Provable Security of Public Blockchain

Privacy-Preserving Schemes
October 7, 2022 Ziyu Meng

October 7, 2022

Abstract

There are many public blockchain privacy-preserving schemes nowa-
days, two of which are Zerocash and BlockMaze. Both them provide a
way to protect the privacy issue in public blockchains, which use subtle
combination of many cryptography primitives like zero-knowledge proofs
scheme, encryption scheme, commitment scheme, etc. And thus the prob-
lem comes: How to prove the security? In the article, I try to give
a simple explanation of how to prove the security of public blockchain
privacy-preserving schemes by analyzing the security proof of Zerocash
and BlockMaze.

1 Introduction

In public blockchains, transactions are transparent once put on blockchain.
Therefore, information like: sender, receiver, transaction amount, extra mes-
sage are visible by anyone. Privacy is subjective, for someone who wants to
hide the account actions would regard ”sender” as private, for someone who
wants to hide the transaction amount would regard ”transaction amount” as
private, etc. And because of this, there is no unified definition of privacy in
public blockchains.

But in general, we could give an informal definition of privacy in public
blockchains: The privacy in public blockchains includes 3 parts, which are ac-
count balance, transaction amount and linkage between senders and recipients.

In order to protect the privacy, many schemes using zero-knowledge proofs
are proposed. Here I take Zerocash and BlockMaze as examples.

2 How Zerocash and BlockMaze works?

Zerocash and BlockMaze protect privacy both by providing a ”shield pool”, we
could image this as a opaque pool. And only what happens above the pool can

be viewed but what happens in the pool can not. In this way, users send ” Mint”
transaction to convert some public value into private value, and then they trade
with private value, finally they withdraw the private value into public value.

Mint Withdraw

| |

Trade

Figure 1: Overview of schemes.

When someone send ”Mint” transaction, only sender address and mint amount
are revealed (actually more than these two information are revealed, but tempo-
rary we only focus on these). When someone send ” Trade” transaction, the link-
age between sender and recipient is somehow hidden, specifically, it is achieved
by commitment and zero-knowledge proofs, so that others could only link the
recipient with the senders in the set. In the ”Withdraw” transaction, only
recipient address and withdraw amount are revealed.

It is pretty general in the description above, we now give a more detailed
description. When someone mints, he actually constructs a commitment using
his address, certain value amount, serial number and random number, and once
the commitment is sent to the blockchain by him, we regard he mints some public
value into private value. When someone trades, he construct a new commitment
using recipient address, updated value, new serial number and new random
number, and the recipient construct a zero-knowledge proof to show that in a
set of transaction commitment, there is one for me. When someone Withdraw,
he gives a zero-knowledge proof to show how one commitment is constructed,
and by which he we regard he withdraw some private value into public value.

It is needed to declare that the real construction is not exactly follows the
description above, I hope that could give an intuitive view of how Zerocash and
BlockMaze works, for example, there is no ”Withdraw” action in Zerocash, but
there is still a way for user to withdraw private value into public value by ” Pour”
action defined in the paper.

3 How to prove the security of Zerocash and
BlockMaze

In the last section, I have given an intuitive description of how Zerocash and
BlockMagze works, but here the question comes: How do we prove the scheme

is secure? To answer this question, we need to clear first that what the security
goal and the adversary capability are.

When we talk about a encryption scheme, we say it is IND-CPA secure or
IND-CCA secure, which means that the adversary could not distinguish the
ciphertext under the chosen plaintext attack and chosen ciphertext attack. It
gives us a sense that the ciphertext could not reveal any information about
the plaintext. But why this is important? The answer is related to the usage
situation in the reality. In most cases, we encrypt a message because we don not
want others see it. Thus, if an encryption scheme could leak some information
about the plaintext, the adversary could use it to distinguish ciphertexts and
we regard scheme unsecure.

So, what is the security goal of public blockchain privacy-preserving scheme?
It is also related to the reality usage situation. For privacy-preserving scheme,
we do not want let adversary get anything beyond the publicly-revealed in-
formation, by which information adversary may get private information like
transaction amount, account balance, who we are trading with, etc. Then, for
"Trade” algorithm (”Send” algorithm in BlockMaze and ”Pour” algorithm in
Zerocash), we want to make sure that adversary could not exploit it to generate
an malicious but valid ”Trade” transaction, for example, an adversary could
construct a valid transaction but use an old serial number. Finally, for the as-
pect of blockchain itself, we do not want adversary get value out of air, which
means all the input value should be equal to the output value plus adversary
balance.

