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Abstract 
 
Pre-processing of Speech Signal serves various purposes 
in any speech processing application. It includes Noise 
Removal, Endpoint Detection, Pre-emphasis, Framing, 
Windowing, Echo Canceling etc. Out of these, 
silence/unvoiced portion removal along with endpoint 
detection is the fundamental step for applications like 
Speech and Speaker Recognition. The proposed method 
uses Probability Density Function (PDF) of the 
background noise and a Linear Pattern Classifier for 
classification of Voiced part of a speech from 
silence/unvoiced part. The work shows better end point 
detection as well as silence removal than conventional 
Zero Crossing Rate (ZCR) and Short Time Energy (STE) 
function methods.  
 

1. Introduction 
 
Pre-Processing of Speech Signal is very crucial in the 
applications where silence or background noise is 
completely undesirable. Applications like Speech and 
Speaker Recognition [1] needs efficient feature extraction 
techniques from speech signal where most of the voiced 
part contains Speech or Speaker specific attributes. 
Endpoint Detection [2],[3] as well as silence removal are 
well known techniques adopted for many years for this 
and also for dimensionality reduction in speech that 
facilitates the system to be computationally more  
efficient. This type of classification of speech into voiced  
or silence/unvoiced [4] sounds finds other applications 
mainly in Fundamental Frequency Estimation, Formant 
Extraction or Syllable Marking, Stop Consonant 
Identification and End Point Detection for isolated 
utterances.  
 
There are several ways of classifying (labeling) events in 
speech. It is accepted convention to use a three-state 
representation in which states are (i) silence (S), where no 
speech is produced; (ii) unvoiced (U), in which the vocal 
cords [5] are not vibrating, so the resulting speech 
waveform is aperiodic or random in nature and (iii) voiced 
(V), in which the vocal chords are tensed and therefore 
vibrate periodically when air flows from the lungs, so the 
resulting waveform is quasi-periodic [6]. It should be 
clear that the segmentation of the waveform into well-
defined regions of silence, unvoiced, signals is not exact; 
it is  often difficult to distinguish a weak, unvoiced sound 
(like /f/ or /th/) from silence, or weak voiced sound (like 
/v/ or /m/) from unvoiced sounds or even silence. 

However, it is usually not critical to segment the signal to 
a precision much less than several milliseconds; hence, 
small errors in boundary locations usually have no 
consequence for most applications. Since for most of the 
practical cases the unvoiced part has low energy content 
and thus silence (background noise) and unvoiced part is 
classified together as silence/unvoiced and is 
distinguished from voiced part.    
 
Two widely accepted methods namely Short Time Energy 
(STE) [6],[7] and Zeros Crossing Rate (ZCR) [6],[7] have 
been used for a long time for silence removal. But they 
have their own limitation regarding setting thresholds as 
an ad hoc basis. STE uses the fact that energy in voiced 
sample is greater than silence/unvoiced sample. However, 
it is not specific about how much greater it needs to be for 
proper classification and varies case to case. On the other 
hand ZCR has a demarcation rule specifying that if the 
ZCR of a portion speech exceeds 50 then this portion will 
be labeled as unvoiced or background noise whereas any 
segment showing ZCR at about 12 is considered to be the 
voiced one.  One attempt [8] was made by taking these 
two methods together and results reported only 65% 
accuracy with respect to manually labeled speech sample.  
 
In this paper, we detect silence/unvoiced part from the 
speech sample using uni-dimensional Mahalanobis 
Distance [9] function which itself is a Linear Pattern 
Classifier [9],[10]. Our algorithm uses statistical 
properties of background noise as well as physiological 
aspect of speech production and does not assume any ad 
hoc threshold. We also show the algorithm’s performance 
using the measure of correctness taking manually labeled 
speech as a reference. The experiments are done on two 
kinds of speeches which are a running text read from a 
paragraph and a combination lock number. The result 
shows better classification for the proposed method in 
both the cases when compared against conventional 
silence/unvoiced detection methods. We assume that 
background noise present in the utterances are Gaussian 
[11] in nature, however a speech signal may also be 
contaminated with different types of noise [12]. In such 
cases the corresponding properties of the noise 
distribution function are to be used for detection purpose. 
 
