
 Chap.2 Software process

 A ~ is a set of related activities that leads to
 the production of a software system.

 sometimes called a Software Development Life Cycle or SDLC model

 4 fundamental software engineering activities

 1. Software specification Define the functionality of the software and constraints on its operation.

 2. Software development Develop the software to meet the specification must be produced

 3. Software validation Validate the software to ensure that it does what the customer wants.

 4. Software evolution The software must evolve to meet changing customer needs.

 2.1 Software process models

 A ~ is a simplified representation of a software process.

 These generic models are high-level, abstract descriptions of software
 processes that can be used to explain different approaches to software
 development. You can think of them as process frameworks that may be
 extended and adapted to create more specific software engineering processes

 3 general process models

 1. The waterfall model
 This takes the fundamental process activities of specification, development, validation,
 and evolution and represents them as separate process phases such as
 requirements specification, software design, implementation, and testing.

 2. Incremental development
 This approach interleaves the activities of specification, development, and
 validation. The system is developed as a series of versions (increments), with
 each version adding functionality to the previous version.

 3. Integration and configuration
 This approach relies on the availability of reusable components or systems.
 The system development process focuses on configuring these components
 for use in a new setting and integrating them into a system.

 2.1.1 The waterfall model

 It presents the software development process as a
 number of stages, as shown in Figure 2.1.

 Figure 2.1 The waterfall model

 The stages of the waterfall model

 ~ directly reflect the fundamental software development activities

 1. Requirements analysis and definition The system’s services, constraints, and goals are established by consultation with system users.
 They are then defined in detail and serve as a system specification.

 2. System and software design

 The systems design process allocates the requirements to either
 hardware or software systems.
 It establishes an overall system architecture.
 Software design involves identifying and describing the
 fundamental software system abstractions and their relationships.

 3. Implementation and unit testing

 During this stage, the software design is realized as a set of
 programs or program units.
 Unit testing involves verifying that each unit meets its
 specification.

 4. Integration and system testing

 The individual program units are integrated and tested as a
 complete system to ensure that the software requirements have
 been met.
 After testing, the software system is delivered to the customer.

 5. Operation and maintenance

 This is the longest life-cycle phase.
 The system is installed and put into practical use.
 Maintenance involves correcting errors that were not discovered
 in earlier stages of the life cycle, improving the implementation of
 system units, and enhancing the system’s services as new
 requirements are discovered.

 ~ is only appropriate for some types of system

 1. Embedded systems

 2. Critical systems

 3. Large software systems

 An important variant of ~ is formal system development, where
 a mathematical model of a system specification is created.

 because of the high costs of developing a formal
 specification, this development model is rarely used

 except for critical systems engineering.

 2.1.2 Incremental development

 ~ is based on the idea of developing an initial implementation, getting feedback
 from users and others, and evolving the software through several versions until
 the required system has been developed (Figure 2.2).

 Figure 2.2 Incremental development

 Specification, development, and validation activities are
 interleaved rather than separate, with rapid feedback

 across activities

 ~ has three major advantages over the waterfall model

 1. The cost of implementing requirements changes is reduced.

 2. It is easier to get customer feedback on the development work that has been done.

 3. Early delivery and deployment is possible

 2 problems of ~ from a management perspective
 1. The process is not visible.

 2. System structure degrade as increments are added.

 2.1.3 Integration and configuration

 3 types of software components are frequently reused

 1. Stand-alone application systems that are configured
 for use in a particular environment. General-purpose
 software that have to be adapted for use in a specific

 application.

 2. Collections of objects that are developed as a
 component or as a package to be integrated with
 a component framework such as the Java Spring
 framewor

 3. Web services that are developed according to
 service standards and that are available for remote
 invocation over the Internet.

 Figure 2.3 shows a general process model for reuse-based development

 The stages in this process are

 1. Requirements specification The initial requirements for the system are proposed.

 2. Software discovery and evaluation
 Given an outline of the software requirements, a
 search is made for components and systems that
 provide the functionality required.

 3. Requirements refinement
 During this stage, the requirements are refined
 using information about the reusable components
 and applications that have been discovered.

 4. Application system configuration
 If an off-the-shelf application system that meets the

 requirements is available, it may then be configured for
 use to create the new system.

 5. Component adaptation and integration

 If there is no off-the-shelf system, individual reusable
 components may be modified and new components
 developed. These are then integrated to create the
 system.

 2.2 Process activities

 2.2.1 Software specification

 ~ is the process of understanding and defining what
 services are required from the system and identifying

 the constraints on the system’s operation and
 development.

