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User space memory access from the Linux kernel
An introduction to Linux memory and user space APIs

M. Tim Jones August 11, 2010

As the kernel and user space exist in different virtual address spaces, there are special
considerations for moving data between them. Explore the ideas behind virtual address spaces
and the kernel APIs for data movement to and from user space, and learn some of the other
mapping techniques used to map memory.

Although the byte may be the lowest addressable unit of memory within Linux®, it's the page that
serves as the managed abstraction of memory. This article begins with a discussion of memory
management within Linux, and then explores the methods for manipulation of user address space
from the kernel.

Linux memory

In Linux, user memory and kernel memory are independent and implemented in separate address
spaces. The address spaces are virtualized, meaning that the addresses are abstracted from
physical memory (through a process detailed shortly). Because the address spaces are virtualized,
many can exist. In fact, the kernel itself resides in one address space, and each process resides
in its own address space. These address spaces consist of virtual memory addresses, permitting
many processes with independent address spaces to refer to a considerably smaller physical
address space (the physical memory in the machine). Not only is this convenient, but it's also
secure, because each address space is independent and isolated and therefore secure.

But there's a cost associated with this security. Because each process (and the kernel) can have
identical addresses that refer to different regions of physical memory, it's not immediately possible
to share memory. Luckily, a few solutions exist. User processes can share memory through the
Portable Operating System Interface for UNIX® (POSIX) shared memory mechanism (shmem), with
the caveat that each process may have a different virtual address that refers to the same region of
physical memory.

The mapping of virtual memory to physical memory occurs through page tables, which are
implemented in the underlying hardware (see Figure 1). The hardware itself provides the mapping,
but the kernel manages the tables and their configuration. Note that as shown here, a process may
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have a large address space, but it is sparse, meaning that small regions (pages) of the address
space refer to physical memory through the page tables. This permits a process to have a massive
address space that is defined only for the pages that are needed at any given time.

Figure 1. Page tables provide the mapping from virtual addresses to physical
addresses

Having the ability to sparsely define memory for processes means that the underlying physical
memory can be overcommitted. Through a process called paging (though in Linux, it's typically
called swap), less-used pages are dynamically moved to a slower storage device (such as a disk)
to accommodate other pages that need to be accessed (see Figure 2). This behavior allows the
physical memory within the computer to serve pages that an application more readily needs while
migrating less-needed pages to disk for improved utilization of the physical memory. Note that
some pages can refer to files, in which case, the data can be flushed if dirty (through the page
cache) or, if the page is clean, simply discarded.

Figure 2. Swap permits better use of the physical memory space by migrating
less-used pages to slower and less expensive storage

MMU-less architectures
Not all processors have MMUs. Therefore, the uClinux distribution (microcontroller Linux)
supports a single address space of operation. This architecture lacks the protection offered
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by an MMU but permits Linux to run on another class of processor. See the Related topics
section for information on uClinux.

The process by which a page is selected to swap to storage is called a page-replacement
algorithm and can be implemented using a number of algorithms (such as least recently used).
This process can occur when a memory location is requested whose page is not in memory (no
mapping is present in the memory management unit [MMU]). This event is called a page fault and
is detected by hardware (the MMU), and then managed by firmware after a page fault interrupt
occurs. See Figure 3 for a illustration of this stack.

Linux provides an interesting implementation of swap that offers some useful characteristics. The
Linux swap system permits the creation and use of multiple swap partitions and priorities, which
permits a hierarchy of swap over storage devices that provide different performance characteristics
(for example, a first-level swap on a solid-state disk [SSD] and a larger, second-level swap space
on a slower storage device). Attaching a higher priority to the SSD swap allows it to be used until
exhausted; only then would pages be written to the lower-priority (slower) swap partition.

