
 Chap.9 Software
 Evolution

 Brownfield software development
 situations where software have to be developed and

 managed in an environment where they are dependent
 on other software systems.

 Evolution and Servicing software development software evolution software servicing software retirement

 9.1 Evolution Process

 change identification and evolution process(figure 9.3)

 A general model of the software evolution process(
 figure 9.4)

 Change implementation(figure 9.5)

 The emergency repair process (figure 9.6)

 9.2 Legacy systems

 ~ are older systems that rely on languages and
 technology that are no longer used for new system

 development

 6 Logical parts of a legacy system and their
 relationships

 1.System hardware
 systems written for hardware that is no longer available,

 expensive to maintain, not compatible with current
 purchasing policies.

 2.Support software
 ~ rely on support software that may be obsolete and no

 longer supported by their original providers.

 3.Application software
 System that provides the services made up of a
 number of application programs that have been

 developed at different times..

 4.Application data
 immense volume of data has accumulated. This data

 may be inconsistent, duplicated or spread over
 databases.

 5.Business processes
 These processes are used in the business to achieve

 some business objective.

 6.Business policies and rules
 These are definitions of how the business should be

 carried out and constraints on the business.

 Figure 9.7 The elements of a legacy system

 Figure 9.8 Legacy system layers

 9.2.1 Legacy System Management

 4 Strategic Options for evolving legacy system

 1. Scrap the system completely

 2. Leave the system unchanged and continue with
 regular maintenance

 3. Reengineer the system to improve its maintainability

 4. Replace all or part of the system with a new system

 when the system is not making an effective contribution.

 when the system is still required but is fairly stable and
 the users make few change requests.

 when the system quality is degraded and where new
 change to the system is proposed.

 when factors make old system unable to continue in
 operation, or where new system can be developed at a

 reasonable cost.

 4 clusters of systems

 1. Low quality, low business value should be scrapped.

 2. Low quality, high business value
 should be reengineered or be replaced if suitable off-

 the-shelf systems are available.

 3. High quality, low business value
 maintenance continued if expensive changes are not
 required. If expensive changes become necessary, the

 software should be scrapped.

 4. High quality, high business value kept in operation.

 4 basic issues to discuss when assessing the business
 value

 1. The use of the system
 used occasionally or by a small number of people may

 mean that it has a low business value.

 2. The business processes that are supported
 the original business processes may become obsolete.

 Therefore, a system may have a low business value.

 3. System dependability
 If a system is not dependable and the problems directly

 affect business, then low business value.

 4. The system outputs
 if these outputs can be cheaply generated in some

 other way, then low business value.

 To assess a software system from a technical
 perspective, you need to consider both the application
 system itself and the environment in which the system

 operates.

 Factors that should be considered during the
 environment assessment

 Figure 9.10 Factors used in environment assessment

 To assess the technical quality of an application
 system, you have to assess those factors (Figure 9.11)
 that are primarily related to the system dependability,

 the difficulties of maintaining the system, and the
 system documentation. You may also collect

 data that will help you judge the quality of the system

 1. The number of system change requests

 2. The number of user interfaces

 3. The volume of data used by the system

 higher this accumulated value, the lower the quality of
 the system.

 The more interfaces, the more likely it is that there will
 be inconsistencies and redundancies in these

 interfaces.

 Cleaning up old data is a very expensive and time-
 consuming process.

 9.3 Software Maintainance

 ~ is the general process of changing a system after it
 has been delivered.

 3 different types of software maintenance

 1. Fault repairs to fix bugs and vulnerabilities

 2. Environmental adaptation to adapt the software to
 new platforms and environments

 3. Functionality addition to add new features and to
 support new requirements

 Figure 9.12 shows an approximate distribution of
 maintenance costs

 reasons for " it is more expensive to add new features
 to a system during maintenance than it is to implement

 the same features during initial development"

 自由主题

 1. A new team has to understand the program being
 maintained.

 2. Separating maintenance and development means
 there is no incentive for the development team to write

 maintainable software.

 3. Program maintenance work is unpopular.

 4. As programs age, their structure degrades and they
 become harder to change.

 9.3.1 Maintenance prediction

 ~ is concerned with trying to assess the changes that
 may be required in a software system and with

 identifying those parts of the system that are likely to be
 the most expensive to change.

