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 PRIMES is in P

 By MANINDRA AGRAWAL, NEERAJ KAYAL, and NITIN SAXENA*

 Abstract

 We present an unconditional deterministic polynomial-time algorithm that
 determines whether an input number is prime or composite.

 1. Introduction

 Prime numbers are of fundamental importance in mathematics in general,
 and number theory in particular. So it is of great interest to study different
 properties of prime numbers. Of special interest are those properties that
 allow one to determine efficiently if a number is prime. Such efficient tests are

 also useful in practice: a number of cryptographic protocols need large prime
 numbers.

 Let PRIMES denote the set of all prime numbers. The definition of prime
 numbers already gives a way of determining if a number n is in PRIMES: try
 dividing n by every number m < v/n-if any m divides n then it is compos-
 ite, otherwise it is prime. This test was known since the time of the ancient

 Greeks-it is a specialization of the Sieve of Eratosthenes (ca. 240 BC) that
 generates all primes less than n. The test, however, is inefficient: it takes

 Q(x/n) steps to determine if n is prime. An efficient test should need only a
 polynomial (in the size of the input = [log ni) number of steps. A property
 that almost gives an efficient test is Fermat's Little Theorem: for any prime

 number p, and any number a not divisible by p, aP-1 = 1 (mod p). Given an
 a and n it can be efficiently checked if an-1 = 1 (mod n) by using repeated
 squaring to compute the (n - 1)th power of a. However, it is not a correct
 test since many composites n also satisfy it for some a's (all a's in case of
 Carmichael numbers [Car]). Nevertheless, Fermat's Little Theorem became
 the basis for many efficient primality tests.

 Since the beginning of complexity theory in the 1960s-when the notions
 of complexity were formalized and various complexity classes were defined-

 *The last two authors were partially supported by MHRD grant MHRD-CSE-20010018.
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 this problem (referred to as the primality testing problem) has been investi-
 gated intensively. It is trivial to see that the problem is in the class co-NP: if n
 is not prime it has an easily verifiable short certificate, viz., a nontrivial factor

 of n. In 1974, Pratt observed that the problem is in the class NP too [Pra]
 (thus putting it in NP n co-NP).

 In 1975, Miller [Mil] used a property based on Fermat's Little Theorem to
 obtain a deterministic polynomial-time algorithm for primality testing assum-

 ing the Extended Riemann Hypothesis (ERH). Soon afterwards, his test was
 modified by Rabin [Rab] to yield an unconditional but randomized polynomial-
 time algorithm. Independently, Solovay and Strassen [SS] obtained, in 1974,
 a different randomized polynomial-time algorithm using the property that for

 a prime n, (a) = a 2 (mod n) for every a ((-) is the Jacobi symbol). Their
 algorithm can also be made deterministic under ERH. Since then, a number
 of randomized polynomial-time algorithms have been proposed for primality
 testing, based on many different properties.

 In 1983, Adleman, Pomerance, and Rumely achieved a major break-
 through by giving a deterministic algorithm for primality that runs in

 (log n)(l1°gl°gl°gn) time (all the previous deterministic algorithms required ex-
 ponential time). Their algorithm was (in a sense) a generalization of Miller's
 idea and used higher reciprocity laws. In 1986, Goldwasser and Kilian [GK]
 proposed a randomized algorithm based on elliptic curves running in expected
 polynomial-time, on almost all inputs (all inputs under a widely believed hy-
 pothesis), that produces an easily verifiable short certificate for primality (un-
 til then, all randomized algorithms produced certificates for compositeness

 only). Based on their ideas, a similar algorithm was developed by Atkin [Atk].
 Adleman and Huang [AH] modified the Goldwasser-Kilian algorithm to obtain
 a randomized algorithm that runs in expected polynomial-time on all inputs.

 The ultimate goal of this line of research has been, of course, to obtain an
 unconditional deterministic polynomial-time algorithm for primality testing.
 Despite the impressive progress made so far, this goal has remained elusive.

