
2015/11/27 Introduce Refactoring By Example

http://taha-sh.com/blog/introduce-refactoring-by-example 1/25

Refactoring is the key to clean, well-designed, professional code. If

you’ve ever wondered how those well-designed software projects were

actually designed, the answer is usually by refactoring.

In this tutorial, I’ll show you how Refactoring can improve your

code design. We’ll build a project from scratch which will start

with a poor design, but then in step-by-step manner we’ll improve it

by applying some Refactoring techniques on it.

If you’re new to it, this tutorial will be as an overview on

Refactoring, so don’t worry if you find some unclear concepts along

the way, because more detailed tutorials will likely come in the

future. It’s just to whet your appetite for using it. However, if

you’ve been using it before, then treat it as an exercise, and maybe

you’ll get something new out of it.

Although the example will be in PHP, concepts apply on any other OOP

language. So you can read it even if you’re not a PHP developer.

 Tweet
(http://twitter.com/share?
text=Introduce
Refactoring

By
Example&url=http://taha-
sh.com/blog/introduce-
refactoring-

by-
example&via=Taha_Shashtari)

 Share
(https://plus.google.com/share?
url=http://taha-
sh.com/blog/introduce-
refactoring-

by-
example)

 Share
(http://www.facebook.com/sharer.php?
u=http://taha-
sh.com/blog/introduce-
refactoring-

by-
example)

Introduce Refactoring By Example
 Jan 6, 2015 Advanced php (/tags/php), ood (/tags/ood), refactoring

(/tags/refactoring), design pattern (/tags/design pattern), tdd (/tags/tdd)

http://taha-sh.com/tags/php
https://plus.google.com/share?url=http://taha-sh.com/blog/introduce-refactoring-by-example
http://taha-sh.com/tags/refactoring
http://taha-sh.com/tags/design%20pattern
http://www.facebook.com/sharer.php?u=http://taha-sh.com/blog/introduce-refactoring-by-example
http://taha-sh.com/tags/tdd
http://taha-sh.com/tags/ood
http://twitter.com/share?text=Introduce%20Refactoring%20By%20Example&url=http://taha-sh.com/blog/introduce-refactoring-by-example&via=Taha_Shashtari

2015/11/27 Introduce Refactoring By Example

http://taha-sh.com/blog/introduce-refactoring-by-example 2/25

What is Refactoring?

Here’s the official definition of refactoring:

Refactoring is the process of changing a software system in such

a way that it does not alter the external behavior of the code

yet improves its internal structure.

In other words, refactoring is used to improve your software design

without changing its behavior (logic). Refactoring is applied after

your code is written and tested. I mean you’ll start with a crap

design, then you’ll use refactoring to convert it into a great one.

Refactoring and testing

In simple words, refactoring can’t be done without testing. And

that’s too obvious because how would we know that we’ve not broken

our code after we had changed it. Of course we can’t. So our tests

will serve as a feedback to our changes. So they tell us if

everything still working after modifications.

And remember Refactoring is the third phase of the TDD cycle (RED,

GREEN, REFACTOR). So it’s worth mentioning that we’ll use TDD in

the example we’re going to build.

The Example

For me, I really find explaining an idea by examples is much better

than throwing some concepts that aren’t well visualized. So we’ll

build a simple project, then we’ll apply some of the refactoring

techniques on it to see how much far can it improve its design.

2015/11/27 Introduce Refactoring By Example

http://taha-sh.com/blog/introduce-refactoring-by-example 3/25

We’ll build a String Calculator (it’s different than the popular

String Calculator Kata), this calculator can take an expression of

type string (like this: “2+3+4”) and then parses it and performs

the necessary calculation, after that it returns the result. But this

calculator is limited to only one type of operation in each

calculation. In other words, you can’t mix different types of

operations in the same expression like this: “3+4*2”.