 3 main activities in the requirements engineering process

 1. Requirements elicitation and analysis

 This is the process of deriving the system requirements through
 observation of existing systems, discussions with potential users
 and procurers, task analysis, and so on.
 This may involve the development of one or more system models
 and prototypes.

 2. Requirements specification

 ~ is the activity of translating the information gathered during requirements
 analysis into a document that defines a set of requirements.
 Two types of requirements may be included in this document:
 User requirements are abstract statements of the system requirements for
 the customer and end-user of the system;
 system requirements are a more detailed description of the functionality to
 be provided.

 3. Requirements validation

 This activity checks the requirements for realism, consistency,
 and completeness.
 During this process, errors in the requirements document are
 inevitably discovered. It must then be modified to correct these
 problems.

 2.2.2 Software design and implementation

 Software implementation is the process of developing
 an executable system for delivery to the customer.

 The activities in the design process vary, depending on
 the type of system being developed.

 Figure 2.5 shows 4 activities that may be part of the design
 process for information systems

 1. Architectural design

 where you identify the overall structure of the system,
 the principal components (sometimes called

 subsystems or modules), their relationships, and how
 they are distributed.

 2. Database design where you design the system data structures and how
 these are to be represented in a database.

 3. Interface design where you define the interfaces between system
 components.

 4. Component selection and design
 where you search for reusable components and, if no

 suitable components are available, design new
 software components.

 2.2.3 Software validation

 Software validation or, more generally, verification and
 validation (V & V) is intended to show that a system

 both conforms to its specification and meets the
 expectations of the system customer.

 Except for small programs, systems should not be
 tested as a single, monolithic unit. Figure 2.6 shows a

 three-stage testing process in which system
 components are individually tested, then the integrated

 system is tested. Figure 2.6 Stages of testing

 The 3 stages in the testing process

 1. Component testing The components making up the system are tested by
 the people developing the system.

 Each component is tested independently, without other
 system components. Components may be simple

 entities such as functions or object classes or may be
 coherent groupings of these entities. Test automation

 tools, such as JUnit for Java, that can rerun tests when
 new versions of the component are created, are

 commonly used

 2. System testing System components are integrated to create a
 complete system.

 This process is concerned with finding errors that result
 from unanticipated interactions between components

 and component interface problems. It is also concerned
 with showing that the system meets its functional and
 non-functional requirements, and testing the emergent

 system properties. For large systems, this may be a
 multistage process where components are integrated to

 form subsystems that are individually tested before
 these subsystems are integrated to form the final

 system.

 3. Customer testing
 This is the final stage in the testing process before the
 system is accepted for operational use. The system is
 tested by the system customer

 rather than with simulated test data. For custom-built
 software, customer testing may reveal errors and
 omissions in the system requirements definition,

 because the real data exercise the system in different
 ways from the test data. Customer testing may also
 reveal requirements problems where the system’s
 facilities do not really meet the users’ needs or the
 system performance is unacceptable. For products,

 customer testing shows how well the software product
 meets the customer’s needs.

 Figure 2.7 illustrates how test plans are the link
 between testing and development activities.

 Figure 2.7 Testing phases in a plan-driven software process

 2.2.4 Software evolution Figure 2.8 Software system evolution

 2.3 Coping with change

 2 related approaches may be used to reduce the costs of rework

 1. Change anticipation

 Software process includes activities that can anticipate or
 predict possible changes before significant rework is required.

 For example, a prototype system may be developed to show some
 key features of the system to customers. They can experiment with
 the prototype and refine their requirements before committing to
 high software production costs.

 2. Change tolerance

 where the process and software are designed so
 that changes can be easily made to the system.

 This normally involves some form of incremental development.
 Proposed changes may be implemented in increments that
 have not yet been developed.

 2 ways of coping with change & changing system requirements

 1. System prototyping
 where a version of the system or part of the system is
 developed quickly to check the customer’s requirements
 and the feasibility of design decisions.

 2. Incremental delivery where system increments are delivered to the
 customer for comment and experimentation.

 2.3.1 Prototyping

 A prototype is an early version of a software system
 that is used to demonstrate concepts, try out design
 options, and find out more about the problem and its
 possible solutions.

 Use of prototype

 1. In the requirements engineering process,
 a prototype can help with the elicitation and validation of system requirements.

 2. In the system design process,
 a prototype can be used to explore software solutions and in the development
 of a user interface for the system.

 A process model for prototype development is shown in Figure 2.9.

 Figure 2.9 Prototype development

 2.3.2 Incremental delivery

 Incremental delivery (Figure 2.10) is an approach to software development where some of the
 developed increments are delivered to the customer and deployed for use in their working environment,
 with each increment providing a subset of the system functionality.

