PA 4: Hash Table and Triton Blockchain, 100 pts
Final Submission Due: Thursday, Nov. 8th, 2018 11:59 pm

Overview

1. In Programming Assignment 4, you will be implementing a Hash Table class.

2. You will then implement a Naive Blockchain called TritonBlockChain. It includes a
Triton data class, Triton block class and a Triton blockchain class, using the knowledge
of hashing.

For FINAL SUBMISSION, you will submit the following files:

e HashTable.java -- Provided for you as a starter file.
e TritonData.java -- Provided for you as a starter file.
e TritonBlock.java -- Provided for you as a starter file.
e TritonBlockChain.java -- Provided for you as a starter file.
e README -- Create by yourself

You will submit these files through autograder turnin script. Please refer to the submission
instructions for earlier programming assignments on Piazza.

Do NOT CHANGE the following files in any way (and do not turn them in)
e IHashTable.java -- Provided for you as a starter file.

Grading for this assignment is broken down into the following parts:

e HashTable.java correct implementation -- 40 points at final grading
TritonData.java correct implementation -- 5 points at final grading
TritonBlock.java correct implementation -- 15 points at final grading
TritonBlockChain.java correct implementation -- 25 points at final grading
README correct explanation of the method you design -- 5 points at final grading
Style -- 10 points at final grading

TOTAL: 100 Points

Starter Code Files
e [HashTable.java
e HashTable.java
e HashTableTester.java
e Hash Functions.pdf



Sample hash functions.pdf
TritonData.java
TritonBlock.java
TritonBlockChain.java
TritonMiner.java
transaction/ (folder)

Where to find the starter code
e From ieng6 server at
o <accountname>@ieng6.ucsd.edu:/home/linux/iengé/cs12f/public/pa4/
e Now you should have enough unix command line skills to copy the code from the
public folder to your account, and securely transfer files between your iengé
account and local environment.



Part 1 - Hash Table Implementation (40 points)

In this part, you will be implementing a basic Hash Table. We have provided you with an
interface (IHashTable.java) and starter code that implements the given interface
(HashTable.java). Fill in the blanks to complete the given methods that are listed below.

A. Implementing HashTable (60 points)

Method Name

Method Description

Exceptions to throw

insert(elem)

Inserts element elem in the hash table.

Your program should return

true or false, depending on whether it was
inserted or not. Return true if item is
inserted, false if it already exists.

NullPointerException if a null
value is passed.

contains(elem)

Uses the hash table to determine if elem is
in the hash table.

Your program should return true or false,
depending on whether the item exists.

NullPointerException if a null
value is passed.

delete(elem)

Use the hash table to determine where
elem is, delete it from the hash table.

Your program should return true if the
item is deleted, false if it can’t be deleted
(an item can’t be deleted if it does not
exist in the hash table).

NullPointerException if a null
value is passed.

printTable() Print out the hash table none
) Returns the number of elements
getSize() currently stored in the hashtable none

Please note that to receive full credit for your Hashtable, your printTable() function should be
exactly like in the format of:
<BUCKET NUMBER>: <Content1 in Separate Chain>, <Content2 in Separate Chain>




Sample output format for printTable():

: 10

: 15

17

11:
12: 9
13:
14: 8

11,1
112, 2
213, 3
114, 4,5

£ 16, 6

: 18,7
10: 19

Note that in the contains/delete method, you shouldn’t need to search through
the entire table to find an element.

Some implementation notes:

1.
2.

You may assume that all elements to be inserted are of type String.

For this assignment, use separate chaining to resolve collisions (You could use Java’s
LinkedList).

You must keep track of the load factor of your table and when the load factor becomes
greater than %3, you must double the size and rehash the values. You must implement
a private helper method rehash() to do this.

You can choose any hash function of your choice: you can use any of the functions we
covered in class, in the book, or pick something from the provided list of hash
functions. However, you must actually implement the algorithm in your HashTable
class and not use java's in-built methods (i.e. String.hashCode()).

