
1

OS:  Processes vs. Threads

CIT 595
Spring 2010

Process
A process is a name given to a program instance that 
has been loaded into memory and managed by the 
operating system 

Process address space is generally organized into 
code, data (static/global), heap, and stack segments

Every process in execution works with:

Registers: PC, Working Registers

CIT 595 2

Registers: PC, Working Registers

Call stack (Stack Pointer Reference)

Process Activity

As process executes over time it can be doing either of 
the activities or is in following states :

State/Activity DescriptionState/Activity Description

new Process is being created

running Instructions are being executed on the processor

waiting/blocked Process is waiting for some event to occur

ready Process is waiting to use the processor

terminated Process has finished execution

CIT 595 3

Note: state names vary across different OS 

terminated Process has finished execution

State Diagram of a Process Activity/State

CIT 595 4

Note: In uniprocessor system, only one process can be in 
running state while many processes can be in ready and 
waiting states



2

Process Creation
A process can create several other process a.k.a child or 
sub processes

Exploit the ability of the system to concurrently execute
E.g. gcc program invokes different processes for the compiler,  
assembler and linkerassembler, and linker

Each process could get its resources directly from OS
Can restrict resources to subset of parent’s process

Prevent overloading of system with too many children

The new process gets its own space in memory
Parent and child processes address space are still different

CIT 595 5

Parent and child processes address space are still different 

Because parent and child are isolated, they can 
communicate only via system calls

Process Management
OS maintains a data structure for each process  called Process   
Control Block (PCB)

Information associated with each PCB:
Process state: e.g. ready, or waiting etc.

Program counter: address of next instruction

CPU registers: PC, working registers, stack pointer, condition code

CPU scheduling information: scheduling order and priority 

Memory-management information: page table/segment table pointers

CIT 595 6

Memory management information: page table/segment table pointers

Accounting information: book keeping info e.g. amt CPU used

I/O status information: list of I/O devices allocated to this process

Ready Queue

Processes resident in main memory and that in ready
state are kept in a ready queue

Process waits in the ready queue until selected

U l t i t it ill t ll b tUnless a process terminates, it will eventually be put 
back into a ready queue 

CIT 595 7

Similarly OS keeps device queues for processes waiting for I/O

Process Scheduling

Idea of multi-tasking or multiprogramming

Realize that process has cpu-burst and I/O burst cycle
When I/O burst CPU idleWhen I/O burst, CPU idle
Exploit the idleness to better achieve parallel tasking

On Uniprocessor system switch between processes so fast 
to give an illusion of parallelism

Determine which process should be next in line for the 
CPU

CIT 595 8

Selects from among the processes that are ready to execute 
(more on scheduling algorithms later)



3

Non-Preemptive vs. Preemptive

A process can give up CPU in two ways

Non-preemptive: A process voluntarily gives up CPU
I/O request 

Process is blocked, then when request ready it is put back into 
ready queue

A process creates a new child/sub process (more later)
Finished Instructions to execute (Process termination)

PCB and resources assigned are de-allocated

Preemptive: A process is forced to give up the CPU

CIT 595 9

Interrupted due to higher priority process
Each process has fixed time-slice to use CPU

Multithreading

Multithreading a program appears to do more than 
one thing at a time

The idea of Multithreading is same asThe idea of Multithreading is same as 
Multiprogramming i.e. multitasking but within a single 
process

Multiprogramming is multitasking across different process

E.g. A word processing program has separate 
threads:

CIT 595 10

threads:
One for displaying graphics
Other for reading in keystrokes from the user
Another to perform spelling and grammar checking in the 
background

Why do Multithreading ?

A process includes many things:
An address space (defining all the code and data pages)
OS descriptors of resources allocated (e.g., open files)
Execution state (PC SP regs etc)Execution state (PC, SP, regs, etc).

Creating a new process is costly because of all of the 
data structures that must be allocated and initialized

Communicating between processes is costly because 
t i ti th h th OS

CIT 595 11

most communication goes through the OS
Inter-Process Communication (IPC)
Overhead of system calls and copying data

Multithreading (contd..)
Allow process to be subdivided into different 
threads of control 

A thread is the smallest schedulable unit in 
multithreading

A thread in execution works with
thread ID
Registers (program counter and working register set)
Stack (for procedure call parameters, local variables 
etc.)