After this, we could give a formal definition of public blockchain privacy-
preserving scheme’s security goal:

Definition 1 A public blockchain privacy-preserving scheme is secure if it satis-
fies ledger indistinguishability, transaction unlinkability, transaction non-melleability,
and balance.

For more detailed formal definition of four security goals above, please refer
the Zerocash paper or BlockMaze paper.

3.1 Proof of Ledger Indistinguishability

Game-based definition is given as follows:

Definition 2 For a public blockchain privacy-preserving scheme 11, we say that
IT is L-IND secure if for every PPT adversary A and sufficiently large A, there
18

AdvﬁfﬁD(x\)<negl()\)

where Advll‘q’fﬁD()\) =2 Pr[Exph’fﬁD = 1] —1 is A’s advantage in the L-IND
experiment.

For experiment L-IND, there is an adversary A and a challenger C. Given a
uniform random bit b, the experiment outputs a bit b’ at last. We see that if II
is secure, then the advantage of A should be negligible, see appendix how the
formula of AdvlliffﬂD (M) comes from.

At the beginning of the experiment, C samples b € {0, 1} at random, next ini-
tializes (using pp) two separate II oracles, provides A with two ledgers (Lyes,Lright),
where Lies := Ly is the current ledger in (9,1?, and LRight := L1_p is the current
ledger in 011117- Then, A sends a pair of queries Q, Q', which are consistent
(basically, it means both queries are valid, of same type and have same pub-
lic information). After receiving the queries, challenger then answer it with
ap,ai_p. Then A outputs a bit b € {0,1}, if b = b’ then experiment returns 1
otherwise returns 0.

$
b < {0,1}
A C
« PP | ppeSetup(1?)
Lieft =L

L) ofts LRj
Left» “Right LRight = Li_p

Q
O |— ap
Ql
n(—, 4
Ol—b 1-b
ap,A1-p
-2 P

|

bl
Figure 2: Experiment L-IND between A and C

We will give a game-based proof to show that the advantage of A in the ex-
periment is negligible. For game-based proof, it gives us a way to reduction step
by step. For more detail information, please refer to the PowerPoint ”Security
Proofs using the Game-based Methodology” by David Pointcheval [2].

We first give a simulation game Gg;,,, where the oracle and the challenger are
all simulated by the simulator. Whenever adversary try to query challenger, it
replies in simulated way. Basically, if the query is CreateAccount, it generates
a simulated key pair by replace the public key with random string, and records
them for later use. Otherwise, if the query is zero-knowledge related, and the
adversary queried for CreateAccount before, then the challenger simulated by
replacing the serial number with random string, replacing the commitment with
committing a random string, encrypting with new new generated keys. Note
that the answer to adversary is computed independently of the bit b, since the
process of challenger are all simulated, thus the output b’ by adversary must be
Prp =¥ = %, and the advantage of adversary in Gg;,,, = 0.

For a series of games, in which the simulator simulates the generation of zero-
knowledge proof, generation of ciphertext by encryption scheme, generation
of serial number by pseudo random function, generation of commitment by
commitment scheme, we will see that the advantage of adversary finally reduced
to a combination of advantages for some cryptography primitives. Assuming the
primitives are secure with security parameter \ for PPT adversary, then the
advantage of adversary for these primitives are negligible. So that we can get
a negligible advantage for adversary in experiment L-IND, which proves the
security of our scheme II in real world.

3.2 Proof of Transaction Non-malleability

We first give the definition of Transaction Non-malleability as follows:

Definition 3 For a public blockchain privacy-preserving scheme 11, we say that
IT is TR-NM secure if for every PPT adversary A and sufficiently large X\, there
18

Adv;[ft\NM (A)<negl(N)

where AdvEﬁNM(A) = Pr[ExpE’?ANM = 1] — 1 is A’s advantage in the L-IND
experiment.

ep
Qi
tx; on
txq,txz, .. =T tx"
I
Jtx" €T s.t.
1tx" # tx'

2.Verify(pp, tx*, L") = 1
3.tx".sn = tx'.sn

0/1

Figure 3: Experiment TR-NM between A and C

For experiment TR-NM, there is an adversary A and a challenger C, the
experiment terminates with a binary output by C. At the beginning of the
experiment, C initializes (using pp) a II oracle. And at the end of the ex-
periment, A sends C a Trade transaction tz* and C outputs 1 if and only if
the following conditions holds: Let set 7 be transactions which are generated
by O to reply queries from A, there exist tx € 7 such that: (i) tz = ta*;

(ii) Verify(pp,ta*, L’) = 1, where L’ is the portion of ledger preceding tx; (iii)
tr*.sn = tr.sn.

