
Core Data Model
Versioning and Data
Migration Programming
Guide

Contents

Core Data Model Versioning and Data Migration 5
At a Glance 5
Prerequisites 6

Understanding Versions 7

Model File Format and Versions 10

Lightweight Migration 12
Core Data Must Be Able to Infer the Mapping 12
Request Automatic Migration Using an Options Dictionary 13
Use a Migration Manager if Models Cannot Be Found Automatically 14

Mapping Overview 17
Mapping Model Objects 17
Creating a Mapping Model in Xcode 19

The Migration Process 20
Overview 20
Requirements for the Migration Process 20
Custom Entity Migration Policies 21
Three-Stage Migration 21

Initiating the Migration Process 23
Initiating the Migration Process 23
The Default Migration Process 24

Customizing the Migration Process 26
Is Migration Necessary 26
Initializing a Migration Manager 27
Performing a Migration 28
Multiple Passes—Dealing With Large Datasets 29

Migration and iCloud 30

2012-01-09 | Copyright © 2012 Apple Inc. All Rights Reserved.

2

baidu

NSMappingModel

包括default migration progress和custom migration progress.
二者的相同之处：均需要提供mapping model，entity migration policy(optional)；
二者的不同之处：后者需要自己控制version skew detection and migration bootstrapping

lightweight migration（不需要提供Mapping Model；不需要自己控制version skew detection and migration bootstrapping; 不需要执行custom migration code)

关于迁移的性能问题：
1. lightweight 是最佳选择。因为core data无需把数据加载到内存中来，迁移纯粹发生在sqlite内部
2. 对于default migration和custom migration来做，可以用multiple passes的方式来避免内存占用过大

Document Revision History 31

2012-01-09 | Copyright © 2012 Apple Inc. All Rights Reserved.

3

Contents

Figures and Listings

Understanding Versions 7
Figure 1-1 Recipes models “Version 1.0” 7
Figure 1-2 Recipes model “Version 1.1” 7
Figure 1-3 Recipes model “Version 2.0” 8

Model File Format and Versions 10
Figure 2-1 Initial version of the Core Recipes model 10
Figure 2-2 Version 2 of the Core Recipes model 11

Mapping Overview 17
Figure 4-1 Mapping model for versions 1-2 of the Core Recipes models 19

Initiating the Migration Process 23
Listing 6-1 Opening a store using automatic migration 24

Customizing the Migration Process 26
Listing 7-1 Checking whether migration is necessary 26
Listing 7-2 Initializing a Migration Manager 27
Listing 7-3 Performing a Migration 28

2012-01-09 | Copyright © 2012 Apple Inc. All Rights Reserved.

4

Core Data provides support for managing changes to a managed object model as your application evolves.

You can only open a Core Data store using the managed object model used to create it. Changing a model
will therefore make it incompatible with (and so unable to open) the stores it previously created. If you change
your model, you therefore need to change the data in existing stores to new version—changing the store
format is known as migration.

To migrate a store, you need both the version of the model used to create it, and the current version of the
model you want to migrate to. You can create a versioned model that contains more than one version of a
managed object model. Within the versioned model you mark one version as being the current version. Core
Data can then use this model to open persistent stores created using any of the model versions, and migrate
the stores to the current version. To help Core Data perform the migration, though, you may have to provide
information about how to map from one version of the model to another. This information may be in the form
of hints within the versioned model itself, or in a separate mapping model file that you create.

At a Glance
Typically, as it evolves from one version to another, numerous aspects of your application change: the classes
you implement, the user interface, the file format, and so on. You need to be aware of and in control of all
these aspects; there is no API that solves the problems associated with all these—for example Cocoa does not
provide a means to automatically update your user interface if you add a new attribute to an entity in your
managed object model. Core Data does not solve all the issues of how you roll out your application. It does,
though, provide support for a small—but important and non-trivial—subset of the tasks you must perform as
your application evolves.

 ● Model versioning allows you to specify and distinguish between different configurations of your schema.

There are two distinct views of versioning: your perspective as a developer, and Core Data’s perspective.
These may not always be the same. The differences are discussed in Understanding Versions (page 7).

The format of a versioned managed object model, and how you add a version to a model, is discussed in
Model File Format and Versions (page 10).

 ● Core Data needs to know how to map from the entities and properties in a source model to the entities
and properties in the destination model.

2012-01-09 | Copyright © 2012 Apple Inc. All Rights Reserved.

5

Core Data Model Versioning and Data Migration

In many cases, Core Data can infer the mapping from existing versions of the managed object model. This
is described in Lightweight Migration (page 12).

If you make changes to your models such that Core Data cannot infer the mapping from source to
destination, you need to create a mapping model. A mapping model parallels a managed object model,
specifying how to transform objects in the source into instances appropriate for the destination.

How you create a mapping model is discussed in Mapping Overview (page 17).

 ● Data migration allows you to convert data from one model (schema) to another, using mappings.

The migration process itself is discussed in The Migration Process (page 20).

How you perform a migration is discussed in Initiating the Migration Process (page 23).

You can also customize the migration process—that is, how you programmatically determine whether
migration is necessary; how you find the correct source and destination models and the appropriate
mapping model to initialize the migration manager; and then how you perform the migration.

You only customize the migration process if you want to initiate migration yourself. You might do this to,
for example, search locations other than the application’s main bundle for models or to deal with large
data sets by performing the migration in several passes using different mapping models.

How you can customize the process is described in Customizing the Migration Process (page 26).

 ● If you are using iCloud, there are some constraints on what migration you can perform.

