
XILINX CONFIDENTIAL
.

Linux DMA in Device Drivers
Based on 3.14 Linux kernel

John Linn, Strategic Applications Engineer, 10/2014

XILINX CONFIDENTIAL
.

Memory Allocation

Kernel Configuration

Cache Control

DMA Engine

DMA Engine Slave API

DMA Kernel Driver Example

Prerequisites

– Knowledge of the Linux kernel in general such as building and

configuring the kernel

– Basic device driver experience in Linux

– Experience with the C programming language

Agenda

XILINX CONFIDENTIAL
.

The goal of this session is to help users understand the Linux

kernel DMA framework and how it can be used in a device driver

DMA in Linux is designed to be used from a kernel space driver

User space DMA is possible and is a more advanced topic that is

not covered in this presentation

Introduction

DMA
Device
Control

Cache
Control

Memory
Allocation

The primary

components of DMA

include the DMA

device control

together with memory

allocation and cache

control

XILINX CONFIDENTIAL
.

Memory Allocation For DMA – Part 1

Linux provides memory allocation

functions in the kernel

The vmalloc() function allocates

cached memory which is virtually

contiguous but not physically

contiguous

– Not as useful for DMA without an I/O

MMU

– Zynq does not have an I/O MMU

The kmalloc() function allocates

cached memory which is physically

contiguous

– It is limited in the size of a single

allocation

– Testing showed 4 MB to be the limit,

but it might vary with kernels

XILINX CONFIDENTIAL
.

Memory Allocation For DMA – Part 2

The dma_alloc_coherent() function allocates non-cached physically

contiguous memory

– The name coherent can be a confusing name (for me anyway)

– The CPU and the I/O device see the same memory contents without any

cache operations

– Accesses to the memory by the CPU are the same as a cache miss when

the cache is used

– The CPU does not have to invalidate or flush the cache which can be time

consuming

– This function is the intended function for DMA memory allocation

– There is another function, dma_alloc_noncoherent() but it’s not really

implemented so don’t use it

XILINX CONFIDENTIAL
.

Boot Time Memory Setup

Memory can be reserved such that the kernel does not use it

– MEM=512M on the kernel command line causes it to use only 512M of

memory

– The device tree memory can also be changed

This is the oldest method allowing large amounts of memory to be

allocated for DMA

Drivers use io_remap() to map the physical memory address into the

virtual address space

There are multiple versions io_remap() which allow cached and non-

cached

These functions don’t allocate any memory, they only map the

memory into the address space in the page tables

The Linux io_remap() function causes the memory to be setup as

Device Memory in the MMU which should be slower than Normal

Memory

XILINX CONFIDENTIAL
.

Cortex A9 Memory Attributes – Device Memory

The Zynq TRM explains the details on pages 70 and 82

Each page of memory in Linux is setup with memory attributes based on

its specific purpose

The number and size of accesses are preserved, accesses are atomic,

and will not be interrupted part way through

Both read and write accesses can have side-effects on the system.

Accesses are never cached

Speculative accesses are never be performed

Accesses cannot be unaligned

The order of accesses arriving at Device memory is guaranteed to

correspond to the program order of instructions which access device

memory

A write to Device memory is permitted to complete before it reaches the

peripheral or memory component accessed by the write

XILINX CONFIDENTIAL
.

Cortex A9 Memory Attributes – Normal Memory

The processor can repeat read and some write accesses

The processor can pre-fetch or speculatively access additional memory

locations, with no side-effects (if permitted by MMU access permission

settings)

The processor does perform speculative writes

Unaligned accesses can be performed

Multiple accesses can be merged by processor hardware into a smaller

number of accesses of a larger size

XILINX CONFIDENTIAL
.