We could see that, if A wants to win in the TR-NM experiment, the algo-
rithm Verify is vital. Before giving how Verify works, we first see the construction
of Trade transaction. (For the proof of transaction non-melleability, we use the
scheme in Zerocash, because it separates signature from zero-knowledge proof
so that we could prove the security more easily.). For Trade transaction in Ze-
rocash, it could be parsed as tx%gde . (root, sn°?, cmnev , Upubs Dksig, N, ™, C
,0), where sn°? = (sng!d sng!d), em™ = (emPe?, emB%), h = (hy, hs),
C = (C1,Cs) and root is the root of commitment of sn°d cm™ is the new
commitment after trading, vp. is the public output in Zerocash, pkg;4 is the
public key for signature, h is a pseudo random number used for transaction
non-melleability security, 7 is zero-knowledge proof, C' is ciphertext for encryp-
tion. For zero-knowledge proof 7 could be parses as 7 : (root,sn°?, em™e®
, Upub, Psig, R). For signature could be parses as o : Sq,,, (m). We now give the
algorithm Verify as follows:

sig

Verify Transaction
e INPUTS:
— public parameters pp
— a (mint or pour) transaction tx
— the current ledger L
e OUTPUTS: bit b, equals 1 iff the transaction is valid

1. If given a mint transaction tx = txXmint:
(a) Parse txmint as (cm,v,*), and * as (k, s).
(b) Set cm’ := COMM,(v]k).
(c) Output b:=1if cm = cm’, else output b := 0.
2. TIf given a pour transaction tx = tXpoyr:
(a) Parse txpoyr as (rt, sn$d sngd emie”
* as (pksig.h,l,hg, meour: C1, Ca, 7).
(b) If snd? or snd¢ appears on L (or sndd = sng‘d). output b := 0.
(¢) If the Merkle root rt does not appear on L, output b := 0.
(d) Compute hsig := CRH(pk

., €m5™, toup, info, x), and

sig

(e) Set x:= (rt,sn, sng9, emiew, cmb™, tpub, hsig, b, hz).
(f) Set m := (x, mpowr, info, C1, C2).

(g) Compute b := Vsg(pkgg, m,).

(h) Compute b := Verify(vkpoun, Z, Teour), and output b A D,

Figure 4: Verify algorithm

Imagine you are the adversary, when you get a Trade transaction tx from
the oracle, what will you do to win the TR-NM experiment? Intuitively, we
could just copy a valid transaction and modify some information and let it
pass the Verify algorithm. However, we could see in the 4 that, the simulation
extractability of zero-knowledge proof m makes sure no one could generate a
proof without the witness, and because of that, A could not modify almost
all information of the tx. But, here is a vulnerability A may use, we see that
Verify constructs = by copy (root, sn°'¢, em™™ vpyp, h) from tz and computes
hsig := CRH(pks;q). Then A may use hg;g to attack.

For the first case, considering there is a collision of hash function, then we
could use it to construct a new transaction tx* := (root, snold emnrew Vpubs PKL; g
yh,m,C , o) such that CRH(tx*.pk{;,) = CRH(tx.pks;g). Under this case, tx*
satisfies all three conditions, and thus A wins. It is intuitive that it happens with
negligible possibility, because Zerocash uses collision resistant hash function
here.

For the later case, we specify Qca = {al,, a?,...,al{*} as A’s Trade queries
toC and Qp = {pk;ig, pkgig, ...,pk‘gg} as replies of C containing signature public
keys.

