High-level NavMesh Building Components

Here we introduce four high level components for the navigation system:

NavMeshSurface — for building and enabling a navmesh surface for one agent type.
NavMeshModifier — affects the navmesh generation of navmesh area types, based on
the transform hierarchy.

e NavMeshModifierVolume — affects the navmesh generation of navmesh area types,
based on volume.

e NavMeshLink — connects same or different navmesh surfaces for one agent type.

These components comprise the high level controls for building and using NavMeshes at runtime

as well as edit time.

NavMeshSurface
| # Scene © Inspector
[« [NavMesh Surface | (] Static +
Tag | Untagged + | Layer| Default =
v . Transform £,
Position X [7.97 'Y|-035 |z[-206 |
Rotation X0 Y0 'z]0 |
Scale X1 Y1 |Z[1 |
v « [¥ Nav Mesh Surface (Script) %,
R=0.5
0.75 H=2
45°
Agent Type [Humanoid ™
Collect Objects (Al 1)
Include Layers Everything +]
Use Geometry [Render Meshes o
b Advanced
(Clear il Bake]
Add Component]

Navmesh Display
Show NavMest
Show HeightMest

The NavMeshSurface component represents the walkable area for a specific agent type. The
NavMesh Surface component defines a part of the world where a NavMesh should be built. A
scene can contain multiple NavMesh Surfaces.

The preferred way to use the NavMeshSurface component is to create an empty Game Obiject
containing the NavMeshSurface component. There’s a menu option for that: GameObject > Al >
NavMesh Surface. This creates an empty Game Object with a NavMeshSurface component
attached to it.

The NavMeshSurface component can be also added to any game object. This is useful for cases
where you want to use the Hierarchy to define which objects contribute to the NavMesh.

Parameters

e Agent Type — the agent type which will use this NavMesh Surface. The agent type is used
for bake settings, as well as to match a NavMeshAgent to proper surface during
pathfinding.

e Collect Objects — defines on a high level which objects should be used for baking.

o All—use all active objects.

o Volume — use all active objects overlapping the bounding volume (defined later)

o Children — use all active objects which are children to the NavMeshSurface
component, in addition to the object the component is placed on.

e Include Layers — defines the layers on which the objects must be to be included in the
bake. This allows further culling of objects from inclusion in the bake e.g. effects or
animated characters.

e Use Geometry — selects which geometry is used for baking.

Render Meshes — use geometry from rendered meshes and terrains

Physics Colliders — use geometry from colliders and terrains. When using physics
this is usually a better option than Render Meshes. This way the agents will be
closer to the physical bounds of the environment.

The main settings for the NavMesh Surface component allow you to filter the input geometry on a
broad scale. To fine tune how input geometry is treated on a per-object level when building a
navmesh, see NavMeshModifer component.

Game Objects which have a NavMesh Agent or NavMesh Obstacle will be excluded from the

baking process automatically. They are dynamic users of the navmesh — and hence should not
contribute to the navmesh building.

Advanced Settings

¥ . v Nav Mesh Surface (Script) &,
R=05
0.75 H=2
| 45°

Agent Type | Humanoid ¢
Collect Objects | All |
Include Layers | Everything :]
Use Geometry | Render Meshes ™
Advanced

Default Area | Walkable

Owverride Vioxel Size ||

Vioxel Size 0.1666667

Owverride Tile Size [

3.00 voxels per agent radius

Tile Size 256
42 .67 world units
Build Height Mesh
» Debug

(Clear || Bake |

The main settings will cater for most use cases, but for anything not covered by the main settings,
the advanced section has the following additional parameters

Default Area — defines the area type generated when building the navmesh. The default
value is Walkable. The NavMeshModifer component can be used to modify the area type
in more detail.

Override Voxel Size — The override voxel size controls how accurately the input geometry
is processed for NavMesh baking. It is a tradeoff between speed and accuracy. A good
value to start with is 3 voxels per agent radius (6 per diameter). This allows to capture
most of the narrow passages, like doors and still have quick baking. If you have big open
areas, you might go down to 1 or 2 to speed things up. Or if you have tight indoor spots,
you can use smaller voxels, and use maybe 4-6 voxels per radius. More than 8 is usually
not really worth it.

Override Tile Size — In order to make the bake process parallel and memory efficient, the
world is divided into tiles for baking. The white lines you can see on your NavMesh are tile
boundaries. The default tiles size is 256 voxels. It is a good trade-off between memory
usage and NavMesh fragmentation. The smaller the tiles are the more fragmented the
NavMesh is, and this can sometimes cause non-optimal paths. NavMesh carving also
operates on tiles. If you have a lot of obstacles, you can potentially speed up carving by
making the tile size smaller, say 64-128. Also, if you plan to bake the NavMesh at runtime,
you may choose to use smaller tile size to keep the maximum memory usage low.

e Build Height Mesh — Not supported yet.