Contiguous Memory Allocator (CMA)

This is a newer feature of the kernel that some people may not know

about

There had been a lot of demand for larger memory buffers needed for

many applications including multimedia

CMA came into the kernel at version 3.5, about 2 years ago

Is only accessible in the DMA framework via dma_alloc_coherent()

Allows very large amounts of physically contiguous memory to be

allocated

Defaults to small amounts

– Can be increased on the kernel command line (CMA=) which doesn’t

require a kernel rebuild

– Can be increased in the kernel configuration

XILINX CONFIDENTIAL
.

CMA Kernel Configuration

The Xilinx kernel has

CMA turned on by

default, but this may

vary with kernel

versions

Note that the

Contiguous Memory

Allocator must be

turned on to see the

configuration options in

the device drivers

configuration for DMA

CMA (next slide)

XILINX CONFIDENTIAL
.

DMA CMA Kernel Configuration

XILINX CONFIDENTIAL
.

DMA Cache Control

Linux provides DMA functions for cache control of DMA buffers

Cache control is based on the direction of DMA transfer, from

memory to a device, from device to memory, or birectional

DMA controllers in the PL are cache coherent in Zynq with ACP port

– The HP ports are not cache coherent such that cache control is required

For transfers from memory to a device, the memory must be flushed

from the cache to memory before a DMA transfer is started

For transfers from a device to memory, the cache must be

invalidated after the transfer and before the CPU accesses memory

dma_map_single() is provided to transfer ownership of a buffer from

the CPU to the DMA hardware

– It can cause a cache flush for the buffer in the memory to device direction

dma_unmap_single() is provided to transfer ownership of a buffer

from the DMA hardware back to the CPU

– It can cause a cache invalidate for the buffer in the device to memory direction

XILINX CONFIDENTIAL
.

Linux Kernel Details For DMA

A descriptor is used to describe a DMA transaction such that a single

data structure can be passed in an API.

– A descriptor can also describe a DMA transaction to a DMA core such as the

AXI DMA when it is built to use scatter gather

A completion is a lightweight mechanism which allows one thread to

tell another thread that a task is done

A tasklet implements deferrable functionality and replaces older

bottom half mechanisms for drivers

– A function can be scheduled to run at a later time with a tasklet

A cookie is an piece of opaque data which is returned from a

function, then passed to yet a different function communicating

information which only those functions understand

– A DMA cookie is returned from dmaengine_submit() and is passed to

dma_async_is_tx_complete() to check for completion of a specific DMA

transaction

– DMA cookies may also contain a status of a DMA transaction

XILINX CONFIDENTIAL
.

Linux DMA Engine

A driver, dmaengine.c, along with Xilinx

DMA drivers, is located in drivers/dma of

the kernel

Documentation about this seems to be

limited

– In kernel: Documentation/dmaengine.txt

– No other good information on the web

 The Xilinx kernel has the DMA engine driver turned on by default

– The Xilinx DMA core drivers are only visible in the kernel configuration

when it is enabled

The DMA test for the AXI DMA cores in the Xilinx kernel uses the

DMA engine slave API

– This test code is pretty complex with multiple threads such that it’s not

easy to get down to the basics

– The tests are also located in drivers/dma (axidmatest.c)

XILINX CONFIDENTIAL
.

Linux DMA Engine Slave API – Page 1

The DMA Engine driver works as a layer on top of the Xilinx DMA

drivers using the slave DMA API

– It appears that slave may refer to the fact that the software initiates the DMA

transactions to the DMA controller hardware rather than a hardware device with

integrated DMA initiating a transaction

Drivers which use the DMA Engine driver are referred to as a client

The API designed to handle complex DMA with scatter gather

XILINX CONFIDENTIAL
.

Linux DMA Engine Slave API – Page 2

The slave DMA

usage

consists of

following

these steps.

XILINX CONFIDENTIAL
.

Linux DMA Engine Slave API – Page 3

Client drivers typically need a channel from a particular DMA

controller only

– In some cases a specific channel is desired

– For AXI DMA, the 1st channel is the transmit channel and the 2nd channel is the

receive channel

The function dma_request_channel() is used to request a channel

– A channel allocated is exclusive to the caller

The function dma_release_channel() is used to release a channel

The dmaengine_prep_slave_single() function gets a descriptor for a

DMA transaction

– This is really converting a single buffer without a descriptor to use a

descriptor

– Other functions are provided which allow other DMA modes including

cyclic and interleaved modes

XILINX CONFIDENTIAL
.