 In this paper, we achieve this. We give a deterministic, O'(log15/2 n) time
 algorithm for testing if a number is prime. Heuristically, our algorithm does
 better: under a widely believed conjecture on the density of Sophie Germain

 primes (primes p such that 2p + 1 is also prime), the algorithm takes only
 O0 (log6 n) steps. Our algorithm is based on a generalization of Fermat's Little
 Theorem to polynomial rings over finite fields. Notably, the correctness proof

 of our algorithm requires only simple tools of algebra (except for appealing
 to a sieve theory result on the density of primes p with p - 1 having a large
 prime factor-and even this is not needed for proving a weaker time bound of
 O (log21/2 n) for the algorithm). In contrast, the correctness proofs of earlier
 algorithms producing a certificate for primality [APR], [GK], [Atk] are much
 more complex.
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 In Section 2, we summarize the basic idea behind our algorithm. In Sec-
 tion 3, we fix the notation used. In Section 4, we state the algorithm and
 present its proof of correctness. In Section 5, we obtain bounds on the running
 time of the algorithm. Section 6 discusses some ways of improving the time
 complexity of the algorithm.

 2. The idea

 Our test is based on the following identity for prime numbers which is a

 generalization of Fermat's Little Theorem. This identity was the basis for a
 randomized polynomial-time algorithm in [AB]:

 LEMMA 2.1. Let a E Z, n E AK, n > 2, and (a,n) = 1. Then n is prime
 if and only if

 (1) (X + a)n = Xn + a (mod n).

 Proof. For 0 < i < n, the coefficient of xi in ((X + a)n - (Xn + a)) is
 (n)an-i

 Suppose n is prime. Then (n) = 0 (mod n) and hence all the coefficients
 are zero.

 Suppose n is composite. Consider a prime q that is a factor of n and

 let qk ln. Then qk does not divide (n) and is coprime to an-q and hence the
 coefficient of Xq is not zero (mod n). Thus ((X + a)n - (Xn + a)) is not
 identically zero over Zn. El

 The above identity suggests a simple test for primality: given an input n,

 choose an a and test whether the congruence (1) is satisfied. However, this
 takes time Q(n) because we need to evaluate n coefficients in the LHS in the
 worst case. A simple way to reduce the number of coefficients is to evaluate

 both sides of (1) modulo a polynomial of the form Xr - 1 for an appropriately
 chosen small r. In other words, test if the following equation is satisfied:

 (2) (X + a)n = Xn + a (mod Xr - 1, n).

 From Lemma 2.1 it is immediate that all primes n satisfy the equation (2) for all
 values of a and r. The problem now is that some composites n may also satisfy
 the equation for a few values of a and r (and indeed they do). However, we
 can almost restore the characterization: we show that for appropriately chosen

 r if the equation (2) is satisfied for several a's then n must be a prime power.
 The number of a's and the appropriate r are both bounded by a polynomial

 in log n and therefore, we get a deterministic polynomial time algorithm for
 testing primality.

 783
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 3. Notation and preliminaries

 The class P is the class of sets accepted by deterministic polynomial-time

 Turing machines [Lee]; see [Lee] for the definitions of classes NP, co-NP, etc.
 Zn denotes the ring of numbers modulo n and Fp denotes the finite field

 with p elements, where p is prime. Recall that if p is prime and h(X) is a
 polynomial of degree d and irreducible in Fp, then Fp[X]/(h(X)) is a finite
 field of order pd. We will use the notation f(X) = g(X) (mod h(X), n) to
 represent the equation f(X) = g(X) in the ring Zn[X]/(h(X)).

 We use the symbol O-(t(n)) for O(t(n) · poly(logt(n)), where t(n) is
 any function of n. For example, O(logk n) = 0(logk n * poly(log log n)) =
 O(logk+E n) for any e > 0. We use log for base 2 logarithms, and ln for natural
 logarithms.

 AJ and Z denote the set of natural numbers and integers respectively.