V¥ Advanced
Default Area [walkable o
Manual Voxel Size [|
Voxel Size 10.1666667 |

3.00 voxels per agent rad
Manual Tile Size []
Tile Size 1256 |
42.67 world units
Build Height Mesh [|
Vv Debug
Show Input Geor[_]
Show Voxels []
Show Regions [«
Show Raw Conto[]
Show Contours []
Show Poly Mesh]
Show Poly Mesh []
Use Debug Focu [«
Focus Point

X 5.2129: Y 0 1Z0.9289:

Debug options will show various
visualizations of the build process. The
visualization are created when bake is
pressed and shown at the location of the
bake, and are not stored to disk.

¥ .~ Transform [=
Position X [-6.5078 Y -4.0629 | Z -1.4055
Rotation X [0 [y /o 'zo |
Scale X1 [Y [1 |z |1 |

¥ Group_2 (Mesh Filter) i,

Mesh °

» . [Mesh Renderer &,

V¥ - [Nav Mesh Modifier (Script) *,

[Exnerimental Feature.]

Ignore From Build []
Override Area Type (¥

Area Type [Lava &
Affected Agents [An +]
Steve_Book %,

» Shader | Standard 2

’ Add Component]

NavMesh Modifier allows to fine tune how a specific object behaves during NavMesh baking. In
the above picture, the lower platform has modifier attached to it, which sets the object to have
Lava area type.

The NavMesh Modifier affects hierarchically, that is, the Game Object where the Components is
attached and all of its’ children are affected. If another NavMesh Modifier is found further down the
transform hierarchy it will override the modification for its children.

The NavMesh Modifier affects the NavMesh generation process, this means the NavMesh has to
be updated to reflect changes to NavMesh Modifiers.

Note: This component is a replacement for the old setting which could be enabled from the
Navigation window Objects tab as well as the static flags dropdown on the GameObject. This
component is available for baking at runtime, whereas the static flags are available in the editor
only.

Parameters

e Ignore From Build — when checked, the object and all if its’ children are skipped from the
build process.

e Override Area Type — when checked the area type will be overridden for the game object
containing the Modifier and all of it’s children.

o Area Type — new area type to apply

o Affected Agents — a selection of agents the Modifier affects. For example, you may

choose to exclude certain obstacles from specific agent.

NavMesh Modifier Volume

— ¥ <= [¥ Nav Mesh Modifier Volume (Scripl #.

[Experimental Feature.]

Size
X|2.509589 |Y 3 |z [2 |
Center
X -0.129358{ Y |1 lz]o |
Edit Volume
Area Type [Door &
Affected Agents [Al ol

[Add Component l

\

NavMesh Modifier Volume allows you to mark the area that falls inside the volume with specific
area type. Where NavMesh Modifier marks certain objects with an area type, the Modifier Volume
allows change the area type even more locally based on a volume.

The modifier is useful for annotating certain areas over walkable surfaces which might not be
represented as separate geometry, e.g. danger areas. It can be even be used to make certain
areas non-walkable.

The NavMesh Modifier Volume affects the NavMesh generation process, this means the NavMesh
has to be updated to reflect changes to NavMesh Modifier Volumes.

Parameters

Size — dimensions of the modifier volume.

Center — center of the modifier volume relative to the GameObject center.

Area Type — describes the area type which the volume applies.

Affected Agents — a selection of agents the Modifier affects. For example, you may
choose to create danger zone for specific agent type only.

NavMesh Link

¥ - [¥ Nav Mesh Link (Script) L] %
[Experimental Feature.]
Agent Type [Humanoid &
Start Point
X -1.192093¢ Y [-0.294735! Z -1.82031 |
End Point
X |-3.576279¢ Y [0.3733492|Z 1.82031 |
Width 11459107 |

[Align Transform To Point

Bidirectional (v
Area Type [walkable &

Add Component]

NavMesh Link allows to create a navigable link between two locations. The link can be from
point-to-point, or it can be wider in which case the agent uses the nearest location along entry
edge to cross the link.

The link is necessary to connect different NavMesh Surfaces

Agent Type — the agent type which can use the link.

Start Point — start point of the link, relative to the Game Object.

End Point — end point of the link, relative to the Game Object.

Align Transform To Points — clicking this button will move the Game Object at the links
center point and alight the transform’s forward axis towards the end point.

Cost Modifier — When the cost modifier value is non-negative the cost of moving over the
NavMeshLink is equivalent to the cost modifier value times the Euclidean distance
between NavMeshLink end points.

Bidirectional — when checked the link can be traversed from start-to-end and
end-to-start, when unchecked only from start-to-end.

