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Agenda 

Applications and examples of user space DMA 

Using the character device framework 

Implementing ioctl() functionality 

Implementing mmap() functionality 

Areas of caution 

Design for debug 

 

Prerequisites 

– Knowledge of the Linux kernel in general such as building and 

configuring the kernel 

– Character device driver experience in Linux 

– Experience with the C programming language 

– Linux DMA in Device Drivers session 
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The primary components of DMA include the DMA device control, 

memory allocation and cache control 

DMA in Linux is designed to be used from kernel space by a higher 

layer device driver 

The DMA Engine in Linux is a framework which allows access to 

DMA controller drivers (such as AXI DMA) in a consistent and more 

abstract manner   

Xilinx provides device drivers which plug into the DMA Engine 

framework (AXI DMA, AXI CDMA, and AXI VDMA) 

Memory can be allocated using kmalloc() for cached memory or 

dma_alloc_coherent() for uncached memory 

DMA cache control functions such as dma_map_single() and 

dma_unmap_single() are used with cached memory buffers 

 

Review From Linux DMA In Device Drivers 
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A challenge in Linux is doing application processing in user space 

while moving data to and from devices in the PL 

Linux provides frameworks that allow user space to interface with 

kernel space for most types of devices (except DMA) 

User Space DMA is defined as the ability to access buffers for DMA 

transfers and control DMA transfers from a user space application 

– This is not an industry standard and there are a number of possible methods 

– Similar methods have been used for years with display systems such as X11, as 

they needed direct access to video frame buffers 

Xilinx SDIntegrator might be an easier solution for some applications 

and should be considered 

– It uses similar principles without the user implementing any code 

 

 

 

Introduction 
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A typical User Space DMA 

application creates data which 

needs to be transferred from the 

CPU memory to/from a custom 

IP core 

 

Examples 

– FFT IP core processing a block of data 

– Custom IP Core generating blocks of 

data 

– See the Spectrum Analyzer Tech Tip 

 

 

Applications of User Space DMA 

control 
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The software design is 

made up of a kernel space 

device driver and a user 

space application 

The Xilinx AXI DMA Device 

Driver and Linux DMA 

Engine exist in the Linux 

kernel 

The DMA Proxy Device 

Driver is a character 

device driver that uses the 

Linux DMA Engine 

The DMA Proxy Test 

Application uses the DMA 

Proxy Device Driver to 

control DMA transfers 

 

User Space DMA Software Example (High Level) 

User 

Space 

Kernel 

Space 

6 



© Copyright 2014 Xilinx 
. 

Creation of a character device driver that extends the 

functionality of the DMA kernel driver from the Linux DMA in 

Device Drivers session 

Creation of a user space application that uses the character 

device driver to perform DMA transfers 

Implementation of ioctl() in the device driver and in the user 

space application to cause the DMA Engine to perform DMA 

transfers 

Implementation of mmap() in the device driver and in the user 

space application to map kernel allocated memory into user 

space process address space 

These principles should work across any DMA device that is 

supported by the Linux DMA Engine 

 

Key Learning For The Session 
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DMA Proxy Software Detailed Design 
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Moving data between userspace 

and kernel space is the primary 

method for I/O since the 

application is in userspace and 

the device drivers are in kernel 

space 

The copy_to_user() function 

copies a buffer of bytes from 

kernel space to userspace 

The copy_from_user() function 

copies a buffer of bytes from 

userspace to kernel space 

Functions also exist for copying 

a single datum or null terminated 

string 

Copying Data Between Kernel and User Space 

Review 

9 



© Copyright 2014 Xilinx 
. 

Many software designs copy data from user space to kernel space 

and from kernel space to user space 

For larger buffers copying data is inefficient and in the case of 

DMA it defeats the purpose of using DMA to move the data 

A zero copy design avoids copying memory and is required for 

user space DMA applications 

Some network stacks (not Linux) provide a zero copy design and 

achieve higher performance 

Mapping a kernel space allocated memory buffer into user space 

removes the need to copy data 

Mapping user space allocated buffers into kernel space so that a 

driver can access them is another method 

– This is more complex and not covered in this session 

 

