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1 Abstract

We propose novel methods of solving two tasks using Convolutional Neural Networks, firstly the
task of generating HDR map of a static scene using differently exposed LDR images of the scene
captured using conventional cameras and secondly the task of finding an optimal tone mapping
operator that would give a better score on the TMQI metric compared to the existing methods. We
quantitatively show the performance of our networks and illustrate the cases where our networks
performs good as well as bad.

2 Introduction

Natural scenes have a large range of intensity values(thus a large dynamic range) and conventional
non-HDR cameras cannot capture this range in a single image. By controlling various factors,
one of them being the exposure time of the shot we can capture a particular window in the total
dynamic range of the scene. So we need multiple "Low dynamic range” images of the scene to
get the complete information of the scene. Fig.1 illustrates an example. The internal processing
pipeline of the camera is highly non linear i.e. the pixel intensity value at location (i,j), Z;; is
equal to f(E;;At) where At is the exposure time of the shot and E;; is the irradiance value at
location (7,7). f(x) is known as the camera response function of that particular camera which is
a non linear function. Given the values of Z;; for differently exposed images of the same scene
we can get a robust,noise free estimate of the E;;’s (methods like Debevec et. al. (1997) use a
weighted average of the f~1(Z;;)/At to get a robust estimate of the corresponding E;;. We use a
deep neural network to estimate the function taking as input the LDR pixel intensities of 5 LDR
images of a static scene to estimate the irradiance values, i.e. the HDR map of the scene. Fig 1.
shows the camera acquisition pipeline in modern cameras and the non-linear transforms involved.

We further conduct experiments of getting another similar convolutional neural network to ap-
proximate a tone mapping operator. Our training set includes HDR images of scenes and their
corresponding tone mapped images generated by one of the Tone mapping operators provided in
MATLAB’s HDR-Toolbox (Banterle et al. 2011) which gives the highest value of the TMQI metric
(Yeganeh et al. 2013). We try further experiments to improve the results, details of which are
provided in the main report.
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This is the end to end pipeline involved in digital image acquisition in modern digital cameras, which indicates
that the mapping from the scene radiance to the pixel values at a spatial location in the image is non-linear.

3 CNN Architecture

3.1 LDR2HDR network architecture

We have a collected a dataset of 957 HDR images from the internet from the websites of various
groups around the world working on HDR imaging and the camera response functions of the
cameras with which those photos were taken. We use these to generate LDR images from the
HDR'’s whose exposure time values are taken from a list of exposure times( a geometric progression
with the first term 1, common ratio 4 and the last term equal to 4°. Our network takes as input
a stack of 5 RGB LDR images of a particular scene, each having a different exposure. In the
initial experiments we fixed the exposure of these LDR images to be [1,8,64,512,4096], and then
we moved on to adaptive exposure based method in which we choose first the LDR image of a
scene which gives the maximum value of entropy (entropy of a single channel image is defined as
-> - plog p where p is the histogram count of a particular intensity value in the image and the sum
is calculated for all the possible intensities in the image) and we take two images of the previous
and next two intensity values. We have 3 networks, one for each of the R,G and B channels of the
inputs, so We conducted many experiments with both the former and the latter case approach but
we were able to obtain plausible results only in the first case where the exposure times were fixed.
The graphs of training error vs. epochs for 3 different models which turned out to be the best after
testing many different sets of hyperparameters are shown below for the case where the exposure
times are kept constant. The final test error that we get for the best model is . We conducted
experiments in models with dropout in each layer with p = 0.4 in order to improve generalization.
We also also added spatial batch normalization just before passing the activations of each layer
through the ReLU non linearity. Batch size was kept 40 (decided by the memory limitations of
the GPU). BatchNorm strictly improved the results as the same training error was attained in less
number of epochs. The architecture of the network is illustrated in the Fig