Now we consider second case where A wins and case 1 does not happen.
Consider there is pk{;, € Qp such that pk[;, = pksig, let this transaction be
tz”, we say that A may use this to attack. We first prove that tz* # tz”
with overwhelming probability. We do this by contradiction. First, since
A wins, there is a transaction tz’ in 7 such that tx* # ta’ but share a
same serial number. Therefore, if tx* = tz”, then tz” and tx’ also share a
same serial number, since serial numbers are generated by PRF(p), and p is
a random number, so that tz* = ¢z’ holds with negligible possibility. Next,
since tz’ is valid, then Verify(ta” .pkgig, ta” .m” ta" .0"") = 1, note that for tz*,
Verify(tx* .pksiq, tx*.m, tx*.0) = 1 also holds. Since tz* # tz” with overwhelm-
ing possibility, then (m, o) # (m”,¢”) with overwhelming possibility. Consid-
ering that tz* and tz” share one signature public key, we say that A forgery a
new signature o’ for m’ with public key pk;y. We say that A win the signature
forgery game SUF-1CMA game with negligible possibility. So that A could not
construct a valid transaction tz” by modify (forgery) signature to win.

Consider third case where A wins and case 1,2 does not happen. Consider
there is h; = PRFP¥(i||hg;,) for some i € {1,2} and a € Qca. We should be
clear that why we should consider this case, specifically, why A could use h to
construct an attack. We consider this because hs;y may be vulnerable, thus h
may also be vulnerable. We first give a game G; where C simulates the key
generation of zero-knowledge keys to get the zero-knowledge trapdoor. Because
the zero-knowledge scheme is perfect zero-knowledge, thus the possibility of
case3 in G; is equal to the possibility of case3 in real world. We do this reduction
step for the later experiment construction. We next show that, if the possibility
of case3 happens in G; is not negligible, then we could construct an adversary
B which could distinguish PRF from real random function RAND. We give the
construction of experiment G; as below. In the experiment, B first random
select an index j and identifies a?k, Then, for the interaction between A and
C (with trapdoor, B could generates zero-knowledge proof without witness), B
check whether there is some data z is going to be computed as PRFajk (z), then
B queries oracle O which is either PRF or RAND. Finally, A outputs tz*, and if
O previously evaluated PRFaﬁk (t]|hsig) then B aborts and outputs 1; Otherwise

B evaluated PRF sk (i||hsig) using oracle O and if result equals h;, B outputs
J

1 otherwise outputs 0. We could conclude that, if case3 happens with non-
negligible possibility, then B could win G; win non-negligible possibility, since
PREF is collision resistant, we say that case3 happens with negligible possibility.

B

queries
(pk, vk, trap) CA
« Sim(1%,C)
.S
je{1,..,qc4} z
For z to be computed
as PRF ;o1 (2) 0@ | 0

Figure 5: Experiment G,

Consider fourth case where A wins and case 1,2,3 does not happen. Consider
hi # PRF,(i||hsig) for all i € 1,2 and a € Qca. We say that case4 happens
with negligible possibility. If case4 happens with non-negligible possibility, then
we could construct B that finds a collision of PRF, where B also uses A as
subroutine.

3.3 Proof of Balance

We first give the definition of Balance as follows:

Definition 4 For a public blockchain privacy-preserving scheme 11, we say that
IT is BAL secure if for every PPT adversary A and sufficiently large X\, there
18

Advi i (N <negl(N)

where Adv%ﬁh()\) = Pr[Epot\NM = 1] — 1 is A’s advantage in the BAL
experiment.

pp

—

Q;

A 1
replies v
—

Scoin

Vunspent + VBasecoin
+V,4-ADDR
> UMint * VADDR-4

10/1

Figure 6: Experiment BAL between A and C

For experiment BAL, there is an adversary A and a challenger C, the experi-
ment terminates with a binary output by C. At the beginning of the experiment,
C initializes (using pp) a I oracle. And at the end of the experiment, A sends C
a Set of coins S, and C outputs 1 if and only if the following conditions holds:
coins in Scoin where Vunspent + VUBasecoin T VA—ADDR > UMint T YADDR—A, where
Uunspent 1S the total value of all spendable coins in Scoin, VBasecoin is the total
value of public outputs placed by A on the ledger (by Insert query), v.4-apDR
is the total value sent by A to address in ADDR (the address set created by
CreateAddress queries to O7, which represents the address of "honest” users),
UMint 18 the total value of all coins minted by A, vappr_.4 is the total value of
payments received by A from address in ADDR.