Zero Copy Buffer Design 
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The character device framework of Linux provides functionality 

such as open(), read(), write() and close() which allows a device 

driver to be accessed using the file I/O operations from user space 

It also provides the ioctl() interface which is used to control the 

device in non standard ways 

The function prototype in a driver: 

– int (*ioctl) (struct file *filp, unsigned int cmd, unsigned long arg); 

The cmd and arg arguments are passed from user space to the 

driver unchanged such that they are easily used for control 

The ioctl() function of the device driver can perform any 

functionality including blocking until the functionality is complete 

Character Device Framework Review 
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The user space application needs to control the kernel space driver to 

allow DMA transactions to be managed 

The read() and write() file operations could easily be used 

– These do offer the ability to do asynchronous (non-blocking) I/O using poll() and 

select() functions 

The ioctl() file operation is designed for device control and is used to 

control the DMA Proxy device driver for simplicity 

The mmap() file operation allows memory of the device driver to be 

mapped into the address space of the caller in a user space process 

The UIO driver framework provides another alternative for this design 

which is simpler but limited and less flexible 

– mmap() can be overridden with your own implementation for non-cached memory 

– It’s not as flexible as the character device framework 

Controlling The Kernel Space Driver 
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The Character Device Driver Simplified Example 

int dma_proxy_open() { }; 

int dma_proxy_ioctl() { }; 

int dma_proxy_mmap() { }; 

int dma_proxy_release() { }; 

 

static struct file_operations dma_proxy_fops = 

{ 

 .owner                = THIS_MODULE, 

 .open                  = dma_proxy_open, 

 .unlocked_ioctl = dma_proxy_ioctl, 

 .mmap                = dma_proxy_mmap, 

 .release              = dma_proxy_release, 

}; 

int dma_proxy_init()  

{ 

 struct cdev cdev; 

 cdev_init(&cdev, &dma_proxy_fops); 

 cdev_add(&cdev, ….); 

} 

Create empty file operation 

functions dma_proxy_open(),   

dma_proxy_ioctl(), 

dma_proxy_mmap(), & 

dma_proxy_release() 

Create the file_operations data 

structure dma_proxy_fops 

The driver dma_proxy_init() 

function calls the character device 

functions to create the character 

device 

The cdev_init() function initializes 

the character device including 

setting up the file functions such as 

dma_proxy_ioctl() 

The cdev_add() function connects 

the character device to the kernel 

13 
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Cache control from user space is challenging and less obvious 

– Cache control is done in the DMA Proxy device driver from kernel space  

Many people would assume that using caches makes everything 

faster 

– It depends on how the application uses the data and the data size 

– Caching large buffers can pollute the CPU cache, causing other system 

impacts 

The cache operations required for a DMA driver do take time for the 

CPU 

An application which only controls a DMA transfer without touching 

any of the data can use uncached memory 

The amount of memory that can be allocated varies for cached and 

uncached memory  

– 4 MB cached memory using kmalloc() or get_free_pages() 

– Configurable (much larger) with uncached memory using dma_alloc_coherent() 

and the contiguous memory allocator in Linux 

 

Cached Buffers Considerations 

14 
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Shared memory between user space and kernel space can be 

used for more than data buffers 

Control and status in addition to data is needed from user space 

Control of the DMA includes the ability to: 

– start/stop a transaction 

– a source address for the data buffer 

– a length specifying how many bytes of data are in the data buffer 

Status of the DMA includes the ability to see that the transfer 

completed and any errors that might have occurred 

The DMA Proxy example uses kernel allocated memory referred to 

as interface memory 

 

Details of Controlling DMA From User Space 

15 
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struct dma_proxy_channel_interface { 

   unsigned char buffer[32 * 1024 * 1024]; 

   enum proxy_status {  

      PROXY_NO_ERROR = 0, PROXY_BUSY = 1, 

      PROXY_TIMEOUT = 2, PROXY_ERROR = 3 

   } status; 

   unsigned int length; 

}; 

Note the buffer is the first member of the  

struct to ensure it is cache line aligned. 