 Given r c KV, a E Z with (a, r) = 1, the order of a modulo r is the smallest
 number k such that ak = 1 (mod r). It is denoted as or(a). For r E A, q(r)
 is Euler's totient function giving the number of numbers less than r that are

 relatively prime to r. It is easy to see that or(a) I| (r) for any a, (a, r) = 1.
 We will need the following simple fact about the 1cm of the first m numbers

 (see, e.g., [Nai] for a proof).

 LEMMA 3.1. Let LCM(m) denote the 1cm of the first m numbers. For
 m>7:

 LCM(m) > 2m.

 4. The algorithm and its correctness

 Input: integer n > 1.

 1. If (n = ab for a E Ar and b > 1), output COMPOSITE.

 2. Find the smallest r such that Or(n) > log2n.
 3. If 1 < (a,n) < n for some a < r, output COMPOSITE.

 4. If n < r, output PRIME.1

 5. For a= 1 to L /b(r)lognJ do
 if ((X + a)n y Xn + a (mod Xr - 1, n)), output COMPOSITE;

 6. Output PRIME.

 Algorithm for Primality Testing

 784
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 THEOREM 4.1. The algorithm above returns PRIME if and only if n is
 prime.

 In the remainder of the section, we establish this theorem through a se-
 quence of lemmas. The following is trivial:

 LEMMA 4.2. If n is prime, the algorithm returns PRIME.

 Proof. If n is prime then steps 1 and 3 can never return COMPOSITE.
 By Lemma 2.1, the for loop also cannot return COMPOSITE. Therefore the
 algorithm will identify n as PRIME either in step 4 or in step 6. D

 The converse of the above lemma requires a little more work. If the
 algorithm returns PRIME in step 4 then n must be prime since otherwise
 step 3 would have found a nontrivial factor of n. So the only remaining case is
 when the algorithm returns PRIME in step 6. For the purpose of subsequent
 analysis we assume this to be the case.

 The algorithm has two main steps (2 and 5): step 2 finds an appropriate
 r and step 5 verifies the equation (2) for a number of a's. We first bound the
 magnitude of the appropriate r.

 LEMMA 4.3. There exists an r < max{3, [log5 nl} such that or(n) >
 log2 n.

 Proof. This is trivially true when n = 2; r = 3 satisfies all conditions. So

 assume that n > 2. Then Flog5 nl > 10 and Lemma 3.1 applies. Let rl, r2,
 .., rt be all numbers such that either or, (n) < log2 n or ri divides n. Each of
 these numbers must divide the product

 [log2 nJ

 n JJ (ni-1) < nlog4n < 2log5 n
 i=l

 By Lemma 3.1, the 1cm of the first Flog5 nl numbers is at least 2[log5 n] and

 therefore there must exist a number s < Flog5 n] such that s ¢ {ri, r2,... , rt}.
 If (s,n) = 1 then os(n) > log2n and we are done. If (s,n) > 1, then since s
 does not divide n and (s, n) E {rl, r2,.. . ,, r r = (sn) {r, r2,... , rt} and
 so or(n) > log2 n. D

 Since Or.(n) > 1, there must exist a prime divisor p of n such that Or.(p) > 1.
 We have p > r since otherwise either step 3 or step 4 would decide about the

 primality of n. Since (n, r) = 1 (otherwise either step 3 or step 4 will correctly
 identify n), p, n C Z*r. Numbers p and r will be fixed in the remainder of this

 section. Also, let t = [L/V(r)log nJ.

 1Lemma 4.3 shows that r < [log5 nl, so that Step 4 is relevant only when n < 5,690,034.
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 Step 5 of the algorithm verifies £ equations. Since the algorithm does not
 output COMPOSITE in this step, we have:

 (X + a)n = Xn + a (mod Xr - 1, n)

 for every a, 0 < a < f (the equation for a = 0 is trivially satisfied). This
 implies:

 (3) (X +a)n=Xn+ a (mod Xr - 1,p)

 for 0 < a < £. By Lemma 2.1, we have:

 (4) (X + a)P = XP + a (mod Xr- 1,p)

 for 0 < a < e. From equations 3 and 4 it follows that:

 (5) (X + a); = XP + a (mod Xr- 1,p)

 for 0 < a < e. Thus both n and n behave like prime p in the above equation.
 We give a name to this property:

 Definition 4.4. For polynomial f(X) and number m E A/, we say that m
 is introspective for f(X) if

 [f(X)lm = f(Xm) (mod Xr- 1,p).