Maybe this is so simple to be refactored, but nevertheless I think it

would be a great exercise to learn refactoring. Just treat it as a

code kata (http://en.wikipedia.org/wiki/Kata_%28programming%29).

So with that, let’s over engineer our awesome calculator. The source

code can be found on github (https://github.com/TahaSh/Refactoring-

StringCalculator).

Setup the project

Let’s begin by setting up the project’s directory first. Create a

new directory, then inside it create a src/ and tests/ directories.

After that, pull in PHPUnit via composer by running this command:

composer require phpunit/phpunit --dev

And then of course, we have to specify our configurations. So create

a phpunit.xml in your project’s root directory, and put this:

http://en.wikipedia.org/wiki/Kata_%28programming%29
https://github.com/TahaSh/Refactoring-StringCalculator

2015/11/27 Introduce Refactoring By Example

http://taha-sh.com/blog/introduce-refactoring-by-example 4/25

<phpunit
 colors="true"
 convertErrorsToExceptions="true"
 convertNoticesToExceptions="true"
 convertWarningsToExceptions="true"
 bootstrap="vendor/autoload.php">

 <testsuites>
 <testsuite name="default">
 <directory>tests</directory>
 </testsuite>
 </testsuites>
</phpunit>

Finally, we need to register a PSR–4 autoloader (if you’re not

familiar with it, check out this tutorial (http://taha-

sh.com/blog/havent-you-used-composer-yet)). So in our composer.json,

write this:

{
 "require-dev": {
 "phpunit/phpunit": "~4.4"
 },
 "autoload": {
 "psr-4": {
 "Acme\\": "src"
 }
 }
}

Then run composer dump-autoload to let composer know about our PSR–

4 autoloader. So clearly, our namespace is Acme and it resides in the

src/ directory.

Now let’s dive in and write our first feature, addition.

Addition

Since this tutorial isn’t about testing (there is another dedicated

tutorial (http://taha-sh.com/blog/your-first-unit-tests-with-phpunit)

on that) I’ll be a little faster here.

http://taha-sh.com/blog/your-first-unit-tests-with-phpunit
http://taha-sh.com/blog/havent-you-used-composer-yet

2015/11/27 Introduce Refactoring By Example

http://taha-sh.com/blog/introduce-refactoring-by-example 5/25

Now in your tests/ directory create StringCalculatorTest.php and

write the following test:

<?php

use Acme\StringCalculator;

class StringCalculatorTest extends PHPUnit_Framework_TestCase {

 /**
 * @test
 */
 function it_adds_numbers()
 {
 $calculator = new StringCalculator;

 $result = $calculator->calculate('2+2+2');
 $this->assertEquals(6, $result);

 $result = $calculator->calculate('2 + 2 + 2');
 $this->assertEquals(6, $result);
 }
}

So we can see how our calculator works from our tests. Simply, we

create a StringCalculator object and we use its calculate() method

which we provide it the expression we want to calculate. I included

two assertions to make sure that the calculator can calculate

expressions regardless of spaces between numbers.

If you run the test, it’ll tell you that you don’t have

StringCalculator class yet. So the next step is to create it. So in

your src/ create StringCalculator.php and write this:

2015/11/27 Introduce Refactoring By Example

http://taha-sh.com/blog/introduce-refactoring-by-example 6/25

<?php

namespace Acme;

class StringCalculator {

 public function calculate($expression)
 {
 $numbers = preg_split("/[^\d\w\s]/", $expression);
 $numbers = array_map("trim", $numbers);

 preg_match("/\d+\s?+([^\w\d\s])/", $expression, $operation);

 if ($operation[1] === '+')
 {
 return array_reduce($numbers, function($carry, $item) {
 return $carry + $item;
 });
 }
 }
}

Now if you run your test, it should pass.

The calculate method works as follows, first it parses the

expression (using regular expressions) to extract the operation type

(e.g. +) and the numbers to perform the operation on. Then it checks

the type of the operation and calculates the result accordingly.