Linux DMA Engine Slave API – Page 4

The dmaengine_submit() function submits the descriptor to the DMA

engine to be put into the pending queue

– The returned cookie can be used to check the progress

The dma_async_issue_pending() function is used to start the DMA

transaction that was previously put in the pending queue

– If channel is idle then the first transaction in queue is started and subsequent

transactions are queued up

– On completion of each DMA operation, the next in queue is started and a

tasklet triggered. The tasklet will then call the client driver completion callback

routine for notification, if set.

XILINX CONFIDENTIAL
.

Allocating a Channel Example

Set up the

capabilities for the

channel that will be

requested

Request the DMA

channel from the

DMA engine

Release the channel

after the application

is done with it

dma_cap_mask_t mask;

dma_cap_zero(mask);

dma_cap_set(DMA_SLAVE | DMA_PRIVATE, mask);

chan = dma_request_channel(mask, NULL, NULL);

// application specific processing

// with the channel

dma_release_channel(chan);

A more specific

channel can be

requested with

a filter

A private

channel is not

affected by

processing for

other channels

XILINX CONFIDENTIAL
.

Starting A DMA Transfer Example

1. Allocate a 1KB buffer of cached contiguous memory

2. Cause the buffer to be ready to use by the DMA including any

cache operations required

3. Create a descriptor for the DMA transaction

4. Setup the callback function for the descriptor

5. Queue the descriptor in the DMA engine

completion cmp;

enum dma_ctrl_flags flags = DMA_CTRL_ACK | DMA_PREP_INTERRUPT;

char *buf = kmalloc(1024, GFP_KERNEL);

dma_map_single(device, dma_buffer, 1024, DMA_TO_DEVICE);

chan_desc = dmaengine_prep_slave_single(chan, buf, 1024,

 DMA_MEM_TO_DEV , flags);

chan_desc->callback = <call back function when the transfer completes>;

chan_desc->callback_param = cmp;

dma_cookie_t cookie = dmaengine_submit(chan_desc);

DMA_CTRL_ACK initializes

the descriptor indicating the

client owns it

DMA_PREP_INTERRUPT is

used to cause an interrupt on

completion

XILINX CONFIDENTIAL
.

Linux Asynchronous Transfer API

The async_tx API provides methods for describing a chain of

asynchronous bulk memory transfers/transforms with support for

inter-transactional dependencies

It is implemented as a dmaengine client that smooths over the

details of different hardware offload engine implementations

Code that is written to the API can optimize for asynchronous

operation and the API will fit the chain of operations to the available

offload resources

The dma_async_issue_pending() function starts the DMA transaction

– The DMA engine calls the callback function that was supplied with the

submit function when the transfer is complete

The dma_async_is_tx_complete() function checks to see if the DMA

transaction completed

XILINX CONFIDENTIAL
.

Waiting For DMA Completion Example

A DMA transfer was

previously submitted to

the DMA Engine

A callback function was

connected to the

descriptor when it was

submitted (queued)

Initialize the completion

so the DMA engine can

indicate when it’s done

Cause the DMA engine

to start on any pending

(queued) work

Wait for the DMA

transfer to complete

void transfer_complete(void * completion) {

 complete(completion);

}

unsigned long timeout = msecs_to_jiffies(3000);

enum dma_status status;

struct completion cmp;

init_completion(&cmp);

dma_async_issue_pending(chan);

timeout = wait_for_completion_timeout(&cmp,

 timeout);

It blocks waiting for the

completion or a timeout

Called by the DMA Engine when the

transfer completes

XILINX CONFIDENTIAL
.