 It is clear from equations (5) and (4) that both n and p are introspective
 for X + a when 0 < a < £.

 The following lemma shows that introspective numbers are closed under
 multiplication:

 LEMMA 4.5. If m and m' are introspective numbers for f(X) then so is
 m m'.

 Proof. Since m is introspective for f(X) we have:

 [f(X)]mm' = [f(Xm)]m' (mod Xr - 1,p).

 Also, since m' is introspective for f(X), we have (after replacing X by xm in
 the introspection equation for m'):

 [f(Xm)]m' f (Xmm'') (mod Xmr - 1,p)
 =f(Xm'm') (mod Xr - 1,p) (since Xr- 1 divides Xmrr - 1).

 Putting together the above two equations we get:

 [f(X)]m m' = f(Xm'm') (mod Xr- l,p). O

 For a number m, the set of polynomials for which m is introspective is
 also closed under multiplication:
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 LEMMA 4.6. If m is introspective for f(X) and g(X) then it is also
 introspective for f(X) . g(X).

 Proof. We have:

 [f(X) g m If(X)]m . [g(X)]m

 =f(Xm) g(Xm) (mod Xr -1,p). Oi

 The above two lemmas together imply that every number in the set

 I = {(ni j pi i,j > 0} is introspective for every polynomial in the set
 P = {it=0(X + a)ea I ea > 0}. We now define two groups based on these sets
 that will play a crucial role in the proof.

 The first group is the set of all residues of numbers in I modulo r. This

 is a subgroup of Zr since, as already observed, (n,r) = (p,r) = 1. Let G
 be this group and IGI = t. G is generated by n and p modulo r and since
 or(n) > log2 n, t > log2 n.

 To define the second group, we need some basic facts about cyclotomic

 polynomials over finite fields. Let Qr(X) be the rth cyclotomic polynomial
 over Fp. Polynomial Qr(X) divides Xr - 1 and factors into irreducible factors
 of degree Or(P) [LN]. Let h(X) be one such irreducible factor. Since or(p) > 1,
 the degree of h(X) is greater than one. The second group is the set of all
 residues of polynomials in P modulo h(X) and p. Let g be this group which is
 generated by elements X, X+l, X+2, ..., X+i in the field F = Fp[X]/(h(X))
 and is a subgroup of the multiplicative group of F.

 The following lemma proves a lower bound on the size of the group g. It
 is a slight improvement on a bound shown by Hendrik Lenstra Jr. [Len], which,

 in turn, improved a bound shown in an earlier version of our paper [AKS].2

 LEMMA 4.7 (Hendrik Lenstra Jr.). 11 > (+t).

 Proof. First note that since h(X) is a factor of the cyclotomic polynomial
 Qr(X), X is a primitive rth root of unity in F.

 We now show that any two distinct polynomials of degree less than t

 in P will map to different elements in 9. Let f(X) and g(X) be two such
 polynomials in P. Suppose f(X) = g(X) in the field F. Let m e I. We also
 have [f(X)]m = [g(X)]m in F. Since m is introspective for both f and g, and
 h(X) divides Xr - 1, we get:

 f(Xm) = g(Xm)

 in F. This implies that Xm is a root of the polynomial Q(Y) = f(Y) - g(Y)
 for every m E G. Since (m, r) = 1 (G is a subgroup of Zr), each such xm is a

 2Macaj [Mac] also proved this lemma independently.
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 primitive rth root of unity. Hence there will be IGI = t distinct roots of Q(Y)
 in F. However, the degree of Q(Y) is less than t by the choice of f and g. This
 is a contradiction and therefore, f(X) $ g(X) in F.