Figure 3. Address spaces and elements of virtual-to-physical address mapping

Not all pages are candidates for swapping. Consider kernel code that responds to interrupts or
code that manages the page tables and swap logic. These are obvious pages that should never
be swapped out and are therefore pinned, or permanently resident in memory. Although kernel
pages are not candidates for swapping, user space pages are, but they can be pinned through
the mlock (or mlockall) function to lock the page down. This is the purpose behind the user space
memory access functions. If the kernel assumed that an address that a user passed was valid
and accessible, a kernel panic would eventually occur (for example, because the user page was
swapped out, resulting in a page fault in the kernel). This application programming interface (API)
ensures that those corner cases are handled properly.

Kernel APIs
Now, let's explore the kernel APIs for manipulating user memory. Note that this covers the kernel
and the user space interface, but the next section explores some of the other memory APIs. The
user space memory access functions to be explored are listed in Table 1.
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Table 1. The User Space Memory Access API
Function Description

access_ok Checks the validity of the user space memory pointer

get_user Gets a simple variable from user space

put_user Puts a simple variable to user space

clear_user Clears, or zeros, a block in user space

copy_to_user Copies a block of data from the kernel to user space

copy_from_user Copies a block of data from user space to the kernel

strnlen_user Gets the size of a string buffer in user space

strncpy_from_user Copies a string from user space into the kernel

As you would expect, the implementation of these functions can be architecture dependent. For
x86 architectures, you can find these functions and symbols defined in ./linux/arch/x86/include/
asm/uaccess.h, with source in ./linux/arch/x86/lib/usercopy_32.c and usercopy_64.c.

The role of the data-movement functions is shown in Figure 4 as it relates to the types involved for
copy (simple vs. aggregate).

Figure 4. Data movement using the User Space Memory Access API

The access_ok function
You use the access_ok function to check the validity of the pointer in user space that you intend
to access. The caller provides the pointer, which refers to the start of the data block, the size of
the block, and the type of access (whether the area is intended to be read or written). The function
prototype is defined as:

access_ok( type, addr, size );

The type argument can be specified as VERIFY_READ or VERIFY_WRITE. The VERIFY_WRITE symbolic
also identifies whether the memory region is readable as well as writable. The function returns
non-zero if the region is likely accessible (though access may still result in -EFAULT). This function
simply checks that the address is likely in user space, not in the kernel.

The get_user function
To read a simple variable from user space, you use the get_user function. This function is
used for simple types such as char and int, but larger data types like structures must use the
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copy_from_user function, instead. The prototype accepts a variable (to store the data) and an
address in user space for the Read operation:

get_user( x, ptr );

The get_user function maps to one of two internal functions. Internally, this function determines
the size of the variable being accessed (based on the variable provided to store the result) and
forms an internal call through __get_user_x. This function returns zero on success. In general, the
get_user and put_user functions are faster than their block copy counterparts and should be used
if small types are moved.

The put_user function

You use the put_user function to write a simple variable from the kernel into user space. Like
get_user, it accepts a variable (which contains the value to write) and a user space address as the
write target:

put_user( x, ptr );

Like get_user, the put_user function is internally mapped over the put_user_x function and returns
0 on success or -EFAULT on error.

The clear_user function

The clear_user function is used to zero a block of memory in user space. This function takes a
pointer in user space and a size to zero, which is defined in bytes:

clear_user( ptr, n );

Internally, the clear_user function first checks to see whether the user space pointer is writable
(via access_ok), and then invokes an internal function (coded in inline assembly) to perform the
Clear operation. This function is optimized as a very tight loop using string instructions with the
repeat prefix. It returns the number of bytes that were not clearable or zero if the operation was
successful.