A thread shares with other threads a process’s (to 
which it belongs to)

Process with 
2 threads

CIT 595 12

which it belongs to) 
Code section
Data section (static + heap) 
Permissions
Other resources (e.g. files)

2 threads



4

Difference between Single vs. Multithread Process 

CIT 595 13

A process by itself can be viewed a single thread 
and is traditionally known as a heavy weight 
process

Advantages of Multithreading

Increase responsiveness to the user
Allows a program to continue running even if parts of it is 
“waiting” 

R Sh iResource Sharing
Threads share memory and resources of the process to which 
they belong
All threads run within same address space

Economical 
They can communicate through shared data  and thereby 

CIT 595 14

y g y
eliminate the overhead of system calls

Multiprocessor system
They allow you to get parallel performance on a shared-
memory multiprocessor

Threads

Like process states, threads also have states:
New, Ready, Running, Waiting and Terminated

Like processes, the OS will switch between threads (even if 
th h th b l t i l ) f CPUthough they belong to a single process) for CPU usage

Like process creation, thread creation is supported by APIs

Java Threads may be created by:
Extending Thread class
Implementing the Runnable interface

CIT 595 15

p g

In C, threads are created using functions in <pthread.h> library (p 
stand for posix)

Sharing Address Space

Sharing address space requires only one copy of code or data in 
main memory

E.g.1: 2 processes share the same library routine (code)

E 2 A i t d h t d th t i d bE.g.2: A print program produces characters and that is consumed by 
printer driver (two processes sharing data) 

E.g.3: Threads within a process share (global) data section 

As long as shared data is not being modified there is no problem

CIT 595 16

But concurrent access to shared data that modify the value of the 
data can lead to data inconsistency

E.g. Printer driver consumed data before print program produced it



5

Threading Example

class Counter { 
private int c = 0; 
public void increment() { 
c++; 

If a Counter object is 
referenced from multiple 
threads

Th ill b i t f} 
public void decrement() {

c--;
} 
public int value() { 

return c; 

There will be interference 
between threads when 2 
operations (increment and 
decrement), running in 
different threads, but acting 
on the same data (i.e. c)

This means that the t o

CIT 595 17

}
}

This means that the two 
operations consist of multiple 
steps, and the sequences of 
steps overlap. 

Threading Example (contd..)

Remember that single expression “c++” can be 
decomposed into three steps: 

1 Retrieve the current value of c1. Retrieve the current value of c. 
2. Increment the retrieved value by 1. 
3. Store the incremented value back in c. 

The same applies for c--

CIT 595 18

Threading Example (contd..)

Suppose Thread 1 invokes increment at about the 
same time Thread 2 invokes decrement
In reality OS is going to switch between Thread 1 and 2

If the initial value of c is 0, their interleaved actions 
might follow this sequence: 

1. Thread 1: Retrieve c
2. Thread 2: Retrieve c
3. Thread 1: Increment retrieved value; result is 1

CIT 595 19

;
4. Thread 2: Decrement retrieved value; result is -1
5. Thread 1: Store result in c; c is now 1 
6. Thread 2: Store result in c; c is now -1 

Race Condition

In previous example, Thread 1's result is lost, 
overwritten by Thread 2

Many different interleaving can result in different value of “c”

Race Condition
Several process/threads access and manipulate the same 
data concurrently and the outcome of the execution depends 
on the particular order in which the access takes place

CIT 595 20



6

Synchronization

To avoid race conditions, need to guarantee “atomic” 
execution of sequence of instructions

Execute without an interruptions
Mutual exclusion for shared data

Big Picture 
Request entry to critical section (regions of code that may 
change shared data)
Access (shared) data in critical section 
Exit from critical section

CIT 595 21

Implementing Synchronization
OS

Done via system call 
Block (wait) until you have exclusive access
Interrupts are temporarily disabled to carryout atomic execution

Low-level support
E.g. Test-and-Set (TS) instruction provided in IBM/370 ISA
Lock/Unlock mechanism

Lock state is implemented by a memory location
Location contains value 0 if the lock is unlocked and 1 if the lock 
is locked
If value is 0, then lock is closed and critical section is executed.  
After finishing the critical section the lock is opened

CIT 595 22

After finishing the critical section, the lock is opened
This support is usually for shared memory multiprocessor system

CPU executing such a instruction locks the memory bus to 
prohibit other CPUs 

Synchronization Mechanics for Programmer

High-Level Language 
constructs which inherently 
translates to OS system calls

E.g. In Java you can 
synchronize methods using

public class SynchronizedCounter {
private int c = 0; 
public synchronized void increment() { synchronize methods using 

synchronized keyword

Guarantees mutual exclusion 
i.e. acquires the intrinsic lock 
for that method's object and 
releases it when method 
returns

c++; 
} 
public synchronized void decrement() { 

c--; 
} 
public synchronized int value() {

return c; 

CIT 595 23

Guarantees that changes to 
the state of the object are 
visible to all threads 

} 