Area Type — the area type of the link (affects path finding cost)

Techniques

Connecting Multiple NavMesh Surfaces Together

Scene
Shaded

© Inspector

[+ [NavMesh Link | [Jstatic =

Tag [Untagged 4| Layer | Default

3

v . Transform i

Position X -1.15 | Y 2.72053 Z -7.57

Rotation X [0 1Y 106.469]Z [0

]

Scale X1 J¥[1 1z[1

]

v ~ [¥ Nav Mesh Link (Script) @ %

| Experimental Feature.

J
)

Agent Type [Humanoid

Start Point

X0 1Y [-1.18671 |Z[-1.36527 |

End Point

X0 1Y 1.18671 | Z 1.36527

l

Width [5.993601

l

[Align Transform To Point

Bidirectional 4

Area Type [walkable

‘]

[Add Component]

If it is desired to allow an agent to move along multiple NavMesh Surfaces in a Scene, the

surfaces need to be connected together using NavMesh Links.

In the example scene above, the blue and red NavMeshes are defined in different NavMesh
Surfaces. A wide NavMesh Link is added, it spans from one surface to another.

Things to keep in mind when connecting surfaces:
e You can connect surfaces using multiple links.
e Both the surfaces and the link must have same agent type.

e The link’s start and end point must be only on one surface. It is OK to have multiple
NavMeshes at the same location, but then selecting a NavMesh becomes ambiguous.

e If you are loading a second NavMesh Surface additively and you have “dangling” links in
the first scene, check that they do not connect to unwanted surfaces.

API Reference

NavMesh Surface

Properties

e agentTypelD — ID describing the agent type the NavMesh should be built for.

e collectObjects — defines how input geometry is collected from the scene, one of
UnityEngine.Al.CollectObjects:
o All—use all objects in the scene.
o Volume — use all objects in the scene which touch the bounding volume (see size
and center)
o Children — use all objects which are children to the Game Object where the
NavMesh Surface is attached to.
size — dimensions of the build volume. The size is not affected by scaling.
center — center of the build volume relative to the Transform center.
layerMask — bitmask defining the layers on which the objects must be to be included in the
baking.
e useGeometry — defined which geometry is used for baking, one of
UnityEngine.Al.NavMeshCollectGeometry.
o RenderMeshes — use geometry from render meshes and terrains
o PhysicsColliders — use geometry from colliders and terrains.
defaultArea — default area type for all input geometries, unless otherwise specified
ignoreNavMeshAgent — true if Game Objects with a NavMeshAgent components should
be ingnored as input
e ignoreNavMeshObstacle — true if Game Objects with a NavMeshAgent components
should be ingnored as input
overrideTileSize — true if tile size is set
tileSize — tile size in voxels (the component desc has explanation how to choose tile size)
overrideVoxelSize — true if the voxel size is set
voxelSize — size of the voxel in world units (the component desc has explanation how to
choose tile size)
buildHeightMesh — Not implemented.
navMeshData — reference to the NavMeshData the surface uses, or null if not set.
activeSurfaces — list of all active NavMeshSurfaces

Note: The above values affect how the bake results, thus, you must call BuildNavMesh() to
make them count.

Public Functions

void BuildNavMesh ()
Builds a new NavMeshData based on the parameters set on NavMesh Surface. The data
can be accessed via navMeshData.

NavMesh Modifier

Properties
e overrideArea — true if the modifier overrides area type
e area— new area type to apply
e ignoreFromBuild — true if the GameObject which contains the modifier and its’ children
should be not be used to NavMesh baking.
e activeModifiers — list of all active NavMeshModifiers

Public Functions
bool AffectsAgentType (int agentTypelD)
Returns true if the modifier applies to the specified agent type, otherwise false.

NavMesh Modifier Volume

Properties
e size — size of the bounding volume in local space units. Transform affects the size.
e center — center of the bounding volume in local space units. Transform affects the center.
e area — area type to apply for the NavMesh areas that are inside the bounding volume.

Public Functions
bool AffectsAgentType (int agentTypelD)
Returns true of the the modifier applies for the specified agent type.

NavMesh Link

Properties

agentTypelD — the type of agent that can use the link.

startPoint — start point of the link in local space units. Transform affects the location.

endPoint — end point of the link in local space units. Transform affects the location.

width — width of the link in world length units.

costModifier — when the cost modifier value is non-negative the cost of moving over the

NavMeshLink is equivalent to the cost modifier value times the Euclidean distance

between NavMeshLink end points.

e Dbidirectional — if true the link can be traversed both ways, if false the link can be traversed
only from start to end.

e autoUpdate — if true the link updates the endpoints to follow the transform of the
GameObject every frame.

e area — area type of the link (used for pathfinding cost).

Public Functions

void UpdateLink ()
Updates the link to match the associated transform. This is useful for updating a link
explicitly after e.g. changing the transform position. It is not necessary if the autoUpdate
property is enabled. However calling UpdateLink can have a much smaller performance
impact if you rarely change the link transform.

