
© Copyright 2014 Xilinx
.

Linux DMA from User Space
Based on Linux kernel 3.14

John Linn, Strategic Applications Engineer 10/2014

© Copyright 2014 Xilinx
.

Agenda

Applications and examples of user space DMA

Using the character device framework

Implementing ioctl() functionality

Implementing mmap() functionality

Areas of caution

Design for debug

Prerequisites

– Knowledge of the Linux kernel in general such as building and

configuring the kernel

– Character device driver experience in Linux

– Experience with the C programming language

– Linux DMA in Device Drivers session

© Copyright 2014 Xilinx
.

The primary components of DMA include the DMA device control,

memory allocation and cache control

DMA in Linux is designed to be used from kernel space by a higher

layer device driver

The DMA Engine in Linux is a framework which allows access to

DMA controller drivers (such as AXI DMA) in a consistent and more

abstract manner

Xilinx provides device drivers which plug into the DMA Engine

framework (AXI DMA, AXI CDMA, and AXI VDMA)

Memory can be allocated using kmalloc() for cached memory or

dma_alloc_coherent() for uncached memory

DMA cache control functions such as dma_map_single() and

dma_unmap_single() are used with cached memory buffers

Review From Linux DMA In Device Drivers

3

© Copyright 2014 Xilinx
.

A challenge in Linux is doing application processing in user space

while moving data to and from devices in the PL

Linux provides frameworks that allow user space to interface with

kernel space for most types of devices (except DMA)

User Space DMA is defined as the ability to access buffers for DMA

transfers and control DMA transfers from a user space application

– This is not an industry standard and there are a number of possible methods

– Similar methods have been used for years with display systems such as X11, as

they needed direct access to video frame buffers

Xilinx SDIntegrator might be an easier solution for some applications

and should be considered

– It uses similar principles without the user implementing any code

Introduction

4

© Copyright 2014 Xilinx
.

A typical User Space DMA

application creates data which

needs to be transferred from the

CPU memory to/from a custom

IP core

Examples

– FFT IP core processing a block of data

– Custom IP Core generating blocks of

data

– See the Spectrum Analyzer Tech Tip

Applications of User Space DMA

control

5

© Copyright 2014 Xilinx
.

The software design is

made up of a kernel space

device driver and a user

space application

The Xilinx AXI DMA Device

Driver and Linux DMA

Engine exist in the Linux

kernel

The DMA Proxy Device

Driver is a character

device driver that uses the

Linux DMA Engine

The DMA Proxy Test

Application uses the DMA

Proxy Device Driver to

control DMA transfers

User Space DMA Software Example (High Level)

User

Space

Kernel

Space

6

© Copyright 2014 Xilinx
.

Creation of a character device driver that extends the

functionality of the DMA kernel driver from the Linux DMA in

Device Drivers session

Creation of a user space application that uses the character

device driver to perform DMA transfers

Implementation of ioctl() in the device driver and in the user

space application to cause the DMA Engine to perform DMA

transfers

Implementation of mmap() in the device driver and in the user

space application to map kernel allocated memory into user

space process address space

These principles should work across any DMA device that is

supported by the Linux DMA Engine

Key Learning For The Session

7

© Copyright 2014 Xilinx
.

DMA Proxy Software Detailed Design

© Copyright 2014 Xilinx
.

Moving data between userspace

and kernel space is the primary

method for I/O since the

application is in userspace and

the device drivers are in kernel

space

The copy_to_user() function

copies a buffer of bytes from

kernel space to userspace

The copy_from_user() function

copies a buffer of bytes from

userspace to kernel space

Functions also exist for copying

a single datum or null terminated

string

Copying Data Between Kernel and User Space

Review

9

© Copyright 2014 Xilinx
.

Many software designs copy data from user space to kernel space

and from kernel space to user space

For larger buffers copying data is inefficient and in the case of

DMA it defeats the purpose of using DMA to move the data

A zero copy design avoids copying memory and is required for

user space DMA applications

Some network stacks (not Linux) provide a zero copy design and

achieve higher performance

Mapping a kernel space allocated memory buffer into user space

removes the need to copy data

Mapping user space allocated buffers into kernel space so that a

driver can access them is another method

– This is more complex and not covered in this session

Zero Copy Buffer Design

10

© Copyright 2014 Xilinx
.