Our first refactor

I think now it’s the time for our first refactor. If you’ve noticed

from above, I’ve used the word parses when I was describing how the

calculate() method works. So I think it’s a sign for an Extract

Method refactoring. So create a new private method in your

StringCalculator class, and call it parseExpression($expression),

then copy the code portion that responsible for the parsing into it,

like this:

2015/11/27 Introduce Refactoring By Example

http://taha-sh.com/blog/introduce-refactoring-by-example 7/25

private function parseExpression($expression)
{
 $numbers = preg_split("/[^\d\w\s]/", $expression);
 $numbers = array_map("trim", $numbers);

 preg_match("/\d+\s?+([^\w\d\s])/", $expression, $operation);

 return [$numbers, $operation[1]];
}

Then our calculate() method becomes like this:

public function calculate($expression)
{
 list($numbers, $operation) = $this->parseExpression($expression);

 if ($operation === '+')
 {
 return array_reduce($numbers, function($carry, $item) {
 return $carry + $item;
 });
 }
}

Don’t underestimate how important this is, with that move we made

our code reads much better. I mean when you comeback to this method

later, you don’t have to spend two minutes thinking about what that

regular expression does. All you need to care about is that it parses

the expression and extracts the operation and the numbers from it.

After that change, run your test to see if it’s still working. If

it’s, then that’s great, otherwise check your code and see what

causes that failure (your tests usually help you with that).

Multiplication

Let’s support multiplication operations. Again write the test first

(TDD). So in your StringCalculatorTest.php add this:

2015/11/27 Introduce Refactoring By Example

http://taha-sh.com/blog/introduce-refactoring-by-example 8/25

/**
 * @test
 */
function it_multiplies_numbers()
{
 $calculator = new StringCalculator;

 $result = $calculator->calculate('2*2*2');
 $this->assertEquals(8, $result);

 $result = $calculator->calculate('2 * 3 * 4');
 $this->assertEquals(24, $result);
}

Multiplication isn’t implemented yet, so if you run the tests

they’ll fail. So let’s add that feature. In StringCalculator.php

add another check to the calculate() method, like this:

public function calculate($expression)
{
 list($numbers, $operation) = $this->parseExpression($expression);

 if ($operation === '+')
 {
 return array_reduce($numbers, function($carry, $item) {
 return $carry + $item;
 });
 }
 else if ($operation === '*')
 {
 return array_reduce($numbers, function($carry, $item) {
 return $carry * $item;
 }, 1);
 }
}

With that change, tests should pass, Great!

Another refactor

The calculate() method still seems so messy, so there is a need for

another refactoring. And again we’ll use the Extract Method

refactoring. So extract the part that is responsible for performing

the calculation into a performOperation($type, $number) method.

2015/11/27 Introduce Refactoring By Example

http://taha-sh.com/blog/introduce-refactoring-by-example 9/25

private function performOperation($operation, $numbers)
{
 if ($operation === '+')
 {
 return array_reduce($numbers, function($carry, $item) {
 return $carry + $item;
 });
 }
 else if ($operation === '*')
 {
 return array_reduce($numbers, function($carry, $item) {
 return $carry * $item;
 }, 1);
 }
}

Then modify the calculate() method to this:

public function calculate($expression)
{
 list($numbers, $operation) = $this->parseExpression($expression);

 return $this->performOperation($operation, $numbers);
}

Run your tests.

Another thing you can do, is to convert the if statement to switch

statement. Not a big deal, but I think it makes it clearer that

we’re checking the value of the same variable. You don’t have to do

it if you want since we’ll change it later, but nevertheless it

becomes:

2015/11/27 Introduce Refactoring By Example

http://taha-sh.com/blog/introduce-refactoring-by-example 10/25

private function performOperation($operation, $numbers)
{
 switch ($operation) {
 case '+':
 return array_reduce($numbers, function($carry, $item) {
 return $carry + $item;
 });
 break;
 case '*':
 return array_reduce($numbers, function($carry, $item) {
 return $carry * $item;
 }, 1);
 break;
 }
}

Replace operations with symbolic constants

Usually, I don’t like to keep literal values as they are in my code.