If you are using iCloud, you must use lightweight migration. Other factors to be aware of are described in
Migration and iCloud (page 30).

Although Core Data makes versioning and migration easier than would typically otherwise be the case, these
processes are still non-trivial in effect. You still need to carefully consider the implications of releasing and
supporting different versions of your application.

Prerequisites
This document assumes that you are familiar with the Core Data architecture and the fundamentals of using
Core Data. You should be able to identify the parts of the Core Data stack and understand the roles of the
model, the managed object context, and the persistent store coordinator. You need to know how to create a
managed object model, how to create and programmatically interact with parts of the Core Data stack.

If you do not meet these requirements, you should first read the Core Data Programming Guide and related
materials. You are strongly encouraged also to work through the Core Data Utility Tutorial .

Core Data Model Versioning and Data Migration
Prerequisites

2012-01-09 | Copyright © 2012 Apple Inc. All Rights Reserved.

6

baidu

baidu

There are two distinct views of versioning: your perspective as a developer, and Core Data’s perspective. These
may not always be the same—consider the following models.

Figure 1-1 Recipes models “Version 1.0”

Recipe
 Attributes
cuisine
directions
name
 Relationships
chef
ingredients

Chef
 Attributes
name
training
 Relationships
recipes

Ingredient
 Attributes
amount
name
 Relationships
recipes

Figure 1-2 Recipes model “Version 1.1”

Recipe
 Attributes
cuisine
directions
name
 Relationships
chef
ingredients

Chef
 Attributes
name
training
 Relationships
recipes

Ingredient
 Attributes
amount
name
 Relationships
recipes

Recipe changes:
• Add validation rules
• Change User Info values
• Use custom class

2012-01-09 | Copyright © 2012 Apple Inc. All Rights Reserved.

7

Understanding Versions

Figure 1-3 Recipes model “Version 2.0”

Recipe
 Attributes
directions
name
rating
 Relationships
chef
cuisines
ingredients

Chef
 Attributes
firstName
lastName
 Relationships
recipes

Ingredient
 Attributes
amount
name
 Relationships
recipe

Cuisine
 Attributes
name
 Relationships
recipes

As a developer, your perspective is typically that a version is denoted by an identifier—a string or number,
such as “9A218”, “2.0.7”, or “Version 1.1”. To support this view, managed object models have a set of identifiers
(see versionIdentifiers)—typically for a single model you provide a single string (the attribute itself is a
set so that if models are merged all the identifiers can be preserved). How the identifier should be interpreted
is up to you, whether it represents the version number of the application, the version that was committed
prior to going on vacation, or the last submission before it stopped working.

Core Data, on the other hand, treats these identifiers simply as “hints”. To understand why, recall that the
format of a persistent store is dependent upon the model used to create it, and that to open a persistent store
you must have a model that is compatible with that used to create it. Consider then what would happen if
you changed the model but not the identifier—for example, if you kept the identifier the same but removed
one entity and added two others. To Core Data, the change in the schema is significant, the fact that the
identifier did not change is irrelevant.

Core Data’s perspective on versioning is that it is only interested in features of the model that affect persistence.
This means that for two models to be compatible:

 ● For each entity the following attributes must be equal: name, parent, isAbstract, and properties.

className, userInfo, and validation predicates are not compared.

 ● For each property in each entity, the following attributes must be equal: name, isOptional, isTransient,
isReadOnly, for attributes attributeType, and for relationships destinationEntity, minCount,
maxCount, deleteRule, and inverseRelationship.

userInfo and validation predicates are not compared.

Notice that Core Data ignores any identifiers you set. In the examples above, Core Data treats version 1.0 (Figure
1-1 (page 7)) and 1.1 (Figure 1-2 (page 7)) as being compatible.

Understanding Versions

2012-01-09 | Copyright © 2012 Apple Inc. All Rights Reserved.

8

baidu

baidu

baidu

Rather than enumerating through all the relevant parts of a model, Core Data creates a 32-byte hash digest
of the components which it compares for equality (see versionHash (NSEntityDescription) and
versionHash (NSPropertyDescription)). These hashes are included in a store’s metadata so that Core
Data can quickly determine whether the store format matches that of the managed object model it may use
to try to open the store. (When you attempt to open a store using a given model, Core Data compares the
version hashes of each of the entities in the store with those of the entities in the model, and if all are the same
then the store is opened.) There is typically no reason for you to be interested in the value of a hash.

There may, however, be some situations in which you have two versions of a model that Core Data would
normally treat as equivalent that you want to be recognized as being different. For example, you might change
the name of the class used to represent an entity, or more subtly you might keep the model the same but
change the internal format of an attribute such as a BLOB—this is irrelevant to Core Data, but it is crucial for
the integrity of your data. To support this, Core Data allows you to set a hash modifier for an entity or property
see versionHashModifier (NSEntityDescription) and versionHashModifier
(NSPropertyDescription).

In the examples above, if you wanted to force Core Data to recognize that “Version 1.0” (Figure 1-1 (page 7))
and “Version 1.1” (Figure 1-2 (page 7)) of your models are different, you could set an entity modifier for the
Recipe entity in the second model to change the version hash Core Data creates.

Understanding Versions

2012-01-09 | Copyright © 2012 Apple Inc. All Rights Reserved.

9

baidu

baidu

baidu

A managed object model that supports versioning is represented in the filesystem by a .xcdatamodeld
document. An .xcdatamodeld document is a file package (see Document Packages) that groups versions of
the model, each represented by an individual .xcdatamodel file, and an Info.plist file that contains the
version information.