. Make sure that the hash function you choose is fast, deterministic and uniform (mod

the result by tableSize to avoid overflow)

. Your rehash method should not take too long to insert and rehash. One

recommendation is to use the given dictionary file as input to your hash table. Insert
all the words in the dictionary into your hash table and make sure that it takes no
longer than 30 seconds to load the entire dictionary.

B. Keeping Statistics




You should keep track of the following statistics. They should be reported by writing a
line to a file every time the hash table is resized.
e The number of times you had to expand the table.
e The load factor in the table (report it before resizing), trimmed to 2 decimal places
when written to the file. This value is reset whenever you expand the table.
e The number of insertions that encountered a collision (before resizing). This value is
reset whenever you expand the table.
e The length of the longest known collision chain (before resizing). This value is reset
whenever you expand the table.

1. Note that all except the first of these statistics will need to be reinitialized (reset or
updated) whenever you expand the table.

2. Write it out to a text file in the following format r, c, n are integers, alpha is floating
point number), each time you do a resize and rehash. Append (on a new line) a new
set of values for each rehash (r resizes, load factor alpha , c collisions, n longest
chain)

3. Notice the two constructors in HashTable class in the starter code provided. One takes
in the initial size(any value > 0), while the other constructor takes in a filename as
well as a size. The boolean 'printStats' is set to false by default, and is only changed to
true in the constructor that receives a filename. Each time you expand and rehash
your table, you must check if this boolean is set to true, and if yes, you must write the
current statistics to the file before rehashing.

4. For example, after, say, 4 rehashes, the file will have the following lines:

1 resizes, load factor 0.67, 1 collisions, 2 longest chain

2 resizes, load factor 0.67, 7 collisions, 2 longest chain

3 resizes, load factor 0.75, 55 collisions, 6 longest chain

4 resizes, load factor 0.68, 221 collisions, 14 longest chain

5. There is no ‘correct statistics’ and your numbers will change depending on what hash
function and initial table size you chose. These values will only indicate how good your
chosen hash function is. Note that the values above indicate that our hash function is
not that good and could be better, as we’d like to see the size of the longest chain
remain relatively constant for the same load factor.

C. HashtableTester

For final submission, you will once again be graded on our master tester which we promise
again that we will do our worst. Please note that the tester we provided in the starter code is
extremely simplified. You should definitely add more unit tester to HashTableTester.java in
order to push the limit of your Hashtable.



Part 2 - Triton Blockchain Implementation (60 points)

Now, for the first time in the CSE 12 history, you are going to implement a simplified
blockchain. Your Blockchain should use hashing to ensure the security of the chain (we
will talk about how to do that below).

A. Starting From Concepts

Nowadays, Blockchain, cryptocurrency, Bitcoin, ... are such hot topics that even people who
are not in the technology fields like talking about these fancy ideas. So what are the
meanings of these words? In this section (and in discussion), we are going to briefly go over
these concepts.

Blockchain

Blockchain, by design, serves as a decentralized, distributed data structure. You may see
some definition online saying that “Blockchain is an open, distributed ledger”, which is not
wrong, but not accurate either. Blockchain involved in the use of cryptocurrency is a ledger,
yet Blockchain itself may not contains “ledger” as content. This paragraph introduces you the
definition of blockchain.

To get to know the significance and detailed structure of Blockchain, we need to understand
the following concepts step by step:

Decentralization

Firstly, let’s consider a centralized process. Ex. You like pay-to-win in the mobile games and
you decide to spend your lunch money this month in making some in-app purchases in your
iPhone games (DON’T DO THAT! You need to eat lunch!). The trade procedure is: You make
in-app purchases to iTunes Store -> iTunes Store notify the Game Producers, and pay them at
certain time point -> Game Producers grant you the item or privilege you buy in order to win.

ltunes
Store

.