So when I see any literal strings or numbers (Magic Numbers

(http://en.wikipedia.org/wiki/Magic_number_%28programming%29)) that

my logic depends on I tend to hide them behind a symbolic constant. A

symbolic constant is just a simple named class constant.

So in our case we’d like to represent ‘+’ and ‘*’ with ADDITION

and MULTIPLICATION constants respectively. So add the two constants

to the StringCalculator class, and replace the literals in the

performOperation() method with those constants.

http://en.wikipedia.org/wiki/Magic_number_%28programming%29

2015/11/27 Introduce Refactoring By Example

http://taha-sh.com/blog/introduce-refactoring-by-example 11/25

class StringCalculator {

 const ADDITION = '+';
 const MULTIPLICATION = '*';

 //...

 private function performOperation($operation, $numbers)
 {
 switch ($operation) {
 case static::ADDITION:
 return array_reduce($numbers, function($carry, $item) {
 return $carry + $item;
 });
 break;
 case static::MULTIPLICATION:
 return array_reduce($numbers, function($carry, $item) {
 return $carry * $item;
 }, 1);
 break;
 }
 }
}

With that change, we’re no longer tied to literal values. And

that’s so useful, because imagine for any reason if the operation’s

symbol for multiplication was changed to X instead of the asterisk,

then all we have to do is to change the constant value instead of

replacing each literal value.

Now run your tests to make sure that everything still works.

Replace Conditional with Polymorphism

One of the greatest refactorings is “Replace Conditional with

Polymorphism”. Which states that “when you have a conditional that

chooses different behavior depending on the type of an object, you

should move each leg of the conditional to an overriding method in a

subclass, then make the original method abstract”.

If this seems confusing to you, don’t worry here’s a simpler one.

When we have a certain behavior (in this case performing the

operation) that depends on the type of an object (in this case the

2015/11/27 Introduce Refactoring By Example

http://taha-sh.com/blog/introduce-refactoring-by-example 12/25

operation’s type: ADDITION, MULTIPLICATION), then we should move

each behavior to a certain class (each behavior has its own class),

and each class extends a superclass that has an overriding method

(for example: perform() method). So each class will override that

method and fill it in with its own implementation (e.g. the Addition

must perform the addition operation). And that superclass should not

be instantiated directly (i.e. abstract class).

If it’s still confusing, code explains better.

According to the above explanation, we have to create three classes.

Operation (abstract), Addition and Multiplication.

Let’s create the Operation class first, so in your src/ create a new

directory named Operations/ which will hold all classes related to

performing operations. Then inside it, create Operation.php which

will be the abstract class that other classes extend from. Write this

into it:

<?php

namespace Acme\Operations;

abstract class Operation {

 abstract function perform($numbers);
}

Then create the Addition class. So in your src/Operations/ directory

create Addition.php, and put this into it:

2015/11/27 Introduce Refactoring By Example

http://taha-sh.com/blog/introduce-refactoring-by-example 13/25

<?php

namespace Acme\Operations;

class Addition extends Operation {

 function perform($numbers)
 {
 return array_reduce($numbers, function($carry, $item) {
 return $carry + $item;
 });
 }
}

Because it extends the Operation class, and because there is an

abstract method in it, which is perform(), we have to override it

with the appropriate implementation, in this case, we put the code of

addition into it.