The model is compiled into a runtime format—a file package with a .momd extension that contains individually
compiled model files with a .mom extension. You load the .momd model bundle using
NSManagedObjectModel’s initWithContentsOfURL:.

To add a version to a model, you start with a model such as that illustrated in Figure 2-1.

Figure 2-1 Initial version of the Core Recipes model

2012-01-09 | Copyright © 2012 Apple Inc. All Rights Reserved.

10

Model File Format and Versions

baidu

baidu

To add a version, select Editor > Add Model Version. In the sheet that appears, you enter the name of the new
model version and select the model on which it should be based.

To set the new model as the current version of the model, select the .xcdatamodeld document in the project
navigator, then select the new model in the pop-up menu in the Versioned Core Data Model area in the
Attributes Inspector (see Figure 2-2).

Figure 2-2 Version 2 of the Core Recipes model

Model File Format and Versions

2012-01-09 | Copyright © 2012 Apple Inc. All Rights Reserved.

11

If you just make simple changes to your model (such as adding a new attribute to an entity), Core Data can
perform automatic data migration, referred to as lightweightmigration. Lightweight migration is fundamentally
the same as ordinary migration, except that instead of you providing a mapping model (as described in Mapping
Overview (page 17)), Core Data infers one from differences between the source and destination managed
object models.

Lightweight migration is especially convenient during early stages of application development, when you may
be changing your managed object model frequently, but you don’t want to have to keep regenerating test
data. You can migrate existing data without having to create a custom mapping model for every model version
used to create a store that would need to be migrated.

A further advantage of using lightweight migration—beyond the fact that you don’t need to create the mapping
model yourself—is that if you use an inferred model and you use the SQLite store, then Core Data can perform
the migration in situ (solely by issuing SQL statements). This can represent a significant performance benefit
as Core Data doesn’t have to load any of your data. Because of this, you are encouraged to use inferred migration
where possible, even if the mapping model you might create yourself would be trivial.

Core Data Must Be Able to Infer the Mapping
To perform automatic lightweight migration, Core Data needs to be able to find the source and destination
managed object models itself at runtime. Core Data looks for models in the bundles returned by NSBundle’s
allBundles and allFrameworks methods. If you store your models elsewhere, you must follow the steps
described in Use a Migration Manager if Models Cannot Be Found Automatically (page 14). Core Data must
then analyze the schema changes to persistent entities and properties and generate an inferred mapping
model.

For Core Data to be able to generate an inferred mapping model, changes must fit an obvious migration
pattern, for example:

 ● Simple addition of a new attribute

 ● Removal of an attribute

 ● A non-optional attribute becoming optional

 ● An optional attribute becoming non-optional, and defining a default value

2012-01-09 | Copyright © 2012 Apple Inc. All Rights Reserved.

12

Lightweight Migration

baidu

baidu

baidu

baidu
light weight migration的优点

 ● Renaming an entity or property

If you rename an entity or property, you can set the renaming identifier in the destination model to the name
of the corresponding property or entity in the source model. You set the renaming identifier in the managed
object model using the Xcode Data Modeling tool’s property inspector (for either an entity or a property). For
example, you can:

 ● Rename a Car entity to Automobile

 ● Rename a Car’s color attribute to paintColor

The renaming identifier creates a “canonical name,” so you should set the renaming identifier to the name of
the property in the source model (unless that property already has a renaming identifier). This means you can
rename a property in version 2 of a model then rename it again version 3, and the renaming will work correctly
going from version 2 to version 3 or from version 1 to version 3.

In addition, Core Data supports:

 ● Adding relationships and changing the type of relationship

 ● You can add a new relationship or delete an existing relationship.

 ● Renaming a relationship (by using a renaming identifier, just like an attribute)

 ● Changing a relationship from a to-one to a to-many, or a non-ordered to-many to ordered (and
visa-versa)

 ● Changing the entity hierarchy

 ● You can add, remove, rename entities

 ● You can create a new parent or child entity and move properties up and down the entity hierarchy

 ● You can move entities out of a hierarchy

You cannot , however, merge entity hierarchies; if two existing entities do not share a common parent
in the source, they cannot share a common parent in the destination

Request Automatic Migration Using an Options Dictionary
You request automatic lightweight migration using the options dictionary you pass in
addPersistentStoreWithType:configuration:URL:options:error:, by setting values corresponding
to both the NSMigratePersistentStoresAutomaticallyOption and the
NSInferMappingModelAutomaticallyOption keys to YES:

NSError *error = nil;

Lightweight Migration
Request Automatic Migration Using an Options Dictionary

2012-01-09 | Copyright © 2012 Apple Inc. All Rights Reserved.

13

baidu

baidu

NSURL *storeURL = <#The URL of a persistent store#>;

NSPersistentStoreCoordinator *psc = <#The coordinator#>;

NSDictionary *options = [NSDictionary dictionaryWithObjectsAndKeys:

[NSNumber numberWithBool:YES], NSMigratePersistentStoresAutomaticallyOption,

[NSNumber numberWithBool:YES], NSInferMappingModelAutomaticallyOption, nil];

BOOL success = [psc addPersistentStoreWithType:<#Store type#>

configuration:<#Configuration or nil#> URL:storeURL

options:options error:&error];

if (!success) {

// Handle the error.

}

If you want to determine in advance whether Core Data can infer the mapping between the source and
destination models without actually doing the work of migration, you can use NSMappingModel’s
inferredMappingModelForSourceModel:destinationModel:error:method. This returns the inferred
model if Core Data is able to create it, otherwise nil.