 Incremental delivery has a number of advantages

 1. Customers can gain experience that informs their requirements for later
 system increments. And no relearning when complete system is available.

 2. Customers do not have to wait for gaining value from the system.

 3. It should be relatively easy to incorporate changes into the system.

 4. The most important system services receive the most testing.

 However, there are problems with incremental delivery

 1. Iterative delivery is problematic when the new system is intended to replace
 an existing system. Users need all of the functionality of the old system and are
 usually unwilling to experiment with an incomplete new system.

 2. As requirements are not defined in detail until an increment is to be
 implemented, it can be hard to identify common facilities that are needed by all
 increments.

 3. The essence of iterative processes is that the specification is developed in
 conjunction with the software.

 4. This requires a new form of contract, which large customers such as
 government agencies may find difficult to accommodate

 2.4 Process improvement

 The general process improvement process underlying the process
 maturity approach is a cyclical process, as shown in Figure 2.11.

 Figure 2.11 The process improvement cycle

 The stages in this process are

 1. Process measurement

 You measure one or more attributes of the software process or
 product. These measurements form a baseline that helps you
 decide if process improvements have been effective. As you
 introduce improvements, you re-measure the same attributes,
 which will hopefully have improved in some way.

 2. Process analysis

 The current process is assessed, and process weaknesses and
 bottlenecks are identified. Process models (sometimes called process
 maps) that describe the process may be developed during this stage.
 The analysis may be focused by considering process characteristics
 such as rapidity and robustness.

 3. Process change
 Process changes are proposed to address some of the identified process
 weaknesses. These are introduced, and the cycle resumes to collect data
 about the effectiveness of the changes.

 Process improvement means understanding existing processes and changing these
 processes to increase product quality and/or reduce costs and development time.

 Two quite different approaches to process improvement and change are used

 1. The process maturity approach,
 which has focused on improving process and project management and
 introducing good software engineering practice into an organization.

 2. The agile approach,
 which has focused on iterative development and the reduction of overheads in
 the software process. The primary characteristics of agile methods are rapid
 delivery of functionality and responsiveness to changing customer requirements.

 The fundamental ideas in Humphrey’s model are still
 the basis of software process maturity assessment.

 The levels in the process maturity model

 1. Initial The goals associated with the process area are satisfied, and for all processes the scope
 of the work to be performed is explicitly set out and communicated to the team members.

 2. Managed

 At this level, the goals associated with the process area are met, and organizational
 policies are in place that define when each process should be used. There must be
 documented project plans that define the project goals. Resource management and
 process monitoring procedures must be in place across the institution.

 3. Defined

 This level focuses on organizational standardization and deployment of processes. Each
 project has a managed process that is adapted to the project requirements from a defined
 set of organizational processes. Process assets and process measurements must be
 collected and used for future process improvements.

 4. Quantitatively managed
 At this level, there is an organizational responsibility to use statistical and other
 quantitative methods to control subprocesses. That is, collected process and
 product measurements must be used in process management.

 5. Optimizing
 At this highest level, the organization must use the process and product measurements
 to drive process improvement. Trends must be analyzed and the processes adapted to
 changing business needs.

 区分: The SEI capability maturity model

 1.Initial 初始级
 Essentially uncontrolled

 2.Repeatable 可重复级
 Product management procedures defined and used

 3.Defined 可定义级
 Process management procedures and strategies

 defined and used

 4.Managed 可管理级
 Quality management strategies defined and used

 5.Optimising 可优化级
 Process improvement strategies defined and used

 Key Points

 ■ Software processes are the activities involved in
 producing a software system. Software process models
 are abstract representations of these processes.

 ■ General process models describe the organization of
 software processes. Examples of these general models
 include the waterfall model, incremental development, and
 reusable component configuration and integration.

 ■ Requirements engineering is the process of developing
 a software specification. Specifications are intended to
 communicate the system needs of the customer to the
 system developers.

 ■ Design and implementation processes are concerned
 with transforming a requirements specification into an
 executable software system.

 ■ Software validation is the process of checking that the
 system conforms to its specification and that it meets the
 real needs of the users of the system.

 ■ Software evolution takes place when you change
 existing software systems to meet new requirements.
 Changes are continuous, and the software must evolve to
 remain useful.

 ■ Processes should include activities to cope with change.
 This may involve a prototyping phase that helps avoid
 poor decisions on requirements and design. Processes
 may be structured for iterative development and delivery
 so that changes may be made without disrupting the
 system as a whole.

 ■ Process improvement is the process of improving
 existing software processes to improve software quality,
 lower development costs, or reduce development time. It
 is a cyclic process involving process measurement,
 analysis, and change.