 This paper is organized as follows. In section 2 we 
describe the theoretical background. Section 3 presents 
the algorithm along with a short discussion regarding 
computational complexity and defining the measure of 
correctness. The results are presented in section 4 and 
section 5 describes the principal conclusion. 
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2. Theoretical Background 
 
2.1  Speech Signal and its Basic Properties 
 
The speech signal [13] is a slowly time varying signal 
[14] in the sense, that, when examined over a sufficiently 
short period of time (between 5 and 100 msec), its 
characteristics are fairly stationary; however, over long 
periods of time (on the order of 1/5 seconds or more) the 
signal characteristics change to reflect the different speech 
sounds being spoken. Usually first 200 msec or more 
(1600 samples if the sampling rate is 8000 samples/sec) of 
a speech recording corresponds to silence (or background 
noise) because the speaker takes some time to read when 
recording starts. Figure 1 illustrates the fact.  
 

 
 

Fig. 1.  Diagram of a typical Speech Signal 
 
2.2 Gaussian or Normal Distribution 
 
One of the most important results of the probability theory 
is the Central Limit Theorem [9], which states that, under 
various conditions, the distribution for the sum of d 
independent random variables approaches a particular 
limiting form known as the normal distribution. As such, 
the normal or Gaussian probability density function is 
very important, both for theoretical and practical reasons. 
In one dimension, it is defined by: 
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The normal density is traditionally described as ‘bell- 
shaped curve’; it is completely determined by the 
numerical values for two parameters, the mean μ and the 
variance σ2. This is often emphasized by writing   
p(x)~N(μ σ2), which is read as “ x  is distributed normally 
with mean µ and variance σ2”. The distribution is 
symmetrical about the mean, the peak occurring at x=µ 
and the width of the ‘bell’ is proportional to the standard 
deviation σ . Normally distributed data points tend to 
cluster about the mean. Numerically, the probabilities 
obey 
 

Pr | | 0.68[ ]x μ σ− ≤                       (2) 

Pr | | 2 0.95[ ]x μ σ− ≤                                    (3) 
Pr | | 3 0.997[ ]x μ σ− ≤                            (4) 

  
as shown in Fig. 2 given below : 
 

 
Fig. 2. A one-dimensional Gaussian distribution, , has 

68% of its probability mass in the range | | , 95% in the range of  

( ) (0,1)p u N
1u ≤

| | 2u ≤ , and 99.7% in the range of | | . 3u ≤
 
A natural measure of the distance from x to the mean is 
the distance |x-μ| measured in units of standard deviation 
which can be analytically expressed as:     
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σ
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and defined as ‘Mahalanobis Distance’ from x to μ (In the 
one-dimensional case, this is sometimes called z-score). 
Thus for instance the probability is 0.95 that the 
Mahalanobis distance from x  to μ will be less than 2. If a 
random variable x is modified by (a) subtracting its mean 
and (b) dividing by its standard deviation, it is said to be 
standardized. Clearly, a standardized normal random 
variable r=(x-μ)/σ has zero mean and unit standard 
deviation-that is,  
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which can be written as . ( ) (0,1)p u N
 

3. Method  
 
3.1 The Algorithm 
The algorithm described below is divided into two parts.               
First part assigns label to the samples by using a statistical 
properties of background noise while the second part 
smoothens the labeling by the physiological aspects from 
the speech production process. The Algorithm two passes 
over speech samples. In Pass I (Step 1 to 3) we use 
statistical property of background noise to make a sample 
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as voiced or silence/unvoiced. In Pass II (Step 4 and 5) we 
use physiological aspects of speech production for 
smoothening and reduction of probabilistic errors in 
statistical marking of Pass I. 
  
Step 1: Calculate the mean and standard deviation of the 
first 1600 samples of the given utterance. If μ and σ are 
the mean and the standard deviation respectively then 
analytically we can write, 
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Note that background noise is characterized by this μ and 
σ. 
 
Step 2: Go from 1 st sample to the last sample of the 
speech recording. In each sample check whether one-
dimensional Mahalanobis distance function i.e. |x-μ|/σ 
greater than 3 or not. Analytically,           
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the sample is to be treated as voiced sample otherwise it is 
an silence/unvoiced. 
Note that the threshold reject the samples upto 99.7% as 
per given by equation no. 4 in a Gaussian Distribution 
thus accepting only the voiced samples. 
  
Step 3:  Mark the voiced sample as 1 and unvoiced 
sample as 0. Divide the whole speech signal into 10 ms 
non-overlapping windows. Now the complete speech is 
represented by only zeros and ones.  
 
