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The Cellular Structure

THE CELLULAR STRUCTURE
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Flag manifolds

@ In this talk, the base field is taken to be C, and H*(X) = H*(X; k)
where the coefficient ring k is a field of characteristic zero, for
example Q.

@ Let V be a finite dimensional vector space of dimension n. A flag F,
is a sequence of subspaces of V/,

0=FGFAG - SF. =V,

with dim F; = J.
@ Denote the set of all such flags to be F¢(V'), and call it the flag
manifold /variety (see below).

@ Our purpose: compute H*(F{(V)).
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The Topology

@ Fix some isomorphism V = C”, and consider the map
span : GL(V) — F{(V) x=(vi,...,vp) — Fx,
where
Fe: 000G Cvni GCvi+Cw G -+ &V

@ This map is clearly surjective, and

Fx=F, <= x =y - (an invertible upper triangle matrix).
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The Topology

@ Denote G = GL,, and B the group of invertible upper triangle
matrices (the Borel subgroup). We have a bijection

span: G/B ERN FeV).

So we can define the topology and smooth structure to be as G/B.

@ By the Gauss elimination process, we have (see below)
Theorem (Bruhat decomposition)

G = |_| BwB W = {permutation matrices} = &,,.
weW
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The Cellular Structure

The action

@ The action of B on the left can be decomposed into
add toC K nonzero scalar (_Y[row]
-row ..

@ The action of B on the right can be decomposed into

nonzero scalar
add

Y

g
ou.r.1.|o:> Q

uwnjod
uwn|od
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The Cellular Structure

The Combinatorics |

@ For a permutation w € G, consider the Rothe diagram by its
“graph” and the space U,, C G, as follows

123456
1 "TCCC1007
2 C10000
3 - Co0COC1
4 Ur=1100000
5 001000
6 I 000010
123456

<426135)
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The Cellular Structure

The Combinatorics |

Theorem
There is a bijection (thus homoemophism)

span : U, L Bw_lB/B.

e For any x € U,, xB € Bw1B.
— Dig the hole for each column.

@ For any x € G, there is some b € B such that xb € U,, for some
we G,
— Dig the hole from the last row.

e Forany x,y € Uy, if y € xB, then x = y.
— Clearly.
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The Cellular Structure

The Combinatorics |

Theorem
The dimension of Uy is the number of inversions, more precisely

dim Uy, = £(w) = #{(i. ) : i < j, w(i) > j}.

T LJJ@ T

August 14, 2020 9 /57

o

ooo

N e
o0

Cohomology of Flag Manifolds (I)The Classic



Topology remind |

Theorem
For a CW-complex X, the homology group of the complex

oo — H*(Xdim<es Xdim<o—1) —> -+~
is isomorphic to H*(X), and

H* (Xdim<e, Xdim<e—1) = @ k- A.
dim=e cell A
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The Cellular Structure

The cellular structure

@ In our case, {BwB/B : w € S,} defines a cellular structure of G/B.

@ But dimg U,, are all even dimensional, so the above complex is trivial.

Theorem

The cohomology ring H*(F¢(V')) has only even dimensions. Furthermore,

dim H¥(FU(V)) = #{w : {(w) = i}.

@ The problem is, how to describe the product structure?
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The Cellular Structure

The Combinatorics |l

e For any w € &, {(w) is the least length to write w into a product of
s1=(12), 2 =1(23), -+, sp—1 =(n—1,n).

Any shortest expression is called a reduced word.

ok E
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The Cellular Structure

The Combinatorics |l

@ For two permutation u, v, we write
u<v <= lu)+1=4(v),v=-su
where s is any swap. We write
u<v < u:uo<3u1<~--<3uk71<uk:v.

The following theorem indicates this is a partial order, called the
Bruhat order.

Theorem
If u=s1---s, a reduced word, then

v<u < i, v=s1---5 -5 Is reduced.
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The Cellular Structure

>

b
==

Cohomology of Flag Manifolds (I)The Classic August 14, 2020 14 / 57




The Cellular Structure

The Combinatorics |l

Theorem
The Schubert cell

BvB/B C BuB/B <= v < u.

