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Memory Mapping

• Translation of address issued by 
some  device (e.g., CPU or I/O 
device) to  address sent out on 
memory bus  (physical address)

• Mapping is performed by memory  
management units



Memory Mapping

• CPU(s) and I/O devices may have 
different (or no) memory 
management units
• No MMU means direct (trivial) mapping

• Memory mapping is implemented by 
the MMU(s) using page (translation) 
tables stored in memory

• The OS is responsible for defining the 
mappings, by managing the page 
tables



Memory Mapping

AGP and PCI Express graphics cards us a Graphics Remapping Table (GART), 
which is one example of an IOMMU. See Wiki article on IOMMU for more 
detail on memory mapping with I/O devices. 
http://en.wikipedia.org/wiki/IOMMU



Memory Mapping

• Typically divide the virtual address 
space into pages
• Usually power of 2

• The offset (bottom n bits) of the 
address are left unchanged

• The upper address bits are the 
virtual page number



Address Mapping Function  
(Review)



Unmapped Pages

• The mapping is sparse.  Some 
pages are unmapped.



Unmapped Pages

• Pages may be mapped to 
locations on devices and others to 
both.



MMU Function 

• MMU translates virtual page numbers 
to physical page numbers via 
Translation Lookaside Buffer (TLB)

• If TLB lacks translation, slower 
mechanism is used with page tables

• The physical page number is 
combined with the page offset to give 
the complete physical address



MMU Function 



MMU Function 

• Computes address translation
• Uses special associative cache 
(TLB) to speed up translation

• Falls back on full page translation 
tables, in memory, if TLB misses

• Falls back to OS if page translation 
table misses
• Such a reference to an unmapped 

address causes a page fault



MMU Function

• If page fault caused by a CPU 
(MMU)
• Enters the OS through a trap handler

• If page fault caused by an I/O 
device (IOMMU) 
• Enters the OS through an interrupt 

handler

• What reasons could cause a page 
fault?



Possible Handler Actions

1. Map the page to a valid physical 
memory location

• May require creating a page table entry
• May require bringing data in to memory 

from a device

2. Treat the event as an erro (e.g., 
SIG_SEGV)

3. Pass the exception on to a device-
specific handler

• The device's fault method



Linux Page Tables 4-
levels



Linux Page Tables
• Logically, Linux now has four levels of page 

tables:
• PGD - top level, array of pgd_t items
• PUD - array of pud_t items
• PMD - array of pmd_t items
• PTE - bottom level, array of pte_t items

• On architectures that do not require all four 
levels, inner levels may be collapsed

• Page table lookups (and address translation) are 
done by the hardware (MMU) so long as the 
page is mapped and resident

• Kernel is responsible for setting the tables up 
and handling page faults

• Table are located in struct mm object for each 
process



Kernel Memory Mapping

• Each OS process has its own memory mapping
• Part of each virtual address space is reserved 

for the kernel
• This is the same range for every process
• So, when a process traps into the kernel, there 

is no change of page mappings
• This is called "kernel memory"
• The mapping of the rest of the virtual address 

range varies from one process to another

•  



Kernel Logical Addresses

• Most of the kernel memory is mapped 
linearly onto physical addresses

• Virtual addresses in this range are called 
kernel logical addresses

• Examples of PAGE_OFFSET values:
• 64-bit X86: 0xffffffff80000000
• ARM & 32-bit X86: CONFIG_PAGE_OFFSET
• default on most architectures = 0xc0000000



Kernel Logical Addresses

• In user mode, the process may only 
access addresses less than 0xc0000000 
• Any access to an address higher than this 

causes a fault
• However, when user-mode process 
begins executing in the kernel (e.g. 
system call)
• Protection bit in CPU changed to supervisor 

mode
• Process can access addresses above 

0xc0000000



Kernel Logical Addresses

• Mapped using page table by MMU, like 
user virtual addresses

• But mapped linearly 1:1 to contiguous 
physical addresses

• __pa(x) adds PAGE_OFFSET to get physical 
address associated with virtual address

• __va(x) subtracts PAGE_OFFSET to get 
virtual address associated with physical 
address