Do the same for multiplication. So create Multiplication.php in

src/Operations, and write this:

<?php

namespace Acme\Operations;

class Multiplication extends Operation {

 function perform($numbers)
 {
 return array_reduce($numbers, function($carry, $item) {
 return $carry * $item;
 }, 1);
 }
}

Now it’s time to use them. And obviously, we’ve done all of this to

change the implementation of the performOperation() in the

StringCalculator class. So the first step is to remove everything

within that method. Then we have to create the correct object that

performs the correct operation. But how to decide which one should be

created? When you’re in a situation like this, go for the factory

design pattern. And in this case we’ll apply it in its most basic

2015/11/27 Introduce Refactoring By Example

http://taha-sh.com/blog/introduce-refactoring-by-example 14/25

form. We’ll use a static method that takes the operation’s type and

returns the correct object accordingly. And the best place for this

factory is within the Operation abstract class.

So your Operation class becomes like this:

abstract class Operation {

 public static function make($type)
 {
 switch ($type) {
 case \Acme\StringCalculator::ADDITION:
 return new Addition;
 break;
 case \Acme\StringCalculator::MULTIPLICATION:
 return new Multiplication;
 break;

 default:
 throw new \Exception('Not supported Operation');
 break;
 }
 }

 abstract function perform($numbers);
}

So that make() method uses a switch statement to determine which is

the correct object to return. However, if it didn’t find anything

(which means there’s no matching operation), it’ll throw an

exception telling that the operation isn’t supported.

To get everything back to work, the final step is to replace the

implementation of the performOperation() method with this:

private function performOperation($operation, $numbers)
{
 $operation = \Acme\Operations\Operation::make($operation);
 return $operation->perform($numbers);
}

Look at how simple it is now! Believe it or not, from now on, we

don’t have to touch this method again even if we want to add a new

operation. Thanks to Polymorphism

http://en.wikipedia.org/wiki/Polymorphism_%28computer_science%29

2015/11/27 Introduce Refactoring By Example

http://taha-sh.com/blog/introduce-refactoring-by-example 15/25

(http://en.wikipedia.org/wiki/Polymorphism_%28computer_science%29).

If everything was done right, your tests should pass.

Move the operations constants to their right place

Another thing you’ll usually notice while you’re refactoring your

code, is that there are some data (fields or constants) used by

methods in other class more than the ones it’s actually in.

Sometimes it’s called the Feature Envy code smell. In our case we

can find this with the operations constants (i.e. ADDITION,

MULTIPLICATION). Because notice that they’re not referenced anymore

in their current class StringCalculator, however they’re used by

the Operation class, so we conclude that it’s better to move them

to that class.

So move the constants from the StringCalculator class to the

Operation class, then update the references in the make() static

method. So your Operation class becomes like this:

http://en.wikipedia.org/wiki/Polymorphism_%28computer_science%29

2015/11/27 Introduce Refactoring By Example

http://taha-sh.com/blog/introduce-refactoring-by-example 16/25

<?php

namespace Acme\Operations;

abstract class Operation {

 const ADDITION = '+';
 const MULTIPLICATION = '*';

 public static function make($type)
 {
 switch ($type) {
 case static::ADDITION:
 return new Addition;
 break;
 case static::MULTIPLICATION:
 return new Multiplication;
 break;

 default:
 throw new \Exception('Not supported Operation');
 break;
 }
 }

 abstract function perform($numbers);
}

Run your tests.

Use a custom exception

Usually in my applications I like to use custom exceptions instead of

the general exception with message (i.e. \Excepition). Because

creating custom exceptions for each error case is always considered a

best practice, and the big advantage is that you’ll have a named

exception that is specific for a certain error, so we’re no longer

tied to the error message which is likely to change. And even though

in most cases all you have to do is to just extend that general

exception, you’ll also have the ability to add any features you want

to it.

So create a new directory called Exceptions/ within src/ which will

hold all of our custom exceptions. Our exception will be called

UnsupportedOperationException so in that Exceptions/ directory

2015/11/27 Introduce Refactoring By Example

http://taha-sh.com/blog/introduce-refactoring-by-example 17/25

create UnsupportedOperationException.php, and put this into it:

<?php

namespace Acme\Exceptions;

class UnsupportedOperationException extends \Exception {}

Notice all we’ve done is just extending the general Exception class,

and that’s enough for our case.