"

Payment Make In-App
Purchases

Pr‘j‘fﬁzrs ﬂ Make You Win : Jaks o
(tis
It

You

" =]

iy



Graph 1. Centralized Trade Process

In this process, although you are buying the service from the game producer, the transaction
actually involves a third party, the Itunes store. All of your transactions with all the game
producers will be though the Itunes Store. Thus, If the Itunes service is down, your transaction
will fail. Also, although you are just buying services from gamer producers, both you and the
producers are providing information to a third party.

Thus, the ideal situation is a decentralized system, where you only interact with the seller,
and if both of you claim the transaction is done, then the transaction is done.

Graph 2. Decentralized Trade Process

Imagine there are thousands of trade happening every pico-second, decentralization will save
tons of resources, make the trade system autonomous and easier.

It’s easier said than done. Without information centralization, how to ensure that both buyer
and seller are not fraud? How to ensure the information in every trade is accurate? After
decentralization, we need to ensure the credibility and the accuracy of the information. This
brings up how blockchain uses its structure and hashing to ensure the security of the
distributed data.

Triton Data Structure and Triton Block Structure

The term “blockchain” is pretty self-explanatory: A chain of blocks. The blocks, obviously,
contains the information.

In the cases of cryptocurrency, the information stored is the ledger. In this programing
assighment, you will implement the TritonData you stored into the blocks. TritonData mimics
the ledger information in the following way:

TritonData Structure

List of Transactions: A List of transactions noted in the ledger




Proofld: A proof of work you did to mine the block

The transactions will be in the format of strings. Proofld is an integer by which you prove you
paid computation power to mine this block. (How to prove for work is explained in the “Proof
of Work” Section below)

With the TritonData information we have in the format above, we put the information into
the TritonBlock structure as below:

TritonBlock Structure

Index: The index of the block inside the blockchain
Timestamp: The system timestamp when the block is created
Data: The TritonData we want to save in the block

Prev_hash: The hashing of the previous block in blockchain
Self_hash: The hashing of the current block in blockchain

As you can see in the above structure, besides the TritonData, the TritonBlock also stores the
hash value of the previous block, and itself’s hash value in the structure. Therefore, if the
TritonData is affected by unstable network, and lost/flip a bit or two during transfer (or a
hacker maliciously change the bits in another scenario), the stored data becomes inaccurate,
then the prev_hash of the next block and the self_hash of the current block will not match
up, invalidating the chain. That’s how the structure of the block makes the blockchain safer.

Triton Blockchain Structure

As stated earlier, each block is part of the blockchain. Therefore, the structure of the
TritonBlockChain is easy as below:

TritonBlockChain Structure

List of Blocks: A list of TritonBlocks

The structure is intuitive and self-explanatory. Please noted that a blockchain is only
meaningful if there is a block with information inside. Thus, unlike other list-like data
structures, the constructor of the blockchain need to initialize a genesis block, which people



will start mining from. This raises a new question: why do we mine more blocks on the
blockchain.

Why We Mine More Blocks

As the creator of blockchain, the person will put ledger information in the genesis block. In
order to let more people recognize the accuracy and the credibility of his ledger, the creator
will want more block to be added into the list, where his ledger will be spreaded. But as
miners, why do we bother spread the ledger info for him or her?

In order to attract miners, the creator usually says that “the next people who have my ledger
information will have a piece of the fortune noted in the ledger!”. Then all the people will be
try to be the next block in chain because they can have reward by being miners. This is also
why we have a static final variable MINE_REWARD in our TritonBlockChain class: the amount
of the reward offered to the miner who owns the next block.

However, the reward raises another problem: now that all the people want reward, how can
we decide who is next?

Proof of Work: How to Mine More Blocks

Now that everyone want a share in our ledger, who should we pass the ledger information to
(since the blockchain is a list rather than a graph)? The solution is to make the task of
getting the ledger information really hard so that we can distinguish people by some
standard. The task described above will be proof of work.

The proof of work is always a complicated task, which will consume a lot of computational
power of the miner’s machine. And the task always grows harder and harder as the blockchain
grows. How does machine spend computational power then? The simplest answer is just using
loops. An example of proof of work is: Find the least common multiple of [the former proofid
+ 1] and a prime number (ex. 17) using loop.