 To evaluate the relationships between a system and its
 environment, you should look at:

 1. The number and complexity of system interfaces

 2. The number of inherently volatile system
 requirements

 requirements that reflect organizational policies and
 procedures are likely to be more volatile

 The larger the number of interfaces and the more
 complex these interfaces, the more likely it is that

 interface changes will be required as new requirements
 are proposed.

 3. The business processes in which the system is used
 As a system is integrated with more and more business
 processes, there are increased demands for changes.

 Figure 9.13 shows possible predictions and the
 questions that these predictions may answer.

 After a system has been put into service, you may be
 able to use process data to help predict maintainability.

 Examples of process metrics that can be used for
 assessing maintainability are:

 1. Number of requests for corrective maintenance

 An increase in the number of bug and failure reports
 may indicate that more errors are being introduced into

 the program than are being repaired during the
 maintenance process. This may indicate a decline in

 maintainability.

 2. Average time required for impact analysis
 If the time required for impact analysis increases, it

 implies that more and more components are affected
 and maintainability is decreasing.

 3. Average time taken to implement a change request
 An increase in the time needed to implement a change

 may indicate a decline in maintainability.

 4. Number of outstanding change requests
 An increase in this number over time may imply a

 decline in maintainability.

 9.3.2 Software reengineering

 Reengineering has two important advantages over
 replacement:

 1. Reduced risk

 There is a high risk in redeveloping business-critical
 software. Errors may be made in the system

 specification or there may be development problems.
 Delays in introducing the new software may mean that

 business is lost and extra costs are incurred.

 2. Reduced cost
 The cost of reengineering may be significantly less than

 the cost of developing new software.

 Figure 9.14 is a general model of the reengineering
 process.

 The activities in this reengineering process are:

 1. Source code translation
 Using a translation tool, you can convert the program
 from an old programming language to a more modern

 version of the same language or to a different language.

 2. Reverse engineering

 The program is analyzed and information extracted
 from it. This helps to document its organization and

 functionality. Again, this process is usually completely
 automated.

 3. Program structure improvement

 The control structure of the program is analyzed and
 modified to make it easier to read and understand. This

 can be partially automated, but some manual
 intervention is usually required.

 4. Program modularization

 Related parts of the program are grouped together,
 and, where appropriate, redundancy is removed. In

 some cases, this stage may involve architectural
 refactoring (e.g., a system that uses several different

 data stores may be refactored to use a single
 repository). This is a manual process.

 5. Data reengineering

 The data processed by the program is changed to
 reflect program changes. This may mean redefining

 database schemas and converting existing databases
 to the new structure. You should usually also clean up
 the data. This involves finding and correcting mistakes,
 removing duplicate records, and so on. This can be a

 very expensive and prolonged process.

 There is a spectrum of possible approaches to
 reengineering, as shown in Figure 9.15.

 9.3.3 Refactoring

 ~ is the process of making improvements to a program
 to slow down degradation through change. It means

 modifying a program to improve its structure, reduce its
 complexity, or make it easier to understand.

 Fowler et al. (Fowler et al. 1999) suggest that there are
 stereotypical situations (Fowler calls them “bad smells”)

 where the code of a program can be improved.
 Examples of bad smells that can be improved through

 refactoring include:

 1. Duplicate code

 The same or very similar code may be included at
 different places in a program. This can be removed and

 implemented as a single method or function that is
 called as required.

 2. Long methods
 If a method is too long, it should be redesigned as a

 number of shorter methods.

 3. Switch (case) statements

 These often involve duplication, where the switch
 depends on the type of a value. The switch statements
 may be scattered around a program. In object-oriented
 languages, you can often use polymorphism to achieve

 the same thing.

 4. Data clumping

 Data clumps occur when the same group of data
 items (fields in classes, parameters in methods)

 reoccurs in several places in a program. These can
 often be replaced with an object that encapsulates all of

 the data

 5. Speculative generality
 This occurs when developers include generality in a
 program in case it is required in the future. This can

 often simply be removed.