The character device framework of Linux provides functionality

such as open(), read(), write() and close() which allows a device

driver to be accessed using the file I/O operations from user space

It also provides the ioctl() interface which is used to control the

device in non standard ways

The function prototype in a driver:

– int (*ioctl) (struct file *filp, unsigned int cmd, unsigned long arg);

The cmd and arg arguments are passed from user space to the

driver unchanged such that they are easily used for control

The ioctl() function of the device driver can perform any

functionality including blocking until the functionality is complete

Character Device Framework Review

11

© Copyright 2014 Xilinx
.

The user space application needs to control the kernel space driver to

allow DMA transactions to be managed

The read() and write() file operations could easily be used

– These do offer the ability to do asynchronous (non-blocking) I/O using poll() and

select() functions

The ioctl() file operation is designed for device control and is used to

control the DMA Proxy device driver for simplicity

The mmap() file operation allows memory of the device driver to be

mapped into the address space of the caller in a user space process

The UIO driver framework provides another alternative for this design

which is simpler but limited and less flexible

– mmap() can be overridden with your own implementation for non-cached memory

– It’s not as flexible as the character device framework

Controlling The Kernel Space Driver

12

© Copyright 2014 Xilinx
.

The Character Device Driver Simplified Example

int dma_proxy_open() { };

int dma_proxy_ioctl() { };

int dma_proxy_mmap() { };

int dma_proxy_release() { };

static struct file_operations dma_proxy_fops =

{

 .owner = THIS_MODULE,

 .open = dma_proxy_open,

 .unlocked_ioctl = dma_proxy_ioctl,

 .mmap = dma_proxy_mmap,

 .release = dma_proxy_release,

};

int dma_proxy_init()

{

 struct cdev cdev;

 cdev_init(&cdev, &dma_proxy_fops);

 cdev_add(&cdev, ….);

}

Create empty file operation

functions dma_proxy_open(),

dma_proxy_ioctl(),

dma_proxy_mmap(), &

dma_proxy_release()

Create the file_operations data

structure dma_proxy_fops

The driver dma_proxy_init()

function calls the character device

functions to create the character

device

The cdev_init() function initializes

the character device including

setting up the file functions such as

dma_proxy_ioctl()

The cdev_add() function connects

the character device to the kernel

13

© Copyright 2014 Xilinx
.

Cache control from user space is challenging and less obvious

– Cache control is done in the DMA Proxy device driver from kernel space

Many people would assume that using caches makes everything

faster

– It depends on how the application uses the data and the data size

– Caching large buffers can pollute the CPU cache, causing other system

impacts

The cache operations required for a DMA driver do take time for the

CPU

An application which only controls a DMA transfer without touching

any of the data can use uncached memory

The amount of memory that can be allocated varies for cached and

uncached memory

– 4 MB cached memory using kmalloc() or get_free_pages()

– Configurable (much larger) with uncached memory using dma_alloc_coherent()

and the contiguous memory allocator in Linux

Cached Buffers Considerations

14

© Copyright 2014 Xilinx
.

Shared memory between user space and kernel space can be

used for more than data buffers

Control and status in addition to data is needed from user space

Control of the DMA includes the ability to:

– start/stop a transaction

– a source address for the data buffer

– a length specifying how many bytes of data are in the data buffer

Status of the DMA includes the ability to see that the transfer

completed and any errors that might have occurred

The DMA Proxy example uses kernel allocated memory referred to

as interface memory

Details of Controlling DMA From User Space

15

© Copyright 2014 Xilinx
.

struct dma_proxy_channel_interface {

 unsigned char buffer[32 * 1024 * 1024];

 enum proxy_status {

 PROXY_NO_ERROR = 0, PROXY_BUSY = 1,

 PROXY_TIMEOUT = 2, PROXY_ERROR = 3

 } status;

 unsigned int length;

};

Note the buffer is the first member of the

struct to ensure it is cache line aligned.