Use a Migration Manager if Models Cannot Be Found Automatically
To perform automatic migration, Core Data has to be able to find the source and destination managed object
models itself at runtime (see Core Data Must Be Able to Infer the Mapping (page 12)). If you need to put your
models in the locations not checked by automatic discovery, then you need to generate the inferred model
and initiate the migration yourself using a migration manager (an instance of NSMigrationManager).

The following code sample illustrates how to generate an inferred model and initiate the migration using a
migration manager. The code assumes that you have implemented two methods—sourceModel and
destinationModel—that return the source and destination managed object models respectively.

- (BOOL)migrateStore:(NSURL *)storeURL toVersionTwoStore:(NSURL *)dstStoreURL
error:(NSError **)outError {

// Try to get an inferred mapping model.

NSMappingModel *mappingModel =

[NSMappingModel inferredMappingModelForSourceModel:[self sourceModel]

destinationModel:[self destinationModel] error:outError];

Lightweight Migration
Use a Migration Manager if Models Cannot Be Found Automatically

2012-01-09 | Copyright © 2012 Apple Inc. All Rights Reserved.

14

baidu

// If Core Data cannot create an inferred mapping model, return NO.

if (!mappingModel) {

return NO;

}

// Create a migration manager to perform the migration.

NSMigrationManager *manager = [[NSMigrationManager alloc]

initWithSourceModel:[self sourceModel] destinationModel:[self
destinationModel]];

BOOL success = [manager migrateStoreFromURL:storeURL type:NSSQLiteStoreType

options:nil withMappingModel:mappingModel toDestinationURL:dstStoreURL

destinationType:NSSQLiteStoreType destinationOptions:nil error:outError];

return success;

}

Lightweight Migration
Use a Migration Manager if Models Cannot Be Found Automatically

2012-01-09 | Copyright © 2012 Apple Inc. All Rights Reserved.

15

Note: Prior to OS X v10.7 and iOS 4, you need to use a store-specific migration manager to perform
lightweight migration. You get the migration manager for a given persistent store type using
migrationManagerClass, as illustrated in the following example.

- (BOOL)migrateStore:(NSURL *)storeURL toVersionTwoStore:(NSURL *)dstStoreURL
error:(NSError **)outError {

// Try to get an inferred mapping model.

NSMappingModel *mappingModel =

[NSMappingModel inferredMappingModelForSourceModel:[self sourceModel]

destinationModel:[self destinationModel] error:outError];

// If Core Data cannot create an inferred mapping model, return NO.

if (!mappingModel) {

return NO;

}

// Get the migration manager class to perform the migration.

NSValue *classValue =

[[NSPersistentStoreCoordinator registeredStoreTypes]
objectForKey:NSSQLiteStoreType];

Class sqliteStoreClass = (Class)[classValue pointerValue];

Class sqliteStoreMigrationManagerClass = [sqliteStoreClass
migrationManagerClass];

NSMigrationManager *manager = [[sqliteStoreMigrationManagerClass alloc]

initWithSourceModel:[self sourceModel] destinationModel:[self
destinationModel]];

BOOL success = [manager migrateStoreFromURL:storeURL type:NSSQLiteStoreType

options:nil withMappingModel:mappingModel toDestinationURL:dstStoreURL

destinationType:NSSQLiteStoreType destinationOptions:nil error:outError];

return success;

}

Lightweight Migration
Use a Migration Manager if Models Cannot Be Found Automatically

2012-01-09 | Copyright © 2012 Apple Inc. All Rights Reserved.

16

In many cases, Core Data may be able to infer how to transform data from one schema to another (see
Lightweight Migration (page 12). If Core Data cannot infer the mapping from one model to another, you need
a definition of how to perform the transformation. This information is captured in a mapping model.

A mapping model is a collection of objects that specifies the transformations that are required to migrate part
of a store from one version of your model to another (for example, that one entity is renamed, an attribute is
added to another, and a third split into two). You typically create a mapping model in Xcode. Much as the
managed object model editor allows you to graphically create the model, the mapping model editor allows
you to customize the mappings between the source and destination entities and properties.

Mapping Model Objects
Like a managed object model, a mapping model is a collection of objects. Mapping model classes parallel the
managed object model classes—there are mapping classes for a model, an entity, and a property
(NSMappingModel, NSEntityMapping, and NSPropertyMapping respectively).

 ● An instance of NSEntityMapping specifies a source entity, a destination entity (the type of object to
create to correspond to the source object) and mapping type (add, remove, copy as is, or transform).

 ● An instance of NSPropertyMapping specifies the name of the property in the source and in the destination
entity, and a value expression to create the value for the destination property.

The model does not contain instances of NSEntityMigrationPolicy or any of its subclasses, however
amongst other attributes instance of NSEntityMapping can specify the name of an entity migration policy
class (a subclass of NSEntityMigrationPolicy) to use to customize the migration. For more about entity
migration policy classes, see Custom Entity Migration Policies (page 21).

You can handle simple property migration changes by configuring a custom value expression on a property
mapping directly in the mapping model editor in Xcode. For example, you can:

 ● Migrate data from one attribute to another.

To rename amount to totalCost, enter the custom value expression for the totalCostproperty mapping
as $source.amount.

 ● Apply a value transformation on a property.

2012-01-09 | Copyright © 2012 Apple Inc. All Rights Reserved.