The copy_to_user function

The copy_to_user function copies a block of data from the kernel into user space. This function
accepts a pointer to a user space buffer, a pointer to a kernel buffer, and a length defined in bytes.
The function returns zero on success or non-zero to indicate the number of bytes that weren't
transferred.

copy_to_user( to, from, n );

After checking the ability to write to the user buffer (through access_ok), the internal function
__copy_to_user is invoked, which in turn calls __copy_from_user_inatomic (in ./linux/arch/x86/
include/asm/uaccess_XX.h, where XX is 32 or 64 depending on architecture). This function
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(after determining whether to perform 1, 2 or 4 byte copies) finally calls __copy_to_user_ll,
which is where the real work is done. In broken hardware (prior to the i486, where the WP bit
was not honored from supervisory mode), the page tables could change at any time, requiring a
the desired pages to be pinned into memory so that they could not be swapped out while being
addressed. Post i486, the process is nothing more than an optimized copy.

The copy_from_user function

The copy_from_user function copies a block of data from user space into a kernel buffer. it accepts
a destination buffer (in kernel space), a source buffer (from user space), and a length defined
in bytes. As with copy_to_user, the function returns zero on success and non-zero to indicate a
failure to copy some number of bytes.

copy_from_user( to, from, n );

The function begins by checking the ability to read from the source buffer in user space (via
access_ok), and then calls __copy_from_user and eventually __copy_from_user_ll. From here,
depending on architecture, a call is made to copy from the user buffer to a kernel buffer with
zeroing (of unavailable bytes). The optimized assembly functions include the ability to manage.

The strnlen_user function

The strnlen_user function is used just like strnlen but assumes that the buffer is available in user
space. The strnlen_user function takes two arguments: the user space buffer address and the
maximum length to check.

strnlen_user( src, n );

The strnlen_user function first checks to see that the user buffer is readable through a call to
access_ok. If accessible, the strlen function is called, and the max length argument is ignored.

The strncpy_from_user function

The strncpy_from_user function copies a string from user space into a kernel buffer, given a user
space source address and max length.

strncpy_from_user( dest, src, n );

As a copy from user space, this function first checks that the buffer is readable via access_ok.
Similar to copy_from_user, this function is implemented as an optimized assembly function
(within ./linux/arch/x86/lib/usercopy_XX.c).

Other schemes for memory mapping
The previous section explored methods for moving data between the kernel and user space
(with the kernel initiating the operation). Linux provides a number of other methods that you
can use for data movement, both in the kernel and in user space. Although these methods may
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not necessarily provide identical functionality as described by the user space memory access
functions, they are similar in their ability to map memory between address spaces.

In user space, note that because user processes appear in separate address spaces, moving
data between them must occur through some form of inter-process communication mechanism.
Linux provides a variety of schemes (such as message queues), but most notable is POSIX
shared memory (shmem). This mechanism allows a process to create an area of memory, and
then share that region with one or more processes. Note that each process can map the shared
memory region to different addresses in their respective address spaces. Therefore, relative offset
addressing is required.

The mmap function allows a user space application to create a mapping in the virtual address
space. This functionality is common in certain classes of device drivers (for performance), allowing
physical device memory to be mapped into the virtual address space of the process. Within a
driver, the mmap function is implemented through the remap_pfn_range kernel function, which
provides a linear mapping of device memory into a user's address space.

Going further

This article explored the topic of memory management within Linux (to arrive at the point behind
paging), and then explored the user space memory access functions that use those concepts.
Moving data between the user space and kernel is not as simple as it seems, but Linux includes a
simple set of APIs that manage the intricacies of this task across platforms for you.
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Related topics

• Red Hat's Linux System Administration Primer provides a great summary of virtual memory.
• All about Linux swap space explores the purpose of swap, where swap resides, and the

various commands used to manage swap space.
• To improve the performance of caching, a compressed cache scheme was devised. In this

scheme, the swap disk is actually a fast ramdisk, with pages being compressed upon entry to
improve the efficiency of the storage.

• One of the best sources on Linux memory management (and everything regarding device
drivers) is the device driver bible, Linux Device Drivers, Third Edition.

• One difference between kernel and user space pages is that kernel pages are persistent in
memory, where user space pages can be swapped out to a storage device. Locking part of
all of a process's virtual address space into memory can be achieved using the mlock() and
mlockall() system calls.

• Evaluate IBM products in the way that suits you best.
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