Sketch of the proof
o Note that it suffices to show when ¢(v) + 1 = ¢(u).
e For v < u, one can show that BvB/B C BuB/B.

@ Otherwise, then one can construct an open subset U D BvB/B
disjoint to >,,. The open subset is given by the dimensions intersects

the standard flag.
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The Cellular Structure

The Combinatorics Il

1
@ The longest word wy = (}7’1’) = ( 5 ' ) is also the only maximal

element of <.
o Actually, due to the LU decomposition,

BwyB = {x € GL,, : sequential principal minor of x # 0}

is Zariski dense.

wrong figure
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The Characteristic Classes

THE CHARACTERISTIC CLASSES

Cohomology of Flag Manifolds (I)The Classic August 14, 2020 17 / 57



Lie theory

@ It is harmless to consider SL rather than GL, since
GL,/B=SL, /(BN SLy).

Let us replace G by SL,, and B by BN SL,,.

o We will define x;; for i < j for a lot of symbol *, and we will simply
write *; for *; ;11 when 1 </ <n—1.

@ For example, we define s;; € &, the exchange of / and j. Then we
will denote s; = s;;.
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Lie theory

@ Consider the natural map for i < j

@ Denote B, = {(*:) € SLy},

IQ,'j . SLz/BQ 1—1) P,'J'/B
@ We also have the following homoemorphisms

Sly/By = FU(C?) = P(C?) = CP' = §2.
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Topology remind Il

Theorem (Gysin sequence)

For a d-dimensional sphere bundle E = B, there is a long exact sequence
o HY(B) 5 HI(B) D HI(E) 3 H=9(B) &5 H(B) — - --

Where
o 7" is the usual induced cohomology map;

@ when E, B are for which Poincaré duality holds, . is induced from
homology through duality;

@ the x is the cup product with the Euler class of 7.
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The Characteristic Classes

Demazure operator |

@ The natural map G/B 5 G/P has the fibre P/B =2 S? thus it is a
sphere bundle. So we can apply the Gysin sequence

o HY(G/P) S HY(G/B) ™5 HE2(G/P) — - -- .
Define the composition for P = P;;
;- H¥(G/B) ™ H¥=2(G/P) & H*~%(G/B)

to be the Demazure operator.
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Topology remind Ill

o Define the tautological bundle over CP?,

{(¢,x) e CP* x C?2: x € {}
o(-1) = !
CP1

Theorem (1st Chern class)

For any CW-complex B, there is a natural transform between

c1 : {Line Bundles over B} — H?(B)

funtorial in B such that —c1(O(—1)) € H?>(CP') dual to [pt] € Ho(CP?).
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Lie theory

@ For any character (i.e. a group homomorphism to C*) of B, it
defines a representation, denoted by Cp, of B, say

c-%c v = p(b)v.

GXB(Cp
This also defines a line bundle Cp := +
G/B
SL2 XB2(Cp
e For p: (¥ %i) + x, the bundle 1 ¢ is
SL, /B, = CP!
isomorphic to O(—1), just by ((is),)\) = (C(2),A(3)).
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The Characteristic Classes

@ Consider the character

w;: B — C* (Xl»f*

X) — X1 X
We have the following bundle
SLy xg,C(wjokj) — G xpCw; <+— SLyxp,C(wjokj)
O(-1) l J{ Cw;i (J#1) l trivial
SL, /B, L, G/B N SL, /B,

@ As a result,

17 I:./7 2
*(—c1(Cw))) = € 7 = H°(SLy /By).
Kj (—c1(Cwi)) {07 P4 (SL2/B2)
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Topology remind IV

Theorem (Harish—Leray)

For a fibre bundle E — B, if each fibre F, has free cohomology, and there
is a set {a} C H*(E) present the bases restricting each fibre. Then

H*(B) ® H*(F) — H*(E) B x iha — B — a

is an isomorphism between H*(B) modules.
Furthermore, the map is funtorial in (E — B, {«}) with fixed fibre F.
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The Characteristic Classes

The fibre structure

o The natural map G/B 5 G/P has the fibre P/B = CP*.