17

Mapping Overview

baidu

baidu

baidu

baidu

NSPropertyMapping包含attriubte mappins和relationship mappinigs

To convert temperature from Fahrenheit to Celsius, use the custom value expression
($source.temperature - 32.0) / 1.8.

 ● Migrate objects from one relationship to another.

To rename trades to transactions, enter the custom value expression for the transactions property
mapping as FUNCTION($manager,
"destinationInstancesForEntityMappingNamed:sourceInstances:", "TradeToTrade",
$source.trades). (This assumes the entity mapping that migrates Trade instances is named
TradeToTrade.)

There are six predefined keys you can reference in custom value expressions. To access these keys in source
code, you use the constants as declared. To access them in custom value expression strings in the mapping
model editor in Xcode, follow the syntax rules outlined in the predicate format string syntax guide and refer
to them as:

NSMigrationManagerKey: $manager

NSMigrationSourceObjectKey: $source

NSMigrationDestinationObjectKey: $destination

NSMigrationEntityMappingKey: $entityMapping

NSMigrationPropertyMappingKey: $propertyMapping

NSMigrationEntityPolicyKey: $entityPolicy

Mapping Overview
Mapping Model Objects

2012-01-09 | Copyright © 2012 Apple Inc. All Rights Reserved.

18

baidu

Creating a Mapping Model in Xcode
From the File menu, you select New File and in the New File pane select Design > Mapping Model. In the
following pane, you select the source and destination models. When you click Finish, Xcode creates a new
mapping model that contains as many default mappings as it can deduce from the source and destination.
For example, given the model files shown in Figure 1-1 (page 7) and Figure 1-2 (page 7), Xcode creates a
mapping model as shown in Figure 4-1.

Figure 4-1 Mapping model for versions 1-2 of the Core Recipes models

Reserved words in custom value expressions: If you use a custom value expression, you must
escape reserved words such as SIZE, FIRST, and LAST using a # (for example, $source.#size).

Mapping Overview
Creating a Mapping Model in Xcode

2012-01-09 | Copyright © 2012 Apple Inc. All Rights Reserved.

19

During migration, Core Data creates two stacks, one for the source store and one for the destination store.
Core Data then fetches objects from the source stack and inserts the appropriate corresponding objects into
the destination stack. Note that Core Data must re-create objects in the new stack.

Overview
Recall that stores are bound to their models. Migration is required when the model doesn't match the store.
There are two areas where you get default functionality and hooks for customizing the default behavior:

 ● When detecting version skew and initializing the migration process.

 ● When performing the migration process.

To perform the migration process requires two Core Data stacks—which are automatically created for you—one
for the source store, one for the destination store. The migration process is performed in 3 stages, copying
objects from one stack to another.

Requirements for the Migration Process
Migration of a persistent store is performed by an instance of NSMigrationManager. To migrate a store, the
migration manager requires several things:

 ● The managed object model for the destination store.

This is the persistent store coordinator’s model.

 ● A managed object model that it can use to open the existing store.

 ● Typically, a mapping model that defines a transformation from the source (the store’s) model to the
destination model.

You don’t need a mapping model if you’re able to use lightweight migration—see Lightweight
Migration (page 12).

2012-01-09 | Copyright © 2012 Apple Inc. All Rights Reserved.

20

The Migration Process

baidu

baidu

baidu

You can specify custom entity migration policy classes to customize the migration of individual entities. You
specify custom migration policy classes in the mapping model (note the “Custom Entity Policy Name” text field
in Figure 4-1 (page 19)).

Custom Entity Migration Policies
If your new model simply adds properties or entities to your existing model, there may be no need to write
any custom code. If the transformation is more complex, however, you might need to create a subclass of
NSEntityMigrationPolicy to perform the transformation; for example:

 ● If you have a Person entity that also includes address information that you want to split into a separate
Address entity, but you want to ensure uniqueness of each Address.

 ● If you have an attribute that encodes data in a string format that you want to change to a binary
representation.

The methods you override in a custom migration policy correspond to the different phases of the migration
process—these are called out in the description of the process given in Three-Stage Migration.

Three-Stage Migration
The migration process itself is in three stages. It uses a copy of the source and destination models in which
the validation rules are disabled and the class of all entities is changed to NSManagedObject.

To perform the migration, Core Data sets up two stacks, one for the source store and one for the destination
store. Core Data then processes each entity mapping in the mapping model in turn. It fetches objects of the
current entity into the source stack, creates the corresponding objects in the destination stack, then recreates
relationships between destination objects in a second stage, before finally applying validation constraints in
the final stage.

Before a cycle starts, the entity migration policy responsible for the current entity is sent a
beginEntityMapping:manager:error:message. You can override this method to perform any initialization
the policy requires. The process then proceeds as follows:

1. Create destination instances based on source instances.

At the beginning of this phase, the entity migration policy is sent a
createDestinationInstancesForSourceInstance:entityMapping:manager:error:message;
at the end it is sent a endInstanceCreationForEntityMapping:manager:error: message.

In this stage, only attributes (not relationships) are set in the destination objects.

The Migration Process
Custom Entity Migration Policies

2012-01-09 | Copyright © 2012 Apple Inc. All Rights Reserved.

21

baidu

baidu

baidu

baidu

baidu

baidu

Instances of the source entity are fetched. For each instance, appropriate instances of the destination
entity are created (typically there is only one) and their attributes populated (for trivial cases, name =
$source.name). A record is kept of the instances per entity mapping since this may be useful in the
second stage.

2. Recreate relationships.

At the beginning of this phase, the entity migration policy is sent a
createRelationshipsForDestinationInstance:entityMapping:manager:error: message;
at the end it is sent a endRelationshipCreationForEntityMapping:manager:error: message.

