
Memory Mapping
Sarah Diesburg
COP5641

Memory Mapping

• Translation of address issued by
some device (e.g., CPU or I/O
device) to address sent out on
memory bus (physical address)

• Mapping is performed by memory
management units

Memory Mapping

• CPU(s) and I/O devices may have
different (or no) memory
management units
• No MMU means direct (trivial) mapping

• Memory mapping is implemented by
the MMU(s) using page (translation)
tables stored in memory

• The OS is responsible for defining the
mappings, by managing the page
tables

Memory Mapping

AGP and PCI Express graphics cards us a Graphics Remapping Table (GART),
which is one example of an IOMMU. See Wiki article on IOMMU for more
detail on memory mapping with I/O devices.
http://en.wikipedia.org/wiki/IOMMU

Memory Mapping

• Typically divide the virtual address
space into pages
• Usually power of 2

• The offset (bottom n bits) of the
address are left unchanged

• The upper address bits are the
virtual page number

Address Mapping Function
(Review)

Unmapped Pages

• The mapping is sparse. Some
pages are unmapped.

Unmapped Pages

• Pages may be mapped to
locations on devices and others to
both.

MMU Function

• MMU translates virtual page numbers
to physical page numbers via
Translation Lookaside Buffer (TLB)

• If TLB lacks translation, slower
mechanism is used with page tables

• The physical page number is
combined with the page offset to give
the complete physical address

MMU Function

MMU Function

• Computes address translation
• Uses special associative cache
(TLB) to speed up translation

• Falls back on full page translation
tables, in memory, if TLB misses

• Falls back to OS if page translation
table misses
• Such a reference to an unmapped

address causes a page fault

MMU Function

• If page fault caused by a CPU
(MMU)
• Enters the OS through a trap handler

• If page fault caused by an I/O
device (IOMMU)
• Enters the OS through an interrupt

handler

• What reasons could cause a page
fault?

Possible Handler Actions

1. Map the page to a valid physical
memory location

• May require creating a page table entry
• May require bringing data in to memory

from a device

2. Treat the event as an erro (e.g.,
SIG_SEGV)

3. Pass the exception on to a device-
specific handler

• The device's fault method

Linux Page Tables 4-
levels

Linux Page Tables
• Logically, Linux now has four levels of page

tables:
• PGD - top level, array of pgd_t items
• PUD - array of pud_t items
• PMD - array of pmd_t items
• PTE - bottom level, array of pte_t items

• On architectures that do not require all four
levels, inner levels may be collapsed

• Page table lookups (and address translation) are
done by the hardware (MMU) so long as the
page is mapped and resident

• Kernel is responsible for setting the tables up
and handling page faults

• Table are located in struct mm object for each
process

Kernel Memory Mapping

• Each OS process has its own memory mapping
• Part of each virtual address space is reserved

for the kernel
• This is the same range for every process
• So, when a process traps into the kernel, there

is no change of page mappings
• This is called "kernel memory"
• The mapping of the rest of the virtual address

range varies from one process to another

•

Kernel Logical Addresses

• Most of the kernel memory is mapped
linearly onto physical addresses

• Virtual addresses in this range are called
kernel logical addresses

• Examples of PAGE_OFFSET values:
• 64-bit X86: 0xffffffff80000000
• ARM & 32-bit X86: CONFIG_PAGE_OFFSET
• default on most architectures = 0xc0000000

Kernel Logical Addresses

• In user mode, the process may only
access addresses less than 0xc0000000
• Any access to an address higher than this

causes a fault
• However, when user-mode process
begins executing in the kernel (e.g.
system call)
• Protection bit in CPU changed to supervisor

mode
• Process can access addresses above

0xc0000000

Kernel Logical Addresses

• Mapped using page table by MMU, like
user virtual addresses

• But mapped linearly 1:1 to contiguous
physical addresses

• __pa(x) adds PAGE_OFFSET to get physical
address associated with virtual address

• __va(x) subtracts PAGE_OFFSET to get
virtual address associated with physical
address

• All memory allocated by kmalloc() with
GFP_KERNEL fall into this category

Page Size Symbolic
Constants
• PAGE_SIZE

• value varies across architectures and
kernel configurations

• code should never use a hard-coded
integer literal like 4096

• PAGE_SHIFT
• the number of bits to right shift to

convert virtual address to page number
• and physical address to page frame

number

struct page

• Describes a page of physical memory.
• One exists for each physical memory page
• Pointer to struct page can be used to refer to a

physical page
• members:

• atomic_t count = number of references to this
page

• void * virtual = virtual address of the page, if it is
mapped (in the kernel memory space) / otherwise
NULL

• flags = bits describing status of page
• PG_locked - (temporarily) locked into real memory (can't

be swapped out)
• PG_reserved - memory management system "cannot

work on the page at all"
• ... and others

struct page pointers ↔
virtual addresses
• struct page *virt_to_page(void *kaddr);

• Given a kernel logical address, returns
associated struct page pointer

• struct page *pfn_to_page(int pfn);
• Given a page frame number, returns the

associated struct page pointer

• void *page_address(struct page *page);
• Returns the kernel virtual address, if exists.

kmap() and kunmap()

• kmap is like page_address(), but creates
a "special" mapping into kernel virtual
memory if the physical page is in high
memory
• there are a limited number of such mappings

possible at one time
• may sleep if no mapping is currently available
• not needed for 64-bit model

• kunmap() - undoes mapping created by
kmap()
• Reference-count semantics

Some Page Table
Operations
• pgd_val() - fetches the unsigned
value of a PGD entry

• pmd_val() - fetches the unsigned
value of a PMD entry

• pte_val() - fetches the unsigned
value of PTE

• mm_struct - per-process structure,
containing page tables and other
MM info

Some Page Table
Operations
• pgd_offset() - pointer to the PGD
entry of an address, given a pointer
to the specified mm_struct

• pmd_offset() - pointer to the PMD
entry of an address, given a pointer
to the specified PGD entry

• pte_page() - pointer to the struct
page() entry corresponding to a PTE

• pte_present() - whether PTE describes
a page that is currently resident

Some Page Table
Operations
• Device drivers should not need to
use these functions because of
the generic memory mapping
services described next

Virtual Memory Areas

• A range of contiguous VM is
represented by an object of type
struct vm_area_struct.

• Used by kernel to keep track of
memory mappings of processes

• Each is a contract to handle the
VMem→PMem mapping for a given
range of addresses

• Some kinds of areas:
• Stack, memory mapping segment, heap,

BSS, data, text

Virtual Memory Regions

• Stack segment
• Local variable and function parameters
• Will dynamically grow to a certain limit
• Each thread in a process gets its own

stack
• Memory mapping segment

• Allocated through mmap()
• Maps contents of file directly to memory

• Fast way to do I/O
• Anonymous memory mapping does not

correspond to any files
• Malloc() may use this type of memory if

requested area large enough

Virtual Memory
Segments
• Heap

• Meant for data that must outlive the
function doing the allocation

• If size under MMAP_THRESHOLD bytes,
malloc() and friends allocate memory
here

• BSS
• "block started by symbol“
• Stores uninitialized static variables
• Anonymous (not file-backed)

Virtual Memory
Segments
• Data

• Stores static variables initialized in
source code

• Not anonymous

• Text
• Read-only
• Stores code
• Maps binary file in memory

Process Memory Map

• struct mm_struct - contains list of
process' VMAs, page tables, etc.

• accessible via current-> mm
• The threads of a process share
one struct mm_struct object

Virtual Memory Regions

Virtual Memory Area
Mapping Descriptors

struct vm_area_struct

• Represents how a region of virtual
memory is mapped

• Members include:
• vm_start, vm_end - limits of VMA in

virtual address space
• vm_page_prot - permissions (p =

private, s = shared)
• vm_pgoff - of memory area in the file

(if any) mapped

struct vm_area_struct

• vm_file - the struct file (if any) mapped
• provides (indirect) access to:

• major, minor - device of the file
• inode - inode of the file
• image - name of the file

• vm_flags - describe the area, e.g.,
• VM_IO - memory-mapped I/O region will not be

included in core dump
• VM_RESERVED - cannot be swapped

• vm_ops - dispatching vector of
functions/methods on this object

• vm_private_data - may be used by the
driver

vm_operations_struct.vm
_ops
• void *open (struct vm_area_struct
*area);
• allows initialization, adjusting reference

counts, etc.;
• invoked only for additional references, after

mmap(), like fork()
• void *close (struct vm_area_struct
*area);
• allows cleanup when area is destroyed;
• each process opens and closes exactly once

• int fault (struct vm_area_struct *vma,
struct vm_fault *vmf);
• general page fault handler;