Processing the Transfer Status Example

Wait for the transfer to complete

Get the status of the DMA transfer using the cookie which was the

result of submitting it to the DMA Engine

The transfer could have timed out or completed, with an error or

OK

timeout = wait_for_completion_timeout(&cmp, timeout);

status = dma_async_is_tx_complete(chan, cookie, NULL, NULL);

if (timeout == 0) {

 // timeout processing

} else if (status != DMA_COMPLETE) {

 if (status == DMA_ERROR) {

 // error processing

 }

}

XILINX CONFIDENTIAL
.

Requesting A Specific DMA Channel

The dma_request_channel() function provides parameters to allow a

specific channel to be requested when there are multiple channels

– struct dma_chan *dma_request_channel(dma_cap_mask_t mask,

 dma_filter_fn filter_fn, void *filter_param)

dma_filter_fn is defined as:

– typedef bool (*dma_filter_fn)(struct dma_chan *chan, void *filter_param)

– the filter_fn routine will be called once for each free channel which has a

capability matching those specified in the mask input

– filter_fn is expected to return 'true' when the desired DMA channel is

found

The DMA channel unique ID is defined by the DMA driver using the

DMA Engine

– For Xilinx, the AXI DMA, AXI CDMA, and AXI VDMA drivers

– They use a 32 bit word which is made up of the device id from the device tree

for the channel together with the channel direction and a Xilinx ID

XILINX CONFIDENTIAL
.

Requesting A Specific Channel Example

A filter function determines if the channel matches the desired

channel

Set up the criteria for the channel being requested

Request the channel specifying the filter function and the match

criteria

#include <linux/amba/xilinx_dma.h>

u32 device_id = <device-id from device tree> << XILINX_DMA_DEVICE_ID_SHIFT

u32 match;

static bool filter(struct dma_chan *chan, void *param)

{

 if (*((int *)chan->private) == *(int *)param)

 return true;

 return false;

}

direction = DMA_MEM_TO_DEV;

match = (direction & 0xFF) | XILINX_DMA_IP_DMA | device_id);

chan = dma_request_channel(mask, filter, (void *)&match);

The

Xilinx

unique

ID

4 bits are

available

allowing IDs 0 –

15, they default

to 0 in the device

tree

XILINX CONFIDENTIAL
.

OCM and DMA

The zynq BSP includes a general purpose allocator for OCM

– arch/arm/mach-zynq/zynq_ocm.c

It maps the memory in the MMU as device memory rather than

normal memory which is typically slower

The API is different, but simple, and there’s minimal documentation

– Include/linux/genalloc.h

Getting a handle to the pool is the toughest part as you need to look

it up thru the device tree node

The function gen_pool_dma_alloc() is used to allocate a block of

memory from the pool

The driver works for OCM mapped low or high in memory as it reads

the SLCR to determine where it’s located

XILINX CONFIDENTIAL
.

DMA With Accelerator Coherency Port (ACP)

When DMA is connected to the ACP port of Zynq the DMA

transactions can be cache coherent such that software does not

need to worry about the caches

 Cache operations in software can be a signficant amount of

processing for large buffers

There are tradeoffs to be made as the DMA transactions can also

disrupt the CPU caches such that there could be performance

impacts to the software

XILINX CONFIDENTIAL
.

Hardware System For Testing

Using AXI DMA without scatter gather, with the transmit stream

looped back to the receive stream

– Built for the ZC702 board, but could be built easily for others

XILINX CONFIDENTIAL
.

References

http://infocenter.arm.com/help/topic/com.arm.doc.dai0228a/DAI228A_

DMA_on_SMP_systems.pdf

https://www.kernel.org/doc/Documentation/crypto/async-tx-api.txt

https://www.kernel.org/doc/Documentation/dmaengine.txt

https://www.kernel.org/doc/Documentation/DMA-API.txt

https://www.kernel.org/doc/Documentation/DMA-API-HOWTO.txt

include/linux/async_tx.h

include/linux/dmaengine.h

http://lwn.net/Articles/450286/

http://lwn.net/Articles/267134/