 Note that i - j in Fp for 1 < i ~ j < t since t = v/b(r)lognj <
 f/rlog n < r and p > r. So the elements X, X + 1, X + 2, ..., X + f are all
 distinct in F. Also, since the degree of h is greater than one, X + a ~ 0 in
 F for every a, 0 < a < £. So there exist at least f + 1 distinct polynomials of
 degree one in 9. Therefore, there exist at least (t+) distinct polynomials of
 degree < t in 9. D

 In case n is not a power of p, the size of 9 can also be upper bounded:

 LEMMA 4.8. If n is not a power of p then \11 < n.

 Proof. Consider the following subset of I:

 I={ p)i pJ I 0 < i,j < LVtJ}.

 If n is not a power of p then the set I has (LvTJ + 1)2 > t distinct numbers.
 Since IGI = t, at least two numbers in I must be equal modulo r. Let these be
 ml and m2 with ml > m2. So we have:

 Xm1 = Xm2 (mod r- 1).

 Let f (X) e P. Then,

 [f(X)]ml = f (Xml) (mod Xr - 1p)

 = f (Xm2 ) (mod xr-l p)

 = [f(X)]m2 (mod xr- lp).

 This implies

 [f(X)] ml= [f(X)]m2

 in the field F. Therefore, f(X) C 9 is a root of the polynomial Q'(Y) =
 yml _ym2 in the field F.3 As f(X) is an arbitrary element of 9, the polynomial

 Q'(Y) has at least 191 distinct roots in F. The degree of Q'(Y) is ml <
 (n .p)LV7] < nV. This shows 1|1 < nV/. O

 Armed with these estimates on the size of 9, we are now ready to prove
 the correctness of the algorithm:

 LEMMA 4.9. If the algorithm returns PRIME then n is prime.

 3This formulation of the argument is by Adam Kalai, Amit Sahai, and Madhu Sudan
 [KSS].
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 Proof. Suppose that the algorithm returns PRIME. Lemma 4.7 implies that for t = IGI and £ = L[/ (r)log nJ:

 > (e+ LV- lg n]) (since t > ltogn)
 Lvtlogn I

 > (1Ltlognj + 1) (since = L/ lognJ > L[Vtlognj)

 > 2LV1ognJ+ (since [Lvlognj > Llog2nj > 1)

 >nvi.

 By Lemma 4.8, 1\ < nvt if n is not a power of p. Therefore, n = pk for
 some k > 0. If k > 1 then the algorithm will return COMPOSITE in step 1.
 Therefore, n = p. O

 This completes the proof of Theorem 4.1.

 5. Time complexity analysis and improvements

 It is straightforward to calculate the time complexity of the algorithm. In
 these calculations we use the fact that addition, multiplication, and division op-

 erations between two m bits numbers can be performed in time O (m) [vzGG].
 Similarly, these operations on two degree d polynomials with coefficients at

 most m bits in size can be done in time O0(d m) steps [vzGG].

 THEOREM 5.1. The asymptotic time complexity of the algorithm is
 0O(log21/2 n).

 Proof. The first step of the algorithm takes asymptotic time O (log3 n)
 [vzGG].

 In step 2, we find an r with or(n) > log2 n. This can be done by trying
 out successive values of r and testing if nk r7 1 (mod r) for every k < log2 n.
 For a particular r, this will involve at most O(log2 n) multiplications modulo
 r and so will take time O (log2n log r). By Lemma 4.3 we know that only
 O(log5 n) different r's need to be tried. Thus the total time complexity of
 step 2 is O0 (log7 n).

 The third step involves computing the gcd of r numbers. Each gcd compu-

 tation takes time O(logn) [vzGG], and therefore, the time complexity of this
 step is O(r log n) = O(log6 n). The time complexity of step 4 is just O(log n).