Uses of Memory Mapping
by Device Drivers
• A device driver is likely to use
memory mapping for two main
purposes:
1. To provide user-level access to device

memory and/or control registers
• For example, so an Xserver process can

access the graphics controller directly

2. To share access between user and
device/kernel I/O buffers, to avoid
copying between DMA/kernel buffers
and userspace

The mmap() Interfaces

• User-level API function:
• void *mmap (caddr_t start, size_t len,

int prot, int flags, int fd, off_t offset);

• Driver-level file operation:
• int (*mmap) (struct file *filp, struct

vm_area_struct *vma);

Implementing the
mmap() Method in a
Driver1. Build suitable page tables for the

address range two ways:
a) Right away, using remap_pfn_range

or vm_insert_page
b) Later (on demand), using the fault()

VMA method

2. Replace vma->vm_ops with a
new set of operations, if
necessary

The remap_pfn_range()
Kernel Function
• Use to remap to system RAM

• int remap_pfn_range (struct
vm_area_struct *vma, unsigned long
addr, unsigned long pfn, unsigned
long size, pgprot_t prot);

• Use to remap to I/O memory
• int io_remap_pfn_range(struct

vm_area_struct *vma, unsigned long
addr ,unsigned long phys_addr,
unsigned long size, pgprot_t prot);

The remap_pfn_range()
Kernel Function
• vma = virtual memory are to which the

page range is being mapped
• addr = target user virtual address to start

at
• pfn = target page frame number of

physical address to which mapped
• normally vma->vm_pgoff>>PAGE_SHIFT
• mapping targets range (pfn<<PAGE_SHIFT) ..

(pfn<<PAGE_SHIFT)+size
• prot = protection

• normally the same value as found in vma-
>vm_page_prot

• may need to modify value to disable caching if
this is I/O memory

The remap_pfn_range()
Kernel Function

Using fault()

• LDD3 discusses a nopage()
function that is no longer in the
kernel
• Race conditions

• Replaced by fault()
• http://lwn.net/Articles/242625/

http://lwn.net/Articles/242625/
http://lwn.net/Articles/242625/

Using fault()

• struct page (*fault)(struct vm_area_struct
*vma, struct vm_fault *vmf);

• vmf - is a struct vm_fault, which includes:
• flags

• FAULT_FLAG_WRITE indicates the fault was a write
access

• FAULT_FLAG_NONLINEAR indicates the fault was via a
nonlinear mapping

• pgoff - logical page offset, based on vma
• virtual_address - faulting virtual address
• page - set by fault handler to point to a valid

page descriptor; ignored if VM_FAULT_NOPAGE
or VM_FAULT_ERROR is set

Using fault()

A Slightly More Complete
 Example
• See ldd3/sculld/mmap.c
• http://www.cs.fsu.edu/~
baker/devices/notes/sculld/mmap.
c

http://www.cs.fsu.edu/~baker/devices/notes/sculld/mmap.c
http://www.cs.fsu.edu/~baker/devices/notes/sculld/mmap.c
http://www.cs.fsu.edu/~baker/devices/notes/sculld/mmap.c

Remapping I/O Memory

• remap_pfn_to_page() cannot be
used to map addresses returned
by ioremap() to user space

• instead, use io_remap_pfn_range()
directly to remap the I/O areas
into user space

	Memory Mapping
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Address Mapping Function (Review)
	Unmapped Pages
	Slide 8
	MMU Function
	Slide 10
	Slide 11
	MMU Function
	Possible Handler Actions
	Linux Page Tables 4-levels
	Linux Page Tables
	Kernel Memory Mapping
	Kernel Logical Addresses
	Slide 18
	Slide 19
	Page Size Symbolic Constants
	struct page
	struct page pointers ↔ virtual addresses
	kmap() and kunmap()
	Some Page Table Operations
	Slide 25
	Slide 26
	Virtual Memory Areas
	PowerPoint Presentation
	Virtual Memory Regions
	Virtual Memory Segments
	Slide 31
	Process Memory Map
	Slide 33
	Virtual Memory Area Mapping Descriptors
	Slide 35
	struct vm_area_struct
	Slide 37
	vm_operations_struct.vm_ops
	Uses of Memory Mapping by Device Drivers
	The mmap() Interfaces
	Implementing the mmap() Method in a Driver
	The remap_pfn_range() Kernel Function
	Slide 43
	Slide 44
	Using fault()
	Slide 46
	Slide 47
	A Slightly More Complete Example
	Remapping I/O Memory