• All memory allocated by kmalloc() with 
GFP_KERNEL fall into this category



Page Size Symbolic 
Constants
• PAGE_SIZE

• value varies across architectures and 
kernel configurations

• code should never use a hard-coded 
integer literal like 4096

• PAGE_SHIFT
• the number of bits to right shift to 

convert virtual address to page number
• and physical address to page frame 

number



struct page

• Describes a page of physical memory.
• One exists for each physical memory page
• Pointer to struct page can be used to refer to a 

physical page
• members:

• atomic_t count = number of references to this 
page

• void * virtual = virtual address of the page, if it is 
mapped (in the kernel memory space) / otherwise 
NULL

• flags = bits describing status of page
• PG_locked - (temporarily) locked into real memory (can't 

be swapped out)
• PG_reserved - memory management system "cannot 

work on the page at all"
• ... and others



struct page pointers ↔ 
virtual  addresses
• struct page *virt_to_page(void *kaddr);

• Given a kernel logical address, returns 
associated struct page pointer

• struct page *pfn_to_page(int pfn);
• Given a page frame number, returns the 

associated struct page pointer

• void *page_address(struct page *page);
• Returns the kernel virtual address, if exists.



kmap() and kunmap()

• kmap is like page_address(), but creates 
a "special" mapping into kernel virtual 
memory if the physical page is in high 
memory
• there are a limited number of such mappings 

possible at one time
• may sleep if no mapping is currently available
• not needed for 64-bit model

• kunmap() - undoes mapping created by 
kmap()
• Reference-count semantics



Some Page Table 
Operations
• pgd_val() - fetches the unsigned 
value of a PGD entry

• pmd_val() - fetches the unsigned 
value of a PMD entry

• pte_val() - fetches the unsigned 
value of PTE

• mm_struct - per-process structure, 
containing page tables and other 
MM info



Some Page Table 
Operations
• pgd_offset() - pointer to the PGD 
entry of an address, given a pointer 
to the specified mm_struct

• pmd_offset() - pointer to the PMD 
entry of an address, given a pointer 
to the specified PGD entry

• pte_page() - pointer to the struct 
page() entry corresponding to a PTE

• pte_present() - whether PTE describes 
a page that is currently resident



Some Page Table 
Operations
• Device drivers should not need to 
use these functions because of 
the generic memory mapping 
services described next



Virtual Memory Areas

• A range of contiguous VM is 
represented by an object of type 
struct vm_area_struct.

• Used by kernel to keep track of 
memory mappings of processes

• Each is a contract to handle the 
VMem→PMem mapping for a given 
range of addresses

• Some kinds of areas:
• Stack, memory mapping segment, heap, 

BSS, data, text





Virtual Memory Regions

• Stack segment
• Local variable and function parameters 
• Will dynamically grow to a certain limit  
• Each thread in a process gets its own 

stack
• Memory mapping segment

• Allocated through mmap()
• Maps contents of file directly to memory

• Fast way to do I/O
• Anonymous memory mapping does not 

correspond to any files
• Malloc() may use this type of memory if 

requested area large enough



Virtual Memory 
Segments
• Heap

• Meant for data that must outlive the 
function doing the allocation

• If size under MMAP_THRESHOLD bytes, 
malloc() and friends allocate memory 
here

• BSS
• "block started by symbol“
• Stores uninitialized static variables
• Anonymous (not file-backed)



Virtual Memory 
Segments
• Data

• Stores static variables initialized in 
source code

• Not anonymous

• Text
• Read-only
• Stores code
• Maps binary file in memory



Process Memory Map

• struct mm_struct - contains list of 
process' VMAs, page tables, etc.

