Siblings of
std::string

String Views

Uncovered Topics

Other Encodings

I std::u16string is an alias of
std::basic string<char16 t>.
It uses UTF-16 encoding (2 bytes per char).

I std::u32string is an alias of
std::basic string<char32 t>.
It uses UTF-32 encoding (4 bytes per char).

I std::wstring is an alias of
std::basic string<wchar t>.
It uses UTF-16 (Win) or UTF-32 (Linux) encoding.

A Short Intro to
Strings in C++

Tianyi Qiu

C-style
Representations

Basics of the
String Class

Conversions from
and to
std::string

Memory Policy of
std::string

Siblings of
std::string

String Views

Uncovered Topics

Other Encodings

I std::u16string and std::u32string are only
available since C++11.

I All functionalities of std::string are shared by its
siblings.

A Short Intro to
Strings in C++

Tianyi Qiu

C-style
Representations

Basics of the
String Class

Conversions from
and to
std::string

Memory Policy of
std::string

Siblings of
std::string

String Views

Uncovered Topics

Outline

C-style Representations

Basics of the String Class

Conversions from and to std::string

Memory Policy of std::string

Siblings of std::string

String Views

Uncovered Topics

A Short Intro to
Strings in C++

Tianyi Qiu

C-style
Representations

Basics of the
String Class

Conversions from
and to
std::string

Memory Policy of
std::string

Siblings of
std::string

String Views

Uncovered Topics

The Template std::basic string view

template <

class CharT ,

class Traits = char_traits <CharT >,

> class basic_string_view;

I A std::basic string without Allocator?

I Indeed, a “string view” is just a string without
independent storage.

I Available only since C++17.

A Short Intro to
Strings in C++

Tianyi Qiu

C-style
Representations

Basics of the
String Class

Conversions from
and to
std::string

Memory Policy of
std::string

Siblings of
std::string

String Views

Uncovered Topics

The Class std::string view

I string view is an alias of
basic string view<char>.

I Its siblings: (not our focus)

I wstring view (basic string view<wchar t>)

I u16string view (basic string view<char16 t>)

I u32string view (basic string view<char32 t>)

A Short Intro to
Strings in C++

Tianyi Qiu

C-style
Representations

Basics of the
String Class

Conversions from
and to
std::string

Memory Policy of
std::string

Siblings of
std::string

String Views

Uncovered Topics

Demonstration: Initializing a string view

char s[5]="abcd";

string_view sv1(s,4);

cout <<sv1; // abcd

string_view sv2(s+1,2);

cout <<sv2; // bc

string t=s;

string_view sv3(t);

cout <<sv3; // abcd

A Short Intro to
Strings in C++

Tianyi Qiu

C-style
Representations

Basics of the
String Class

Conversions from
and to
std::string

Memory Policy of
std::string

Siblings of
std::string

String Views

Uncovered Topics

Demonstration: Modifying a string view

char s[5]="abcd";

string_view sv(s);

sv.remove_suffix (2);

sv.remove_prefix (1);

cout <<sv; // b

I No other modifications allowed.

sv[0]=’a’;

// Error: sv[0] is read -only

A Short Intro to
Strings in C++

Tianyi Qiu

C-style
Representations

Basics of the
String Class

Conversions from
and to
std::string

Memory Policy of
std::string

Siblings of
std::string

String Views

Uncovered Topics

Other operations?

I Identical to std::string operations!

char s[5]="abcd";

string_view sv(s);

cout <<sv.find("bc"); // 1

cout <<sv.size(); // 4

printf("%s",sv.data()); // abcd

A Short Intro to
Strings in C++

Tianyi Qiu

C-style
Representations

Basics of the
String Class

Conversions from
and to
std::string

Memory Policy of
std::string

Siblings of
std::string

String Views

Uncovered Topics

When to Use std::string view

I Avoiding the extra space consumption of allocating a
new std::string.

I Avoiding the time consumption of allocating a new
std::string.

A Short Intro to
Strings in C++

Tianyi Qiu

C-style
Representations

Basics of the
String Class

Conversions from
and to
std::string

Memory Policy of
std::string

Siblings of
std::string

String Views

Uncovered Topics

Outline

C-style Representations

Basics of the String Class

Conversions from and to std::string

Memory Policy of std::string

Siblings of std::string

String Views

Uncovered Topics

A Short Intro to
Strings in C++

Tianyi Qiu

C-style
Representations

Basics of the
String Class

Conversions from
and to
std::string

Memory Policy of
std::string

Siblings of
std::string

String Views

Uncovered Topics

Uncovered Topics

I vector-like functions of std::string
I push back(), pop back(), resize(), etc.

I iterators of std::string
I a unified interface across all STL containers

. . . and possibly more.

A Short Intro to
Strings in C++

Tianyi Qiu

C-style
Representations

Basics of the
String Class

Conversions from
and to
std::string

Memory Policy of
std::string

Siblings of
std::string

String Views

Uncovered Topics

Reference

I CppReference: Strings Library,
https://en.cppreference.com/w/cpp/string

I CppReference: Containers Library,
https://en.cppreference.com/w/cpp/container

I CppReference: C++ Language,
https://en.cppreference.com/w/cpp/language

	C-style Representations
	Basics of the String Class
	Conversions from and to std::string
	Memory Policy of std::string
	Siblings of std::string
	String Views
	Uncovered Topics