@ When P = P;, then it satisfies the condition of the Harish—Leray
theorem (by the Chern class of Cw;).

@ As a result, we have the H*(G/B)-isomorphism,
H*(G/B) = H*(G/P)[wil/ (wf)

where w; = —c1(Cw;) over G/B.
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The Characteristic Classes

Demazure operator I

@ We should compute

me((awi + )N [G/B]) = m(an(wiN[G/B])) +m(5N[G/B])
=anNm(wiN[G/B])+ Nm[G/B].
—_————

=0

Now 7, (w; N [G/B]) = A[G/P] for some X\ € Z. Consider the

P/B — pt
diagram | | 4 |, wesee A =1.
G/B—G/P

@ So the Demazure operator

H*(G/B) — H*%(G/P) — H*2(G/B)
aw+ 5 —> « — «
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The coinvariant map

@ Define
KXt Xo] —5 HA(G/B) A= X7 oo X3 s A plt - g

where p; = —c1(CX;) where X; : (Xl : *) — X;.

Xn

° ’Warning: maybe confusing notation ‘ Note that ©(a1 X1 + - -+ anXp)
corresponds to the character (-7 ) — xi"* -+~ x3" by the formula
for tensor product of line bundles.

@ Define the Demazure operator

Flooo Xy Xty oo ) = Foe s Xivn, Xir )
Xi — Xit1 '

aI'f()<].) T 7Xn) =
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The Characteristic Classes

Demazure operator Il

Theorem

For a polynomial f € k[X], ¥(0;f) = 9;u(f).

Sketch of the proof.

@ The action of conjugation by a permutation matrix induces an action
of &, over H*(G/T) = H*(G/B). By the naturality of Chern
Classes, 1 is an &,-equivariant map.

o Note that s; lies in P;, so the conjugation of s; over G/P is trivial.
Then it is easy to see that 9; and J; do the same work

1—s; . _ _Wi—wjos;
1/1(Xi—§<i+1)(aw' +B) = wzjxif)gil)a

X1+ X)) —( X1+ + X1+ X;
= PR 0 X )y — g = By(aw; + B).
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The Characteristic Classes

The multiplication structure

Theorem
When the characteristic of k is zero, then 1) is surjective, and

ker i) = ideal generated by the symmetric polynomials of deg > 0.

Sketch of the proof for the kernel.

e Firstly, H*(G/B;Z)%" = H°(G/B; 7).

@ Secondly, we see that f € ker if and only if f acted by any iterated
Demazure operator Oy - - - 0y has zero constant term. The trick is, 1
is isomorphism over zero degree part.

@ In characteristic zero case, it coincides the ideal described. (We will
see another proof without using the Demazure operator in next
lecture, but only work for characteristic zero).
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The Characteristic Classes

Sketch of the proof for the surjectivity.
@ So the image of 9 is

KX, .., Xn)/ (E1, -+ En)

where E; is the i-th fundamental symmetric polynomial.

@ One can show that Ej . is not a zero divisor in
k[Xi,...,Xn]/ (E1,..., Ex) (so-called regular sequence).

@ By a standard trick of computation of Poincaré polynomial,

KX] g KIX] KIX]

-0
<Ei>i§k <Ei>i§k (Ei>i§k+1

0—

we get P(t) =[[i_; 11:—22; the Poincaré polynomial of image of .

Since P(1) = n!, so v is surjective.
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The Characteristic Classes

The multiplication structure

@ Actually, as graded linear spaces,

k[X1,. .., Xa]
k[X1,..., Xp] 2Kk[E, ..., E)l@ —————
X, Xal = KB ]®<E1,...,E,,)
due to the dimension reason.
Theorem
The cohomology ring
k[X1,. .., X4]
HY(Fe(V)) = — """
(FEV)) (Eq,...,En)

where E; is the i-th fundamental symmetric polynomial.

~

@ The problem is, how to express the cells in term of the Chern classes?
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The Schubert Polynomials

THE SCHUBERT POLYNOMIALS
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Topology remind V

Theorem

For a locally trivial fibre bundle E = B with fibre, base space and total
space compact and smooth, let X be a cell of B, then the map induced by
dual and cohomology map

H.(B) = HitdimF(E)

maps [X] to [x71(X)].