• accessible via current-> mm
• The threads of a process share 
one struct mm_struct object



Virtual Memory Regions



Virtual Memory Area 
Mapping  Descriptors





struct vm_area_struct

• Represents how a region of virtual 
memory is  mapped

• Members include:
• vm_start, vm_end - limits of VMA in 

virtual  address space
• vm_page_prot - permissions (p = 

private, s =  shared)
• vm_pgoff - of memory area in the file 

(if any)  mapped



struct vm_area_struct

• vm_file - the struct file (if any) mapped
• provides (indirect) access to:

• major, minor - device of the file
• inode - inode of the file
• image - name of the file

• vm_flags - describe the area, e.g.,
• VM_IO - memory-mapped I/O region will not be 

included in core dump
• VM_RESERVED - cannot be swapped

• vm_ops - dispatching vector of 
functions/methods on this object

• vm_private_data - may be used by the 
driver



vm_operations_struct.vm
_ops
• void *open (struct vm_area_struct 
*area);
• allows initialization, adjusting reference 

counts, etc.;
• invoked only for additional references, after 

mmap(), like fork()
• void *close (struct vm_area_struct 
*area);
• allows cleanup when area is destroyed;
• each process opens and closes exactly once

• int fault (struct vm_area_struct *vma, 
struct vm_fault *vmf);
• general page fault handler;



Uses of Memory Mapping 
by  Device Drivers
• A device driver is likely to use 
memory mapping for two main 
purposes:
1. To provide user-level access to device 

memory and/or control registers
• For example, so an Xserver process can 

access the graphics controller directly

2. To share access between user and 
device/kernel I/O buffers, to avoid 
copying between DMA/kernel buffers 
and userspace



The mmap() Interfaces

• User-level API function:
• void *mmap (caddr_t start, size_t len, 

int prot, int flags, int fd, off_t offset);

• Driver-level file operation:
• int (*mmap) (struct file *filp, struct 

vm_area_struct *vma);



Implementing the 
mmap()  Method in a 
Driver1. Build suitable page tables for the 

address  range two ways:
a) Right away, using remap_pfn_range 

or  vm_insert_page
b) Later (on demand), using the fault() 

VMA  method

2. Replace vma->vm_ops with a 
new set of  operations, if 
necessary



The remap_pfn_range()  
Kernel Function
• Use to remap to system RAM

• int remap_pfn_range (struct 
vm_area_struct *vma, unsigned long 
addr, unsigned long pfn, unsigned 
long size, pgprot_t prot);

• Use to remap to I/O memory
• int io_remap_pfn_range(struct 

vm_area_struct *vma, unsigned long 
addr ,unsigned long phys_addr, 
unsigned long size, pgprot_t prot);



The remap_pfn_range()  
Kernel Function
• vma = virtual memory are to which the 

page range is being mapped
• addr = target user virtual address to start 

at
• pfn = target page frame number of 

physical address to which mapped
• normally vma->vm_pgoff>>PAGE_SHIFT
• mapping targets range (pfn<<PAGE_SHIFT) .. 

(pfn<<PAGE_SHIFT)+size
• prot = protection

• normally the same value as found in vma-
>vm_page_prot

• may need to modify value to disable caching if 
this is I/O memory



The remap_pfn_range()  
Kernel Function



Using fault()

• LDD3 discusses a nopage() 
function that is no longer in the 
kernel
• Race conditions

• Replaced by fault()
• http://lwn.net/Articles/242625/

http://lwn.net/Articles/242625/
http://lwn.net/Articles/242625/


Using fault()

• struct page (*fault)(struct vm_area_struct 
*vma, struct vm_fault *vmf);

• vmf - is a struct vm_fault, which includes:
• flags

• FAULT_FLAG_WRITE indicates the fault was a write 
access

• FAULT_FLAG_NONLINEAR indicates the fault was via a 
nonlinear mapping

• pgoff - logical page offset, based on vma
• virtual_address - faulting virtual address
• page - set by fault handler to point to a valid 

page descriptor; ignored if VM_FAULT_NOPAGE 
or VM_FAULT_ERROR is set



Using fault()



A Slightly More Complete 
 Example
• See ldd3/sculld/mmap.c
• http://www.cs.fsu.edu/~
baker/devices/notes/sculld/mmap.
c

http://www.cs.fsu.edu/~baker/devices/notes/sculld/mmap.c
http://www.cs.fsu.edu/~baker/devices/notes/sculld/mmap.c
http://www.cs.fsu.edu/~baker/devices/notes/sculld/mmap.c


Remapping I/O Memory

• remap_pfn_to_page() cannot be 
used to map  addresses returned 
by ioremap() to user  space

• instead, use io_remap_pfn_range() 
directly to  remap the I/O areas 
into user space
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