Interface Memory Details

The interface memory is

allocated by the DMA proxy

driver and mapped to user

space using mmap()

The dma_proxy_channel_

interface contains the data,

control and status for a

channel

The user space application

controls the DMA proxy driver

using the data in the interface

memory

The DMA proxy device driver

controls the DMA Engine

using the data in the interface

memory

DMA Proxy Channel Interface

16

© Copyright 2014 Xilinx
.

Introduction to Mapping Memory with mmap()

The character device driver framework of Linux provides the ability to

map memory into a user space process virtual address space

A character driver must implement the mmap() function which a user

space application can call

The mmap() function has several ways it is used and feels a bit

confusing with overloaded arguments

In this application it is used to map a physical memory address range

into the virtual memory address space

A virtual address, corresponding to the physical address, is returned

from mmap()

Whenever the user space program reads or writes in the virtual

address range it is accessing the physical address range

This provides improved performance as no system calls are required

© Copyright 2014 Xilinx
.

User space

application

(process)

Device

driver

MMU

1. mmap

system

call

2. virtual

address

returned 3. access

virtual

address

4. access

physical

address

process virtual

address space

physical

address space

Mapping Device Memory Flow

MMU

translation

table

© Copyright 2014 Xilinx
.

Calling mmap() from the user space application

– The call to mmap() requires an address and size for the memory being mapped

into user space

– The application passes zero for the address to map as it does not know the

address of the buffer allocated in the kernel driver

– The size cannot be zero as mmap() will return an error

– The application knows the size using a shared data definition in a header file

Implementing mmap() in the kernel space device driver

– The mmap() function in the driver must alter the caching attributes to match the

kernel buffer being mapped if the buffer is not cached

• The kernel has a mapping of the memory in the MMU and another is going to be created

for the user space application process and they must match

• Memory allocated with kmalloc() is cached

– The DMA framework provides a mmap() function which can be called from the

driver mmap() function to perform the memory mapping for buffers allocated from

the DMA framework

• Memory allocated with dma_alloc_coherent() is uncached

Details of Mapping Memory with mmap()

19

© Copyright 2014 Xilinx
.

Simple User Space Application Example

Start with an empty main() function and a defined channel interface data type

Open the device file for the DMA proxy

Call the mmap() function to map the kernel allocated buffer into the process address

space

The first argument with a value of 0 lets the kernel choose the virtual address which

the physical address will be mapped to

The second argument is the size of the memory range to map

The device file causes

the mmap() function to

run in the driver

struct dma_proxy_channel_interface { }

void main() {

 struct dma_proxy_channel_interface *proxy_interface_p;

 int proxy_fd;

 proxy_fd = open("/dev/dma_proxy", O_RDWR);

 proxy_interface_p = mmap(0, sizeof(dma_proxy_channel_interface),

 PROT_READ | PROT_WRITE, MAP_SHARED, proxy_fd, 0);

}

20

© Copyright 2014 Xilinx
.

Virtual and physical memory are

divided into handy sized units

called pages

These pages are all the same size,

4KB for ARM and MicroBlaze

A page frame number is simply an

index within physical memory that is

counted in page-sized units

The page frame number for a

physical address can be created

using the constant PAGE_SHIFT

page_frame_number =

physical_address >> PAGE_SHIFT

Linux Pages and Page Frame Numbers

21

© Copyright 2014 Xilinx
.

Simple Memory Mapping Driver Example

static int dma_proxy_mmap(struct file *filp, struct vm_area_struct *vma)

{

 if (remap_pfn_range(vma, vma->vm_start,

 virt_to_physical(buffer_pointer) >> PAGE_SHIFT,

 vma->vm_end - vma->vm_start,

 vma->vm_page_prot))

 return -EAGAIN;

 return 0;

}

Note: This is for memory allocated with kmalloc()

Start with an empty mmap() function with the expected Linux interface

The remap_pfn_range() function is an easy way to implement the mmap() function for

memory including allocated buffers or a device

Only one argument has to be created as all others come in the vma structure

The 3rd argument is the page frame number which is based on the physical address

Note: mmap() defaults to cached memory such that the cache attributes of the vma

match the buffer allocated from kmalloc()

The cache attributes are in vma->vm_page_prot and could be altered

Convert the physical

address to the page

frame number

22

© Copyright 2014 Xilinx
.