 In step 5, we need to verify [V/l(r) lognj equations. Each equation re-
 quires O(logn) multiplications of degree r polynomials with coefficients of
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 size O(logn). So each equation can be verified in time O (r log2 n) steps.
 Thus the time complexity of step 5 is O(rv/b(r) log3 n) = O0(r2 log3 n) =
 O (log21/2 n). This time dominates all the others and is therefore the time
 complexity of the algorithm. C

 The time complexity of the algorithm can be improved by improving the
 estimate for r (done in Lemma 4.3). Of course the best possible scenario would
 be when r = O(log2 n) and in that case the time complexity of the algorithm
 would be O(log6 n). In fact, there are two conjectures that support the
 possibility of such an r (below In is the natural logarithm):

 Artin's Conjecture. Given any number n e Af that is not a perfect
 square, the number of primes q < m for which oq(n) = q - 1 is asymptotically
 A(n) - m where A(n) is Artin's constant with A(n) > 0.35.

 Sophie-Germain Prime Density Conjecture. The number of primes
 q < m such that 2q + 1 is also a prime is asymptotically 2C2m where C2 is

 the twin prime constant (estimated to be approximately 0.66). Primes q with
 this property are called Sophie-Germain primes.

 Artin's conjecture-if it becomes effective for m = O(log2 n)-immediately
 shows that there is an r = O(log2 n) with the required properties. There has
 been some progress towards proving Artin's conjecture [GM], [GMM], [HB],
 and it is also known that this conjecture holds under the Generalized Riemann
 Hypothesis.

 If the second conjecture holds, we can conclude that r = O (log2 n):

 By the density of Sophie-Germain primes, there must exist at least

 log2n such primes between 81og2 n and clog2 n(loglogn)2 for a
 suitable constant c. For any such prime q, either oq(n) < 2 or
 oq(n) > q-1. Any q for which Oq(n) < 2 must divide n2 - 1 and
 so the number of such q is bounded by O(log n). This implies that
 there must exist a prime r = O(log2 n) such that Or(n) > log2 n.
 Such an r will yield an algorithm with time complexity Or (log6 n).

 There has been progress towards proving this conjecture as well. Let P(m)
 denote the greatest prime divisor of number m. Goldfeld [Gol] showed that
 primes q with P(q- 1) > q2+C, c ,12 occur with positive density. Improving
 upon this, Fouvry has shown:

 LEMMA 5.2 ([Fou]). There exist constants c > 0 and no such that, for
 all x > no:

 2 X
 \{q I q is prime, q < x and P(q - 1) > q3 }I I c-. In x'

 790
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 The above lemma is now known to hold for exponents up to 0.6683 [BH].
 Using the above lemma, we can improve the analysis of our algorithm:

 THEOREM 5.3. The asymptotic time complexity of the algorithm is
 O (log15/2 n).

 2

 Proof. As argued above, a high density of primes q with P(q - 1) > q3
 implies that step 2 of the algorithm will find an r = O(log3 n) with Or(n) >
 log2 n. This brings the complexity of the algorithm down to O0 (log15/2 n). [1

 Recently, Hendrik Lenstra and Carl Pomerance [LP1] have come up with a
 modified version of our algorithm whose time complexity is provably O (log6 n).

 6. Future work

 In our algorithm, the loop in step 5 needs to run for [ /b(r) log nj times to
 ensure that the size of the group g is large enough. The number of iterations of

 the loop could be reduced if we could show that a still smaller set of (X + a)'s
 generates a group of the required size. This seems very likely.

 One can further improve the complexity to O (log3 n) if the following
 conjecture-given in [BP] and verified for r < 100 and n < 1010 in [KS]-is
 proved:

 CONJECTURE 6.1. If r is a prime number that does not divide n and if

 (6) (X - 1)n = Xn - 1 (mod Xr- 1, n),

 then either n is prime or n2 = 1 (mod r).

 If this conjecture is true, we can modify the algorithm slightly to search
 first for an r which does not divide n2 - 1. Such an r can assuredly be found in

 the range [2, 4 log n]. This is because the product of prime numbers less than
 x is at least ex (see [Apo]). Thereafter we can test whether the congruence (6)
 holds or not. Verifying the congruence takes time O(r log2 n). This gives a
 time complexity of Or (log3 n).

 Recently, Hendrik Lenstra and Carl Pomerance [LP2] have given a heuris-
 tic argument which suggests that the above conjecture is false. However, some
 variant of the conjecture may still be true (for example, if we force r > log n).
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