Step 4:  Consider there are M no. of zeros and number 
of ones in a window. If   M ≥ N then convert each of ones 
to zeros and vice versa. This method adopted here keeping 
in mind that a speech production system consisting of 
vocal chord, tongue, vocal tract etc. cannot change 
abruptly in a short period of time window taken here as 10 
ms.  

N

 
Step 5:  Collect the voiced part only according to the 
labeled ‘1’ samples from the windowed array and dump it 
in a new array. Retrieve the voiced part of the original 
speech signal from labeled 1 samples.  
 
The algorithm is illustrated in the flow chart given in fig.3. 
Note that in the proposed method after μ and σ calculation 
it requires one division and condition checking per sample 
in Pass I and in Pass II one condition checking per 80 
samples (10 ms). In ZCR method sign of each sample is 
checked and number of reversal in a window (80 samples, 
10 ms) is calculated. Then the no. of sign reversal is 
checked if within certain range for voice part 
classification purpose. In STE method each sample 
sequence energy is calculated and then summed over 80 

samples (10 ms) window. Then a condition checking is 
done on this sum to classify it as voiced part or not.  Thus  
the proposed  method  is  computationally  comparable to 
 

 
 

Fig. 3. Flow Chart of the algorithm 
 

conventional STE & ZCR based silence/unvoiced 
detection method and can be used for real time analysis. 
However, in the result section we show the proposed 
method is superior performance wise for silence-voice 
classification. Note that in STE and ZCR method 
threshold is calculated after few trials or adhoc basis 
whereas, proposed method uniquely defines threshold first 
instance. 
        
3.2 Percentage of Correctness 
 
Percentage of correctness regarding extraction of voiced 
sample from a speech signal is defined as follows: 
 

% of correctness = lg| |
100 100manual a orithm

manual

N N
N
−

− ×    (11) 

 3



Where, Nmanual is the no. of voiced samples from manually 
labeled speech,  Nalgorithm is the no. of voiced samples from 
a specified algorithm.  
 

4. Results 
 
Two experiments are conducted here. In the first 
experiment, a combination lock number (‘26-81-57-29-
94-52-35-79-89’) from YOHO database is taken while in 
the second one a running text is read from a paragraph for 
about 20 sec  duration is considered as a speech sample. 
The second speech is recorded keeping fan, air condition 
and computers on. For both utterances three algorithms 1) 
STE 2) ZCR with STE together (because ZCR when used 
showed poor performance) and 3) Proposed Method are 
used and output waveforms are presented as follows. 
Figure 4 and 8 show two original speech samples for two 
different utterances. Figure 5, 6 and 7 are the results of the 
combinational lock no. and fig. 9, 10 and 11 are the 
results of the running text for STE, ZCR-STE & proposed 
method respectively. Table 1 summarizes results showing 
percentage of correctness in detection of all three 
algorithms for both the phrases. Note that the result shows 
that all the algorithms perform better for YOHO data 
(combinational lock no.) which is relatively noise free 
than the speech (running text) collected from noisy 
environment for the second experiment. Proposed method 
performs well in both the experiments than conventional 
ZCR & STE method.  
 
Table 1: Performance Index of the Algorithms using 
percentage of correctness criteria 
 

Phrases STE ZCR-STE Proposed 
Method 

Combination 
lock number 

77.9531% 70.3720% 83.5565% 

Running Text 50.8391% 50.1231% 59.7181% 
 

 
Fig. 4.  Original speech signal for combination lock Number 

 

 
Fig. 5.  Output of STE method for combination lock number 

 

 
Fig. 6.  Output of STE-ZCR method for combination lock number 

 

 
Fig. 7.  Output of Proposed Method for combination lock number 

 
Fig. 8.  Original speech signal for running text 

 

 
Fig. 9.  Output of STE method for running text 

 

 
Fig. 10.  Output of STE-ZCR method for running text 
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Fig. 11.  Output of Proposed Method for running text 
 

5. Conclusion 
 
A new silence end-point detection technique for 
Speech/Speaker Recognition is presented. The method 
uses statistical properties of background noise and also the 
physiological aspects of speech production process. The 
method assumes the noise to be white Gaussian. However, 
for other types of noises [12] a similar approach of 
characterization of noise through probabilistic model can 
be used. The threshold used in this method is uniquely 
specified and require no trial and error or adhocism. It is 
shown to be computationally efficient for real time 
applications and it performs better than conventional 
methods for speech samples collected from noisy as well 
as noise free environment.     
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