DMA Memory Mapping Driver Example

static int dma_proxy_mmap(struct file *filp, struct vm_area_struct *vma)

{

 return dma_common_mmap(dma_device_pointer,

 vma,

 buffer_pointer,

 physical_buffer_pointer,

 vma->vm_end - vma->vm_start);

}

Note: This is for memory allocated with dma_alloc_coherent()

Start with an empty mmap() function with the expected Linux interface

The dma_common_mmap() function is the easy way to implement the mmap()

function

The buffer_pointer and physical_buffer_pointer are both returned from

dma_alloc_coherent()

Pointers are virtual

addresses by default

23

© Copyright 2014 Xilinx
.

A Simple ioctl() Example Controlling DMA

static void transfer(struct dma_proxy_channel *pchannel_p) { };

static int open(struct inode *ino, struct file *file)

{

 file->private_data = container_of(ino->i_cdev, struct dma_proxy_channel, cdev);

 return 0;

}

static long ioctl(struct file *file, unsigned int unused1, unsigned long unused2)

{

 struct dma_proxy_channel *pchannel_p = (struct dma_proxy_channel *)file->private_data;

 transfer(pchannel_p);

 return 0;

}

The transfer() function manages the DMA engine to cause the DMA transfer to occur

The transfer() function uses the interface memory to determine the details of the

DMA transaction including the length of the transfer

The open() function is called when the application opens the device file

The ioctl() function receives a notification requesting a DMA transfer to be

performed for the device channel

24

© Copyright 2014 Xilinx
.

Software Design Sequencing

The diagram

illustrates the

interaction

between the user

space

application, the

device driver, and

the interface

memory with time

flowing from top

to bottom

25

© Copyright 2014 Xilinx
.

A design which only blocks is much simpler than one that does

not block

– Non-blocking requires asynchronous processing to complete the

transaction; this is more complex

The DMA Buffer Sharing framework in Linux could be helpful

– This session is focused on the simplest example while this adds more

complexity

It is also possible for a kernel module to get access to user space

allocated memory through the get_user_pages() function

Design Alternatives

26

© Copyright 2014 Xilinx
.

Testing was done with both standalone (bare metal) and with Linux

to compare the performance

The performance of an unloaded Linux system was very similar to

standalone

The performance was only reviewed with respect to the time for the

receive channel ioctl() call from the application to the driver

Cached buffers can appear to be lower performance due to cache

processing by the CPU

The additional performance of faster application processing of the cached buffers

must be factored in

Larger buffers should definitely not be cached in Linux as the

system performance is greatly impacted

– The exact size where to stop caching was not determined

There appeared to be very little performance impact due to the

transmit channel running while the receive channel was being

measured

Performance Reviewed

27

© Copyright 2014 Xilinx
.

Memory mappings (cached, noncached, etc.) should always match

for a buffer across kernel and user space

Buffer alignment with respect to cache lines is needed for DMA

The driver could exit and free the memory while the application is

still trying to use it

– This is not typically an issue when the driver is built into the kernel

These methods have only been tested in a prototype system

– Not used by any customers yet

Areas Of Caution for DMA

28

© Copyright 2014 Xilinx
.

Using interface memory to pass control to the driver rather than

passing the data as arguments in ioctl() is more flexible

The kernel space device driver can also alter the memory to

control itself

– This is a good way to test the driver before the user space application is

written

– It also can help discern a working device driver from an issue with mapping

memory into the user space application

Designing For Debug

29

© Copyright 2014 Xilinx
.

This feature is new to the 3.14 kernel

The kernel page tables will show DMA allocated memory and

verify it is not cached and is bufferable/write combined memory

It can also help verify buffers are released

Configure the kernel with CONFIG_ARM_PTDUMP

– From the Kernel Hacking menu, select Export kernel pagetable

cat /sys/kernel/debug/kernel_page_tables

Dumping Kernel Page Tables

A 3 MB

DMA

buffer

30

© Copyright 2014 Xilinx
.

Systems With AXI DMA

The AXI DMA IP core can be used for DMA to and from a custom IP

core

A system using AXI DMA without scatter gather, with the transmit

stream looped back to the receive stream, can be used for testing

The length of transfers is configured at build time with a max of 23 bits

which limits the transfer length to be 8MB – 1 bytes (0 is a valid length)