Interface Memory Details 

The interface memory is 

allocated by the DMA proxy 

driver and mapped to user 

space using mmap() 

The dma_proxy_channel_ 

interface contains the data, 

control and status for a 

channel 

The user space application  

controls the DMA proxy driver  

using the data in the interface 

memory 

The DMA proxy device driver 

controls the DMA Engine 

using the data in the interface 

memory 

DMA Proxy Channel Interface 

16 
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Introduction to Mapping Memory with mmap() 

The character device driver framework of Linux provides the ability to 

map memory into a user space process virtual address space 

A character driver must implement the mmap() function which a user 

space application can call 

The mmap() function has several ways it is used and feels a bit 

confusing with overloaded arguments 

In this application it is used to map a physical memory address range 

into the virtual memory address space 

A virtual address, corresponding to the physical address, is returned 

from mmap() 

Whenever the user space program reads or writes in the virtual 

address range it is accessing the physical address range 

This provides improved performance as no system calls are required 
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User space 

application 

(process) 

Device 

driver 

MMU 

1. mmap 

system 

call 

2. virtual 

address 

returned 3. access 

virtual 

address 

4. access 

physical 

address 

process virtual 

address space 

physical 

address space 

Mapping Device Memory Flow 

MMU 

translation 

table 



© Copyright 2014 Xilinx 
. 

Calling mmap() from the user space application 

– The call to mmap() requires an address and size for the memory being mapped 

into user space 

– The application passes zero for the address to map as it does not know the 

address of the buffer allocated in the kernel driver 

– The size cannot be zero as mmap() will return an error 

– The application knows the size using a shared data definition in a header file 

Implementing mmap() in the kernel space device driver 

– The mmap() function in the driver must alter the caching attributes to match the 

kernel buffer being mapped if the buffer is not cached 

• The kernel has a mapping of the memory in the MMU and another is going to be created 

for the user space application process and they must match 

• Memory allocated with kmalloc() is cached 

– The DMA framework provides a mmap() function which can be called from the 

driver mmap() function to perform the memory mapping for buffers allocated from 

the DMA framework 

• Memory allocated with dma_alloc_coherent() is uncached 

Details of Mapping Memory with mmap() 

19 
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Simple User Space Application Example 

Start with an empty main() function and a defined channel interface data type 

Open the device file for the DMA proxy 

Call the mmap() function to map the kernel allocated buffer into the process address 

space 

The first argument  with a value of 0 lets the kernel choose the virtual address which 

the physical address will be mapped to  

The second argument is the size of the memory range to map 

 

The device file causes 

the mmap() function to 

run in the driver 

struct dma_proxy_channel_interface { } 

 

void main() {  

   struct dma_proxy_channel_interface *proxy_interface_p; 

   int proxy_fd; 

 

   proxy_fd  =  open("/dev/dma_proxy", O_RDWR); 

   proxy_interface_p = mmap(0, sizeof(dma_proxy_channel_interface),         

  PROT_READ | PROT_WRITE, MAP_SHARED, proxy_fd, 0); 

} 

20 
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Virtual and physical memory are 

divided into handy sized units 

called pages 

These pages are all the same size, 

4KB for ARM and MicroBlaze 

A page frame number is simply an 

index within physical memory that is 

counted in page-sized units 

The page frame number for a 

physical address can be created 

using the constant PAGE_SHIFT 

page_frame_number = 

physical_address >> PAGE_SHIFT 

Linux Pages and Page Frame Numbers 

21 
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Simple Memory Mapping Driver Example 

static int dma_proxy_mmap(struct file *filp, struct vm_area_struct *vma) 

{ 

 if (remap_pfn_range(vma, vma->vm_start,  

   virt_to_physical(buffer_pointer) >> PAGE_SHIFT,  

   vma->vm_end - vma->vm_start, 

   vma->vm_page_prot)) 

  return -EAGAIN; 

 return 0; 

} 

Note: This is for memory allocated with kmalloc() 

Start with an empty mmap() function with the expected Linux interface 

The remap_pfn_range() function is an easy way to implement the mmap() function for 

memory including allocated buffers or a device 

Only one argument has to be created as all others come in the vma structure 

The 3rd argument is the page frame number which is based on the physical address 

Note: mmap() defaults to cached memory such that the cache attributes of the vma 

match the buffer allocated from kmalloc() 

The cache attributes are in vma->vm_page_prot and could be altered 

Convert the physical 

address to the page 

frame number 

22 
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DMA Memory Mapping Driver Example 

static int dma_proxy_mmap(struct file *filp, struct vm_area_struct *vma) 