For each entity mapping (in order), for each destination instance created in the first step any relationships
are recreated.

3. Validate and save.

In this phase, the entity migration policy is sent a
performCustomValidationForEntityMapping:manager:error: message.

Validation rules in the destination model are applied to ensure data integrity and consistency, and then
the store is saved.

At the end of the cycle, the entity migration policy is sent an endEntityMapping:manager:error:message.
You can override this method to perform any clean-up the policy needs to do.

Note that Core Data cannot simply fetch objects into the source stack and insert them into the destination
stack, the objects must be re-created in the new stack. Core Data maintains “association tables” which tell it
which object in the destination store is the migrated version of which object in the source store, and vice-versa.
Moreover, because it doesn't have a means to flush the contexts it is working with, you may accumulate many
objects in the migration manager as the migration progresses. If this presents a significant memory overhead
and hence gives rise to performance problems, you can customize the process as described in Multiple
Passes—Dealing With Large Datasets (page 29).

The Migration Process
Three-Stage Migration

2012-01-09 | Copyright © 2012 Apple Inc. All Rights Reserved.

22

baidu

baidu

baidu

This chapter describes how to initiate the migration process and how the default migration process works. It
does not describe customizing the migration process—this is described in Customizing the Migration
Process (page 26).

Initiating the Migration Process
When you initialize a persistent store coordinator, you assign to it a managed object model (see
initWithManagedObjectModel:); the coordinator uses that model to open persistent stores. You open a
persistent store using addPersistentStoreWithType:configuration:URL:options:error:. How
you use this method, however, depends on whether your application uses model versioning and on how you
choose to support migration—whether you choose to use the default migration process or custom version
skew detection and migration bootstrapping. The following list describes different scenarios and what you
should do in each:

 ● Your application does not support versioning

You use addPersistentStoreWithType:configuration:URL:options:error: directly.

If for some reason the coordinator’s model is not compatible with the store schema (that is, the version
hashes current model’s entities do not equal those in the store’s metadata), the coordinator detects this,
generates an error, and addPersistentStoreWithType:configuration:URL:options:error:
returns NO. You must deal with this error appropriately.

 ● Your application does support versioning and you choose to use either the lightweight or the default
migration process

You use addPersistentStoreWithType:configuration:URL:options:error: as described in
Lightweight Migration (page 12) and The Default Migration Process (page 24) respectively.

The fundamental difference from the non-versioned approach is that you instruct the coordinator to
automatically migrate the store to the current model version by adding an entry to the options dictionary
where the key is NSMigratePersistentStoresAutomaticallyOption and the value is an NSNumber
object that represents YES.

 ● Your application does support versioning and you choose to use custom version skew detection and
migration bootstrapping

2012-01-09 | Copyright © 2012 Apple Inc. All Rights Reserved.

23

Initiating the Migration Process

Before opening a store you useisConfiguration:compatibleWithStoreMetadata: to check whether
its schema is compatible with the coordinator’s model:

 ● If it is, you use addPersistentStoreWithType:configuration:URL:options:error: to open
the store directly;

 ● If it is not, you must migrate the store first then open it (again using
addPersistentStoreWithType:configuration:URL:options:error:).

You could simply use addPersistentStoreWithType:configuration:URL:options:error: to
check whether migration is required, however this is a heavyweight operation and inefficient for this
purpose.

It is important to realize that there are two orthogonal concepts:

1. You can execute custom code during the migration.

2. You can have custom code for version skew detection and migration bootstrapping.

The migration policy classes allow you to customize the migration of entities and properties in a number of
ways, and these are typically all you need. You might, however, use custom skew detection and migration
bootstrapping so that you can take control of the migration process. For example, if you have very large stores
you could set up a migration manager with the two data models, and then use a series of mapping models to
migrate your data into your destination store (if you use the same destination URL for each invocation, Core
Data adds new objects to the existing store). This allows the framework (and you) to limit the amount of data
in memory during the conversion process.

The Default Migration Process
To open a store and perform migration (if necessary), you use
addPersistentStoreWithType:configuration:URL:options:error: and add to the options dictionary
an entry where the key is NSMigratePersistentStoresAutomaticallyOption and the value is an
NSNumber object that represents YES. Your code looks similar to the following example:

Listing 6-1 Opening a store using automatic migration

NSError *error;

NSPersistentStoreCoordinator *psc = <#The coordinator#>;

NSURL *storeURL = <#The URL of a persistent store#>;

NSDictionary *optionsDictionary =

[NSDictionary dictionaryWithObject:[NSNumber numberWithBool:YES]

Initiating the Migration Process
The Default Migration Process

2012-01-09 | Copyright © 2012 Apple Inc. All Rights Reserved.

24

baidu

baidu

baidu

baidu

baidu

baidu

1. 可在迁移过程中执行自定制的代码
2. 可以自定制版本检测和迁移引导程序

default migration 和 custom migration的唯一区别

forKey:NSMigratePersistentStoresAutomaticallyOption];

NSPersistentStore *store = [psc addPersistentStoreWithType:<#Store type#>

configuration:<#Configuration or nil#>

URL:storeURL

options:optionsDictionary

error:&error];

If the migration proceeds successfully, the existing store at storeURL is renamed with a “~” suffix before any
file extension and the migrated store saved to storeURL.