Intuitively, there are two methods for 4 to spend more public-output money
than he owns, first is inserting transactions on the ledger and second is asking
honest parties to insert such Insert transactions for him. Query Insert to the
oracle is described detailed in appendix B.

We first modify BAL experiment in a way that does not affect A’s view: C
computes for every Trade transaction tx on the ledger L (in oracle) a witness
a = (pathy, path,, cg'?, ¢3¢, addrd®, addrg%, cpe®, cse®) for zk-SNARK instance
x corresponding to tx. So that C' obtains an augmented ledger (L, @) where a;
is the witness of instance x; for i-th Trade transaction in L.

For the modified ledger (L, @), we say it is balanced if the following conditions
holds:

1. Each Trade transaction tx contains openings of two distinct input coin
commitments and they are the output commitment of Trade or mint trans-
action that precedes tx on L.

2. No two Trade transactions contain openings of the same coin commitment.

3. For each Trade transaction, the input value implied in input commitment
equal to the output value implied in output commitment plus the public
output value.

4. For each Trade transaction, if the i-th input commitment is also a output
commitment of mint transaction on L, then the value implied in this input
commitment is equal to the public value in this mint transaction; if the
i-th input commitment is a output commitment of a Trade transaction on
L, then the value implied in these two commitment are same.

5. For each Trade transaction that is inserted by A, if the i-th input com-
mitment is the output of earlier mint or Trade transaction, then the i-th
output public address is not contained in ADDR.

In light of above, it suffices to argue that augmented ledger induced by the
modified BAL experiment is balanced with all but negligible probability. Sup-
pose, by way of contradiction, that 4 induces an augmented ledger (L, @) with
non-negligible possibility that is not balanced, in this way, (L, @) will violates at

one of five conditions above. We give all five violations to show that A could not
give a unbalanced ledger violating five conditions with non-negligible possibility.

First, we assume A wins and contradicts condition 1 is non-negligible. This
means A inserts a Trade transaction ¢z such that: (i) with same input commit-
ments; or (ii) there is a input commitment that has no corresponding output
coin commitment in any Trade or mint transaction that precedes tx on L. How-
ever, for the validity of Trade transaction implies that two input serial numbers
are distinct and the witness contains two valid authentication path path; and
path,. For (i) if two input commitments are same, then it contradicts with the
fact that two input serial numbers implies two distinct openings of commit-
ments. This violates the binding property of the commitment scheme COMM.
For (ii), if there is a commitment does not previously appear in L, and because
path of this commitment is valid, thus there must be a collision for CRH.

Second, we assume .4 wins and contradicts condition 2 is non-negligible. This
means two Trade transactions use one same input commitment and revealing
two serial number. Since two Trade transaction are valid, thus these two serial
number must be different, however, it contradicts the face that one same input
commitment is used.

Third, we assume A wins and contradicts condition 3 is non-negligible. In
this case, contradiction is obvious, since the Trade transaction is valid, then the
input value implied in input commitment must be equal to the output value
implied in output commitment plus the public output value.

Fourth, we assume A wins and contradicts condition 4 is non-negligible. In
this case, L contains a Trade transaction that one of its input commitments
opens to be value v and another Trade (or) mint transaction opens this com-
mitment to be value v’ that different from v. Since COMM is binding, thus v
must be equal to v'.

Fifth, we assume 4 wins and contradicts condition 5 is non-negligible. In
this case, L contains an inserted Trade transaction that spends the output of
a previous transaction whose public address is in ADDR. Since the previous
Trade transaction is valid, thus the witness gives a valid output public address,
we could show that there is a adversary B could use A to distinguish a random
oracle from PRF with non-negligible possibility.

References

[1] Guan Z, Wan Z, Yang Y, et al. BlockMaze: An efficient privacy-preserving
account-model blockchain based on zk-SNARKs[J]. IEEE Transactions on
Dependable and Secure Computing, 2020.

[2] https://www.di.ens.fr/david.pointcheval/Documents/Slides/
52009_catania.pdf

10

A Advantage of A in L-IND experiment
We here give another definition of advantage in L-IND experiment first:

Definition 5 The advantage of adversary A in L-IND experiment for public
blockchain privacy-preserving scheme II is:

Adv L- |ND(>\) —Pr [EXpL IND- O()\) _ 1]_ Pr [EXpL IND- 1()\) — 1]

L-IND-0 L-IND-1 L-IND

where Expr 4~ and Expry 4~ are same as Expyy 4~ except they return what

A outputs.