The miners need to finish the complicated task before they can ask to create the next block
in the blockchain. Since the computational powers vary from miner to miner, we prevent the
scenario of all the miner ask to create the next block in chain.

In this assignment, you are allow to choose a computationally difficult task by yourself, as
well as the hash function you used to hash the blocks (we will talk about easy and common
ways to do these as well in discussion). Please write a README file contains the following
information:




e How are you hashing your blocks
e What is your proof-of-work task

However, this strategy does not 100% eliminate the possibility of 2 miners completing the task
at exactly the same time. What should we do? We will only discuss this situation in discussion
(for fun), since your naive TritonBlockChain only runs locally, and you are also the sole miner
on your local machine.

Cryptocurrency

After the description above, you already know that the information stored in the blocks in
chain can be anything. You do not have to put the information of legal money or existing item
transactions in the blocks. You can just put “I have 100 Saint Quartzs!” in the data section of
the block. If the value of “saint quartz” is publicly recognized, miners start to use the
computation power of their machine to mine your “saint quartz”, and people are buying
“saint quartz” using legal money, “saint quartz” actually become a valuable cryptocurrency.

Bitcoin

Bitcoin is one of the many types of popular cryptocurrency. Bitcoin’s actual structure,
hashing, and proof of work is much more complicated than the TritonBlockChain we
implemented this time. If you are interested in digging more, here are some keywords for
your own researches: Bitcoin Core, SHA-256, and nonce.

B. Implementation Details

Your TritonData, TritonBlock, and TritonBlockChain classes should implement methods listed
as below

TritonData

Method Name Method Description Exceptions to
throw

TritonData() Constructor of triton data none




Get all transactions

List<String> none
getTransactions()

int getProofld() Get proof id none

String tostring() Return a string in the following format none

Eg:

DATA Start--------=----ceemmmcmcnnncnen.
Proof of work: XX

Transaction 0

Transaction Content: name1 name2 X$
Transaction 1

Transaction Content: nam3 name4 y$

Transaction 2

Transaction Content: Triton coin earned: 1

Y e U —

”

(Notice: You can get the amount of triton coin earned through MINE_REWARD variable
inside TritonBlockChain class)

TritonBlock
Method Name Method Description Exceptions to
throw
Constructor that initializes all the data
none

TritonBlock(int index,
long timestamp,




TritonData data, String
prev_hash)

String hashBlock()

Hash the data (choose the algorithm you like) none

int getindex() Return index none
String getTimestamp() | poiurn timestamp none
TritonData getData() Return block’s data none
String getPrev_hash() | patyrn previous block’s hash none
string getself_hash() | peturn cur block’s hash none
String toString() Return a string in the following format none

Eg:

TritonBlock k

Index: k

Timestamp: 1540589541260
Prev Hash: 1016750814
Hash: 1150849736
(TritonData info)

”




TritonBlockChain

Method Name

Method Description

Exceptions to

throw
Constructor.
TritonBlockChain(int 1. Initialize a local blockchain none
index, long timestamp, 2. On initialization, add a genesis block using the
TritonData data, String information in parameters.
prev_hash)
TritonBlock ) Makes the next block. none
makeNewBlock(TritonB
lock lastBlock, 1. Initialize the index by the former block’s index
TritonData newData) +1
2. |Initialize the time stamp:
a. Hint: You can do this by calling
System.currentTimeMillis();
3. Initialize the prev_hash by getting the
self_hash of previous block
4. Use the TritonData and above variables to
initialize a new TritonBlock and return it.
) 'bool_ean ) If curTransactions is empty, return false none
beginMine(List<String>
curTransactions) Otherwise

1. Get a proof id generated by proofOfWork

2. Append a string recording the number of
triton coin earned to curTransactions in the
following format:

a. “Triton coined earned:
<REWARD_NUM>”

3. Create a TritonData object with proof_id and
curTransactions

4. Create a new TritonBlock with TritonData

5. Add TritonBlock to current blockchain




int proofOfWork()

find number that is divisible by both lastProofld and none
13 (This function is used to prove cpu usage. In real
blockchain, it will be much more complicated)
l'SOOlzin' Check the validity of the current blockchain by none
validateChain() checking if prevBlock’s hash matches current Block's
prevHash.
Llst<Tr1tonBl9ck> Getter of blockchain none
getBlockChain()
String toString() Return data is the following format: none

TritonBlock 0
(Block data...)