In its implementation of addPersistentStoreWithType:configuration:URL:options:error: Core
Data does the following:

1. Tries to find a managed object model that it can use to open the store.

Core Data searches through your application’s resources for models and tests each in turn. If it cannot find
a suitable model, Core Data returns nil and a suitable error.

2. Tries to find a mapping model that maps from the managed object model for the existing store to that in
use by the persistent store coordinator.

Core Data searches through your application’s resources for available mapping models and tests each in
turn. If it cannot find a suitable mapping, Core Data returns NO and a suitable error.

Note that you must have created a suitable mapping model in order for this phase to succeed.

3. Creates instances of the migration policy objects required by the mapping model.

Note that even if you use the default migration process you can customize the migration itself using custom
migration policy classes.

Initiating the Migration Process
The Default Migration Process

2012-01-09 | Copyright © 2012 Apple Inc. All Rights Reserved.

25

baidu

baidu

baidu

baidu

baidu

baidu

baidu

You only customize the migration process if you want to initiate migration yourself. You might do this to, for
example, to search for models in locations other than the application’s main bundle, or to deal with large data
sets by performing the migration in several passes using different mapping models (see Multiple Passes—Dealing
With Large Datasets (page 29)).

Is Migration Necessary
Before you initiate a migration process, you should first determine whether it is necessary. You can check with
NSManagedObjectModel’s isConfiguration:compatibleWithStoreMetadata: as illustrated in Listing
7-1 (page 26).

Listing 7-1 Checking whether migration is necessary

NSPersistentStoreCoordinator *psc = /* get a coordinator */ ;

NSString *sourceStoreType = /* type for the source store, or nil if not known */
;

NSURL *sourceStoreURL = /* URL for the source store */ ;

NSError *error = nil;

NSDictionary *sourceMetadata =

[NSPersistentStoreCoordinator metadataForPersistentStoreOfType:sourceStoreType

URL:sourceStoreURL

error:&error];

if (sourceMetadata == nil) {

// deal with error

}

NSString *configuration = /* name of configuration, or nil */ ;

NSManagedObjectModel *destinationModel = [psc managedObjectModel];

BOOL pscCompatibile = [destinationModel

2012-01-09 | Copyright © 2012 Apple Inc. All Rights Reserved.

26

Customizing the Migration Process

baidu

isConfiguration:configuration

compatibleWithStoreMetadata:sourceMetadata];

if (pscCompatibile) {

// no need to migrate

}

Initializing a Migration Manager
You initialize a migration manager using initWithSourceModel:destinationModel:; you therefore first
need to find the appropriate model for the store. You get the model for the store using
NSManagedObjectModel’s mergedModelFromBundles:forStoreMetadata:. If this returns a suitable
model, you can create the migration manager as illustrated in Listing 7-2 (page 27) (this code fragment
continues from Listing 7-1 (page 26)).

Listing 7-2 Initializing a Migration Manager

NSArray *bundlesForSourceModel = /* an array of bundles, or nil for the main bundle
*/ ;

NSManagedObjectModel *sourceModel =

[NSManagedObjectModel mergedModelFromBundles:bundlesForSourceModel

forStoreMetadata:sourceMetadata];

if (sourceModel == nil) {

// deal with error

}

MyMigrationManager *migrationManager =

[[MyMigrationManager alloc]

initWithSourceModel:sourceModel

destinationModel:destinationModel];

Customizing the Migration Process
Initializing a Migration Manager

2012-01-09 | Copyright © 2012 Apple Inc. All Rights Reserved.

27

Performing a Migration
You migrate a store using NSMigrationManager’s
migrateStoreFromURL:type:options:withMappingModel:toDestinationURL:destinationType:destinationOptions:error:.
To use this method you need to marshal a number of parameters; most are straightforward, the only one that
requires some work is the discovery of the appropriate mapping model (which you can retrieve using
NSMappingModel’smappingModelFromBundles:forSourceModel:destinationModel:method). This
is illustrated in Listing 7-3 (page 28) (a continuation of the example shown in Listing 7-2 (page 27)).

Listing 7-3 Performing a Migration

NSArray *bundlesForMappingModel = /* an array of bundles, or nil for the main
bundle */ ;

NSError *error = nil;

NSMappingModel *mappingModel =

[NSMappingModel

mappingModelFromBundles:bundlesForMappingModel

forSourceModel:sourceModel

destinationModel:destinationModel];

if (mappingModel == nil) {

// deal with the error

}

NSDictionary *sourceStoreOptions = /* options for the source store */ ;

NSURL *destinationStoreURL = /* URL for the destination store */ ;

NSString *destinationStoreType = /* type for the destination store */ ;

NSDictionary *destinationStoreOptions = /* options for the destination store */ ;

BOOL ok = [migrationManager migrateStoreFromURL:sourceStoreURL

type:sourceStoreType

options:sourceStoreOptions

withMappingModel:mappingModel

toDestinationURL:destinationStoreURL

destinationType:destinationStoreType

destinationOptions:destinationStoreOptions

Customizing the Migration Process
Performing a Migration

2012-01-09 | Copyright © 2012 Apple Inc. All Rights Reserved.

28

baidu

error:&error];

Multiple Passes—Dealing With Large Datasets
The basic approach shown above is to have the migration manager take two models, and then iterate over
the steps (mappings) provided in a mapping model to move the data from one side to the next. Because Core
Data performs a "three stage" migration—where it creates all of the data first, and then relates the data in a
second stage—it must maintain “association tables" (which tell it which object in the destination store is the
migrated version of which object in the source store, and vice-versa). Further, because it doesn't have a means
to flush the contexts it is working with, it means you'll accumulate many objects in the migration manager as
the migration progresses.