3.2 HDR2ToneMap network architecture

We first create a dataset using the existing 957 HDR images. We then use the tone mapping
operators provided in the HDR-toolbox by Francesco Banterle et al. and use them to create
different tone maps of each HDR and run the TMQI metric on each of the tone maps and choose
the one which gives the highest TMQI score. Some are local and some are global tone mapping
operators, so our approach is not fully justified. We then train a convolutional neural network
whose input is the HDR image and its corresponding truth is the best Tone map corresponding
to the TMQI metric. We use 3x3 conv in the first layer followed by 1x1 convs in the subsequent



layers. We get this intuition from the works of Mertens et al. whose method most of the time gave
the best TMQI score. In their work the final intensity value at location (x,y) depends only on the
3x3 neighborhood of radiance value in its corresponding HDR image at location (z,y). Further
study of the other tone mapping works is required in order to improve the architecture after the
pilot testing that we have done in the course of the summer. After preliminary results it was
observed that the network was not able to deal with high frequency inputs simultaneously with
low frequency ones so in order to tackle that problem we first convert both the input and output
pairs to Lab space, apply a Bilateral Filter to the L channel, create a new channel Lo,iginai — L fitterea
and train 4 networks each for these new channels as well as for a and b channels. We obtain better
results for this method. In order to obtain a good estimate of the hyperparameters of the network,
we test out several values of then by training their corresponding architectures for 2 epochs and
observing the validation error. Due to computational constraints, this could not be afforded for
more epochs and only 4 sets of hyperparameters could be tested.
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Figure 1: This is the network architecture which is used to generate the HDR image from the LDR
stack. There are 3 networks for each of the R,G and B channels.

4 Implementation Details

For all the data processing tasks we use MATLAB and for implementing and testing our neural
networks we use the Torch framework in the Lua scripting language, and most of the models are
trained on a single NVIDIA GeForce GT 730 graphics processor, although for a brief amount of
time during which we had access to a HPC node which had 2 GPU’s, a Tesla K20C and a Titan
X, we did multi-GPU training of our models using the following algorithm -

e Have the same network on the 2 GPU’s at the beginning of every iteration in an epoch.

e Independently processing two different batches on the two GPU’s and then copying over the
accumulated gradients in the backward pass on one of the GPU’s to the other, adding them
to the accumulated gradients on the other GPU during the backward pass on it .
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Figure 2: This is the network architecture which is used to approximate the tone mapping operator,
there are four networks, one for the bilaterally filtered L channel, Original L minus the filtered L
channel, a and b channel of the of the HDR image

e Updating the parameters of the model on the GPU to which the gradients were copied.
e Process the next set of batches

One drawback with this approach was that the inter GPU communication overhead outweighed
the almost 2X gain time in the actual training of the networks (the time required to the forward-
backward pass). During our other experiments, in order to save time in loading of the data, we
implemented a multi-threaded approach to load our mini-batch.

Another important thing to note is that we were not able to process even a single input example
of dimensions 15 X M X N as our images were of quite high resolution and during a forward pass
of the network since every individual module in Torch caches its local output, the GPU’s memory
didn’t turn out to be sufficient, so we broke each image into patches of 64 X 64 and after that
we were able to keep the minibatch size to be 40 without overloading the GPU’s memory. Due to
computing power issues we were not able to test our models that efficiently. The code will shortly
be made available at my github repository.

5 Results

5.1 LDR2HDR Results

In the results we present the graph of the training error vs no. of epochs for the best three
models(Fig 3.). The test error for the best model is 0.09345. Visual results are shown below.
It is clear that further experiments with validating the hyperparameters are required to find the
optimal architecture for the task. The network is clearly able to generate plausible results for
some of the colors but not all(Fig. 3 and 4). Also it is clear that the network is able to generate
outputs without under/over saturation of regions that have high and low radiance values in the
same image which hence proves that the dynamic range of the output is quite high.
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Figure 3: The training error plot for the three best architectures, blue and green share the same
architecture, whereas the final one,red, is one more no. of activations in the first layer. The
architecture of the final network has been illustrated in Fig 1.)
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Figure 4: Some examples from test set where the LDR2HDR network gives plausible results.



Original Original

Epoch-32

Figure 5: Some examples from test set where the LDR2HDR network does not give plausible
results.
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Figure 6: The training error plot for the final tone mapping network whose architecture has been
illustrated in Fig 2.
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Figure 7: Some examples from test set where the tone mapping network gives plausible results.

result after 28 epochs result after 28 epochs

original tonemap score

original tonemap score
_ S ———y

Figure 8: Some examples from test set where the tone mapping network does not give plausible
results.



5.2 HDR2Tonemap Results

In the results we present the outputs of the final validated architecture for the cases where the
network performs good as well as bad (Fig 7. and 8.) . The final test error for that model after 28
epochs of training is 0.002764 (Fig 6.). We also present the plot of training error vs no. of epochs
for that model.
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