{ 

    return dma_common_mmap(dma_device_pointer,  

                   vma, 

                                                     buffer_pointer,  

                                                     physical_buffer_pointer, 

                                                     vma->vm_end - vma->vm_start); 

} 

Note: This is for memory allocated with dma_alloc_coherent() 

 

Start with an empty mmap() function with the expected Linux interface 

The dma_common_mmap() function is the easy way to implement the mmap() 

function 

The buffer_pointer and physical_buffer_pointer are both returned from 

dma_alloc_coherent() 

 

 

Pointers are virtual 

addresses by default 

23 
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A Simple ioctl() Example Controlling DMA 

static void transfer(struct dma_proxy_channel *pchannel_p) { }; 

static int open(struct inode *ino, struct file *file) 

{ 

 file->private_data = container_of(ino->i_cdev, struct dma_proxy_channel, cdev); 

 return 0; 

} 

static long ioctl(struct file *file, unsigned int unused1, unsigned long unused2) 

{ 

 struct dma_proxy_channel *pchannel_p = (struct dma_proxy_channel *)file->private_data; 

 transfer(pchannel_p); 

 return 0; 

} 

The transfer() function manages the DMA engine to cause the DMA transfer to occur 

The transfer() function uses the interface memory to determine the details of the 

DMA transaction including the length of the transfer 

The open() function is called when the application opens the device file 

The ioctl() function receives a notification requesting a DMA transfer to be 

performed for the device channel 

24 
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Software Design Sequencing 

The diagram 

illustrates the 

interaction 

between the user 

space 

application, the  

device driver, and 

the interface 

memory with time 

flowing from top 

to bottom 
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A design which only blocks is much simpler than one that does 

not block  

– Non-blocking requires asynchronous processing to complete the 

transaction; this is more complex 

The DMA Buffer Sharing framework in Linux could be helpful 

– This session is focused on the simplest example while this adds more 

complexity 

It is also possible for a kernel module to get access to user space 

allocated memory through the get_user_pages() function 

Design Alternatives 

26 
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Testing was done with both standalone (bare metal) and with Linux 

to compare the performance 

The performance of an unloaded Linux system was very similar to 

standalone 

The performance was only reviewed with respect to the time for the 

receive channel ioctl() call from the application to the driver 

Cached buffers can appear to be lower performance due to cache 

processing by the CPU 

The additional performance of faster application processing of the cached buffers 

must be factored in 

Larger buffers should definitely not be cached in Linux as the 

system performance is greatly impacted 

– The exact size where to stop caching was not determined 

There appeared to be very little performance impact due to the 

transmit channel running while the receive channel was being 

measured 

Performance Reviewed 
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Memory mappings (cached, noncached, etc.) should always match 

for a buffer across kernel and user space 

Buffer alignment with respect to cache lines is needed for DMA 

The driver could exit and free the memory while the application is 

still trying to use it 

– This is not typically an issue when the driver is built into the kernel 

These methods have only been tested in a prototype system 

– Not used by any customers yet 

Areas Of Caution for DMA 
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Using interface memory to pass control to the driver rather than 

passing the data as arguments in ioctl() is more flexible 

The kernel space device driver can also alter the memory to 

control itself 

– This is a good way to test the driver before the user space application is 

written 

– It also can help discern a working device driver from an issue with mapping 

memory into the user space application 

 

Designing For Debug 
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This feature is new to the 3.14 kernel 

The kernel page tables will show DMA allocated memory and 

verify it is not cached and is bufferable/write combined memory 

It can also help verify buffers are released 

Configure the kernel with CONFIG_ARM_PTDUMP 

– From the Kernel Hacking menu, select Export kernel pagetable 

cat /sys/kernel/debug/kernel_page_tables 

Dumping Kernel Page Tables 

A 3 MB 

DMA 

buffer 
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Systems With AXI DMA  

The AXI DMA IP core can be used for DMA to and from a custom IP 

core 

A system using AXI DMA without scatter gather, with the transmit 

stream looped back to the receive stream, can be used for testing 

The length of transfers is configured at build time with a max of 23 bits 

which limits the transfer length to be 8MB – 1 bytes (0 is a valid length) 