In order to address this, the mapping model is given as a parameter of the
migrateStoreFromURL:type:options:withMappingModel:toDestinationURL:destinationType:destinationOptions:error:
call itself. What this means is that if you can segregate parts of your graph (as far as mappings are concerned)
and create them in separate mapping models, you could do the following:

1. Get the source and destination data models

2. Create a migration manager with them

3. Find all of your mapping models, and put them into an array (in some defined order, if necessary)

4. Loop through the array, and call
migrateStoreFromURL:type:options:withMappingModel:toDestinationURL:destinationType:destinationOptions:error:
with each of the mappings

This allows you to migrate "chunks" of data at a time, while not pulling in all of the data at once.

From a "tracking/showing progress” point of view, that basically just creates another layer to work from, so
you'd be able to determine percentage complete based on number of mapping models to iterate through
(and then further on the number of entity mappings in a model you've already gone through).

Customizing the Migration Process
Multiple Passes—Dealing With Large Datasets

2012-01-09 | Copyright © 2012 Apple Inc. All Rights Reserved.

29

If you are using iCloud, you can only migrate the contents of a store using automatic lightweight migration.
To migrate a persistent store that is in iCloud, you add the store to a persistent store coordinator using
addPersistentStoreWithType:configuration:URL:options:error: and pass at least the following
options in the options dictionary:

NSDictionary *optionsDictionary = [[NSDictionary alloc] initWithObjectsAndKeys:

[NSNumber numberWithBool:YES], NSInferMappingModelAutomaticallyOption,

[NSNumber numberWithBool:YES], NSMigratePersistentStoresAutomaticallyOption,

<#Ubiquitous content name#>, NSPersistentStoreUbiquitousContentNameKey, nil];

Changes to a store are recorded and preserved independently for each model version that is associated with
a given NSPersistentStoreUbiquitousContentNameKey. A persistent store configured with a given
NSPersistentStoreUbiquitousContentNameKey only syncs data with a store on another device data if
the model versions match.

If you migrate a persistent store configured with a NSPersistentStoreUbiquitousContentNameKey
option to a new model version, the store’s history of changes originating from the current device will also be
migrated and then merged with any other devices configured with that new model version. Any changes from
stores using the new version are also merged in. Existing changes can not , however, be migrated to a new
model version if the migration is performed using a custom mapping model.

2012-01-09 | Copyright © 2012 Apple Inc. All Rights Reserved.

30

Migration and iCloud

This table describes the changes to Core Data Model Versioning and Data Migration Programming Guide .

NotesDate

Updated to describe use of migration with iCloud.2012-01-09

Added further details to the section on Mapping Model Objects.2010-02-24

Added an article to describe the lightweight migration feature.2009-06-04

First version for iOS.2009-03-05

Added a note about migrating stores from OS X v10.4 (Tiger).2008-02-08

New document that describes managed object model versioning and
Core Data migration.

2007-05-18

2012-01-09 | Copyright © 2012 Apple Inc. All Rights Reserved.

31

Document Revision History

Apple Inc.
Copyright © 2012 Apple Inc.
All rights reserved.

No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in any
form or by any means, mechanical, electronic,
photocopying, recording, or otherwise, without
prior written permission of Apple Inc., with the
following exceptions: Any person is hereby
authorized to store documentation on a single
computer or device for personal use only and to
print copies of documentation for personal use
provided that the documentation contains
Apple’s copyright notice.

No licenses, express or implied, are granted with
respect to any of the technology described in this
document. Apple retains all intellectual property
rights associated with the technology described
in this document. This document is intended to
assist application developers to develop
applications only for Apple-branded products.

Apple Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010

Apple, the Apple logo, Cocoa, OS X, Tiger, and
Xcode are trademarks of Apple Inc., registered in
the U.S. and other countries.

iCloud is a service mark of Apple Inc., registered
in the U.S. and other countries.

IOS is a trademark or registered trademark of
Cisco in the U.S. and other countries and is used
under license.

APPLE MAKES NO WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED, WITH RESPECT TO THIS
DOCUMENT, ITS QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS FOR A PARTICULAR
PURPOSE. AS A RESULT, THIS DOCUMENT IS PROVIDED
“AS IS,” AND YOU, THE READER, ARE ASSUMING THE
ENTIRE RISK AS TO ITS QUALITY AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE FOR DIRECT,
INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL
DAMAGES RESULTING FROM ANY DEFECT, ERROR OR
INACCURACY IN THIS DOCUMENT, even if advised of
the possibility of such damages.

Some jurisdictions do not allow the exclusion of
implied warranties or liability, so the above exclusion
may not apply to you.

	Core Data Model Versioning and Data Migration Programming Guide
	Contents
	Figures and Listings
	Introduction
	Understanding Versions
	Model File Format and Versions
	Lightweight Migration
	Core Data Must Be Able to Infer the Mapping
	Request Automatic Migration Using an Options Dictionary
	Use a Migration Manager if Models Cannot Be Found Automatically

	Mapping Overview
	Mapping Model Objects
	Creating a Mapping Model in Xcode

	The Migration Process
	Overview
	Requirements for the Migration Process
	Custom Entity Migration Policies
	Three-Stage Migration

	Initiating the Migration Process
	Initiating the Migration Process
	The Default Migration Process

	Customizing the Migration Process
	Is Migration Necessary
	Initializing a Migration Manager
	Performing a Migration
	Multiple Passes—Dealing With Large Datasets

	Migration and iCloud
	Revision History