Now to use it, all you have to do is to replace the general exception

in the Operation class with this:

default:
 throw new UnsupportedOperationException;
 break;

Of course don’t forget to use it at the top of the file:

use Acme\Exceptions\UnsupportedOperationException;

Run your tests, everything should pass.

Now I think we have something to write a test for. And that’s the

exception, because I think it’s important to check that this

exception would be thrown if the operation isn’t supported. So in

your StringCalculatorTest.php add this test:

/**
 * @test
 * @expectedException Acme\Exceptions\UnsupportedOperationException
 */
function it_disallows_unsupported_operations()
{
 $calculator = new StringCalculator;

 $result = $calculator->calculate('3%3');
}

Notice we’ve used annotations to test the expected exception. Run

your tests, they should pass (notice we haven’t used TDD in this

2015/11/27 Introduce Refactoring By Example

http://taha-sh.com/blog/introduce-refactoring-by-example 18/25

case, I’ve done that on purpose to tell you that it’s okay to write

the implementation first in some cases, especially when you know what

your feature is about).

Extract a parser class

If you view your StringCalculator class, you’ll notice that we are

violating the single responsibility principle

(http://en.wikipedia.org/wiki/Single_responsibility_principle), which

states that each class should have only one reason to change. And our

class has two responsibilities one for performing the operation and

the other for parsing. And it’s clear that parsing isn’t its

responsibility, so it’s better to have a dedicated class for that.

Let’s call it ExpressionParser. So in your src/ directory create a

file named ExpressionParser.php, then put this into it:

http://en.wikipedia.org/wiki/Single_responsibility_principle

2015/11/27 Introduce Refactoring By Example

http://taha-sh.com/blog/introduce-refactoring-by-example 19/25

<?php

namespace Acme;

class ExpressionParser {

 private $operation;
 private $numbers;

 public function parse($expression)
 {
 $this->operation = $this->extractOperation($expression);

 $this->numbers = $this->extractNumbers($expression);

 return $this;
 }

 public function getOperation()
 {
 return $this->operation;
 }

 public function getNumbers()
 {
 return $this->numbers;
 }

 private function extractOperation($expression)
 {
 preg_match("/\d+\s?+([^\w\d\s])/", $expression, $operation);
 return $operation[1];
 }

 private function extractNumbers($expression)
 {
 $numbers = preg_split("/[^\d\w\s]/", $expression);
 return array_map("trim", $numbers);
 }
}

Then inject it into the constructor of the StringCalculator class.

So in your StringCalculator, create a constructor like this:

2015/11/27 Introduce Refactoring By Example

http://taha-sh.com/blog/introduce-refactoring-by-example 20/25

class StringCalculator {

private $parser;

function __construct(ExpressionParser $parser)
{
 $this->parser = $parser;
}
//...

Then remove the parseExpression() method from it. Then modify the

calculate() method to use our parser class, like this:

public function calculate($expression)
{
 $operation = $this->parser->parse($expression)->getOperation();
 $numbers = $this->parser->parse($expression)->getNumbers();

 return $this->performOperation($operation, $numbers);
}

Then update your tests to use that parser. But before you do that,

it’s better to move the instantiation of the StringCalculator class

to the setup() method (which is executed before each test case)

first, then inject the parser into it. So your

StringCalculatorTest.php becomes like this:

2015/11/27 Introduce Refactoring By Example

http://taha-sh.com/blog/introduce-refactoring-by-example 21/25

<?php

use Acme\StringCalculator;
use Acme\ExpressionParser;

class StringCalculatorTest extends PHPUnit_Framework_TestCase {

 function setup()
 {
 $this->calculator = new StringCalculator(new ExpressionParser);
 }

 /**
 * @test
 */
 function it_adds_numbers()
 {
 $result = $this->calculator->calculate('2+2+2');
 $this->assertEquals(6, $result);