We see that for an innocent adversary A, in the experiment Exp" IND there

is at least pObblblhty of 1/2 for him to win, thus we could see that advantage
of A is 0, since Epo AD O — Exp L 'ND 1= 1/2. But, for a normal adversary, it
prefer ¥ =0 or b/ = 1 more, since he could get some information through the
experiment. So by subtracting the possibility in Exp" IND-0- and ExpL IND-1 we
could get the advantage of A.

Pr[Expk 'ND()\) =1]
= Pr[b =
b=V =1] Pr[= 1]+Prjb = ¥'|t/ = 0]-Pr[t/ = 0]
=Prb=1[y =1]- + Prlb=0|p' = 0]-1
=Prp=1t' =13+ (1 —Prp=1]p' =0])- 1
=14+ 1IPrp=1Y =1-Prb= 1|t/ =0))

— 1 é(EXPL IND- O(A) — 1] PI‘[EXPL IND- 1(/\) — 1])

=3+ 3 AdvE (V)

By the equations above, we could get that:

Advi > (A) =2 Pr[Expr > = 1] — 1

B Queries to Oracle O™ and Replies

The oracle OT is initialized by a list of public parameters pp and maintains
states. Internally, O™ stores: (i) a ledger L; (ii) a set of address key pairs
ADDR; (iii) a set of coins COIN. O™ accepts different types of queries and each
query causes different updates to L, ADDR, COIN and outputs. For queries @
to O™, we describe it oracle’s behavior as below:

We should see from the the 7 that, there is a ”special” Query named Insert
that could insert a valid transaction to the ledger, we should notice that there
is no Insert algorithm in real. We see that the Insert query here is for proof of
Balance use.

11

¢ () = (CreateAddress)

1. Compute (addrp, addrg) := CreateAddress(pp).
2. Add the address key pair (addrpy,addrg) to ADDR.
3. Output the address public key addrpy.

The ledger L and coin set COIN remain unchanged.

e Q = (Mint,v, addrp)
1. Compute (¢, txmint) := Mint(pp, v, addrp).
. Add the coin ¢ to COIN.

2
3. Add the mint transaction txmint to L.
4. Output L.

The address set ADDR remains unchanged.

— sqold o old old old - ne ne
e @ = (Pour,idx{",idx3, addrpy 1, addrpgo, info, 07, v3*", addrpe], addre’y, vpub)

1. Compute rt, the root of a Merkle tree over all coin commitments in L.
2. For each i € {1,2}:
(a) Let cm® be the idx?-th coin commitment in L.

(b) Let tx; be the mint/pour transaction in L that contains cm'd.
old

(¢) Let 9" be the first coin in COIN with coin commitment cm§
(d) Let (addrel®., addr%%) be the first key pair in ADDR with addrel, being c??’s address.

pk,i» sk,i pk,i 7
(e) Compute path;, the authentication path from cm‘i’ICl to rt.
3. Compute (c]®¥,c5®", txpoyr) := Pour(pp, rt,c‘l"d,cg'd,addr;'f17 addr;’L‘fZ, pathy, pathy, vV, v5e",

addrpy, addriE", vpup, info).
. Verify that VerifyTransaction(pp, txpour, L) outputs 1.
Add the coin cf®" to COIN.
Add the coin c§*" to COIN.
. Add the pour transaction txpe,, to L.
. Output L.

If any of the above operations fail, the output is L (and L, ADDR, COIN remain unchanged).

¢ Q = (Receive,addrpy)

1. Look up (addry,addrgc) in ADDR. (If no such key pair is found, abort.)
2. Compute (ci,...,cy) < Receive(pp, (addry,addrg), L).

3. Add ¢y,...,c, to COIN.

4. Output (cmy, ..., cm,), the corresponding coin commitments.

0 N O Ot

The ledger L and address set ADDR remain unchanged.
o () = (Insert, tx)

1. Verify that VerifyTransaction(pp, tx, L) outputs 1. (Else, abort.)

2. Add the mint/pour transaction tx to L.

3. Run Receive for all addresses addr,, in ADDR; this updates the COIN with any coins that
might have been sent to honest parties via tx.

4. Output L.

The address set ADDR remains unchanged.

Figure 7: Oracle O™ behavior to queries

12