”

Full Sample output

s s o Pt P P Pt P Pt

TritonBlock O
Index: O

Prev Hash: O

DATA Start

Hash: -1037253988

o s o Pt s Pt Pt P Pt

Timestamp: 1540592055917




Proof of work: 1
DATA End

TritonBlock 1

Index: 1

Timestamp: 1540592055918
Prev Hash: -1037253988
Hash: -915589582

DATA Start
Proof of work: 26

Transaction 0

Transaction Content: mary bob 10$
Transaction 1

Transaction Content: mary bob 12$
Transaction 2

Transaction Content: Triton coined earned: 1
DATA End

TritonBlock 2

Index: 2

Timestamp: 1540592055919
Prev Hash: -915589582
Hash: 307556879

DATA Start
Proof of work: 351

Transaction 0

Transaction Content: simon tian 3%
Transaction 1

Transaction Content: tian ming 3$
Transaction 2

Transaction Content: Triton coined earned: 1
DATA End

(Note: block 0 is genesis block, thus it has prevHash 0, index 0, and no transaction
recorded. Starting at block 1, there will be transaction in each block)



C. To run your blockchain

We’ve provided you TritonMiner.java, which you can compile, run, and produce the above
output. It is also a playground for you to modify and try out your own TritonBlockChain
implementation. The correct implementation would result in same output format as above.

D. Testing

For final submission, since we already give you really detailed function signatures and
explanations in the above sections. We will do strict unit testing for functions you are not
designing by yourself (which is Hashing and ProofOfWork), and manually examine your
README explanations on how you design hashing and ProofOfWork. We do not provide you
simple JUnit tester class, but you are encouraged to write your own.



Look through your programs and make sure you've included your name, ID and login at the top

of each of them.

Files

Along with your name and cse12fxx account name at the top of each program you wrote, you

Turning in your code

also need the appropriate comments at the top of your HashtableTester.java file. We are
expecting you to hand in the following files:

README

HashTable.java
TritonData.java
TritonBlock.java
TritonBlockChain.java

How your assignment will be evaluated

e Coding Style (10 points)
o Does your class and tester properly generate javadoc documentation
o Is your code readable by others

e Correctness

consistent indentation (Please use SPACES, not tabs)

are variables sensibly named

are access modifiers (public, private, protected) used appropriately
are helper methods used when needed to reduce code duplication

o Does your code compile?

o Does it pass all of your unit tests that you defined?

o Does it pass all of our unit tests? (we are users of your ADT implementation,
you don’t get access to our unit tests)

We’ll check basic functionality, including Exceptions

o Does your code have any errors? (e.g. generates exceptions when it isn’t
supposed to) (That would be bad).

e Unit test coverage (Optional but Highly Encouraged)
o Have you created at least 5 more meaningful unit tests? (that’s a bare
minimum, you are very likely to have significantly more tests) Does it detect

errors in a reasonably buggy implementation of HashTable or TritonBlockChain?

o Does your unit testing approach for HashTable appear to be sufficient? We

supply you with one unit test for HashTable(), that is not sufficient. Good tests
will include testing what happens before the head and after the tail, as well as

more specific tests for each of the methods.



o We’re not telling you exactly what to test, that’s part of learning to create
approaches to developing and debugging more complicated code. We will test
your tester against reasonably buggy implementations of HashTable. In
addition, your tests should help you develop your code and insure its proper
operation.

Keep up the great work, and hack like a champion!



Reference:

We want to give credit to every hacker who provides insights on designing this part of the
assighment. They are:
Le Wang - LaiW3n
Rohit Thotakura
Mohit Mamoria