 $result = $this->calculator->calculate('2 + 2 + 2');
 $this->assertEquals(6, $result);
 }

 /**
 * @test
 */
 function it_multiplies_numbers()
 {
 $result = $this->calculator->calculate('2*2*2');
 $this->assertEquals(8, $result);

 $result = $this->calculator->calculate('2 * 3 * 4');
 $this->assertEquals(24, $result);
 }

 /**
 * @test
 * @expectedException Acme\Exceptions\UnsupportedOperationException
 */
 function it_disallows_unsupported_operations()
 {
 $result = $this->calculator->calculate('3%3');
 }

}

If everything is OK, your tests should pass.

The result

2015/11/27 Introduce Refactoring By Example

http://taha-sh.com/blog/introduce-refactoring-by-example 22/25

A good question to ask, “is what we’ve done considered a good

design?” Well, we can answer it by measuring its goodness by some

well-known metrics. For example, I always like to use the SOLID

(http://en.wikipedia.org/wiki/SOLID_%28object-oriented_design%29)

principles as metrics to my design. For example, does our design

follow the single responsibility principle? We can see that it does

by looking at each class and method we have, everything has only one

responsibility (one reason to change).

Also if you know the open-closed principle, you can see that our

design is open for extension and closed for modification, we can see

that when we want to support a new operation. And to prove that,

let’s add subtraction to our calculator.

Another feature: Subtraction

As usual start with the test, so add this into your

StringCalculatorTest.php:

/**
 * @test
 */
function it_subtracts_numbers()
{
 $result = $this->calculator->calculate('5 - 3 - 1');
 $this->assertEquals(1, $result);
}

Run it, it’ll fail. To make it pass, we have to do the following

steps:

1. Create a new operation named Subtraction in your Operations/

directory.

2. Make it extends the Operation abstract class, then implement the

perform() method.

3. Add a constant in the Operation class to represent it.

4. Add the Subtraction class to the factory list.

http://en.wikipedia.org/wiki/SOLID_%28object-oriented_design%29

2015/11/27 Introduce Refactoring By Example

http://taha-sh.com/blog/introduce-refactoring-by-example 23/25

So let’s tackle each step. Create Subtraction.php in your

Operations/ directory, then write this:

<?php

namespace Acme\Operations;

class Subtraction extends Operation {

 function perform($numbers)
 {
 $initial = array_shift($numbers);

 return array_reduce($numbers, function($carry, $item) {
 return $carry - $item;
 }, $initial);
 }
}

Then in your Operation class, add this constant: const SUBTRACTION =

‘-’;, then add it to the factory list, so your Operation class

should look like this:

2015/11/27 Introduce Refactoring By Example

http://taha-sh.com/blog/introduce-refactoring-by-example 24/25

<?php

namespace Acme\Operations;

use Acme\Exceptions\UnsupportedOperationException;

abstract class Operation {

 const ADDITION = '+';
 const MULTIPLICATION = '*';
 const SUBTRACTION = '-';

 public static function make($type)
 {
 switch ($type) {
 case static::ADDITION:
 return new Addition;
 break;
 case static::MULTIPLICATION:
 return new Multiplication;
 break;
 case static::SUBTRACTION:
 return new Subtraction;
 break;

 default:
 throw new UnsupportedOperationException;
 break;
 }
 }

 abstract function perform($numbers);
}

Run your tests, everything should pass.

With that, we’re finished with our refactoring journey.

Congratulations!

Conclusion

I hope you can now see how powerful Refactoring is. With Refactoring

we can convert a bad designed (legacy) code, into a well-designed

professional code. Notice how easy it becomes to deal with our code

after refactoring. Also our code reads much better than before. So

evidently, Refactoring is a great thing to master.

2015/11/27 Introduce Refactoring By Example

http://taha-sh.com/blog/introduce-refactoring-by-example 25/25

As I’ve mentioned at the beginning, this tutorial is intended to

give you an overview of Refactoring and how