@ This fact can be proven by the Serre—Leray spectral sequence. The
algebraic version can be proven by the Borel-Moore homology.
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The Schubert Polynomials

Schubert cells again

e Note that 7—}(BwP/P) = BwsB/B U Bw~'B/B.

@ We can compute

7~ '(BwP/P) (Uy<w BWP/P)
T H(BwP/P)
. BwB/B U Bws;B/B

v

v

IN N

Il
,_/HCC =

lower dimensional subset, otherwise.

Cohomology of Flag Manifolds (I)The Classic August 14, 2020

Bws;B/B, Uws;) = 4(w) +

L

35/ 57



The Schubert Polynomials

Demazure operator IV

@ As a result,
H.—2(G/B) — H.2(G/P) — H.(G/B)
[Bws;B/B], ¢(ws;)=£{(w)+1,

[BwB/B] +— [BwP/P] — {0, otherwise.

o If we denote the [X,] for the image of the cell BwowB/B under the

1, vu= wy,

Poincaré duality, that s, <[XV], [Bu—lB/B]> then

0 otherwise.

0i[Xw] = {[st,-], O(ws;) = £(w) — 1,

0, otherwise.
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The Schubert Polynomials

Demazure operator IV
Theorem

The connection between two description of H*(G/B) are connected by

[XWO] = Xn 1X2n 2. 'X3_2Xn_1 mod <E1, ce En> .
Sketch of the proof.
o Firstly [Xy,] = Ax{™ 1x o 2. X2 o Xp1.

@ Then for any reduced expression for wg, for example

wo = (Sn-51) (Sp_1- %) - (Sn_15n_2) -

the corresponding

(Op---01) (On_1---32) -+ (Op-10n_2) - Op_1 = m
2

X572 x2_,xp—1 to 1. Then [X] =1= .
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The Schubert Polynomials

Schubert polynomials

@ For each permutation w € G, there is a unique polynomial &,, such

that

[Xw] = 6w (X1,..., Xn)
with each monomial of G,, appearing strictly lower than
x{’_lxg_2 . -xﬁ_zxn_l. This is called the Lascoux and
Schiitzenberger’s Schubert polynomial.

@ Then degS,, = ¢(w), and

0,6, — Guws;,  L(wsi) : lw)—1,
0, otherwise.

@ The G, is stable under the recognization of &, C &1, so it is
well-defined for &, = Un21 S,.
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The Schubert Polynomials

Schubert polynomials

@ Note that the operator 0; satisfies the nil-braid relation

J J
0i0i-10; = 0;-10;0;_1, J e
li—j| > 2, 0;0; = 0;0;, / -
8/'2 =0. e ( e

o Let v € &, be any permutation, and v = s;(1) - - - j(x) a reduced
word, we define the operator

v = 0i(1) -+ (k) (reducing degree by ¢(v))

this does not depend on the choice of the reduced word.

@ | Warning: maybe confusing notation‘ Os; is not Jj; in general for
example Os; = 010201 = 02010-.
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The Schubert Polynomials

A~
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Nil-Hecke algebra

@ Let us introduce the nil-Hecke algebra
0i0i-10; = 0;-10;0;_1,
NH, =k (0i)1<i<n-1 / < li—j|>2, 0;0; =00, >
&2 = 0.

@ It acts on k[Xy, ..., Xy], and nearly equivalent to the definition, &,,
is given by

n—1_n—2 2
Sw =014, nps Guwy =X Xy Xp_oXp—1-
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The Schubert Polynomials

A generating function for Schubert polynomials

Theorem (Fomin and Stanley 1993)
The coefficient of 0,, of
(1+x10n-1) - (1+ x102) (1+ x101)

S(x) = : :
(1 + an2an71) (1 + an2anf2)
(1 + Xn_18n_1)

is the Schubert polynomial &, (x).

Sketch of the proof.
e By analysing Aj(x) = (1 4+ x9p—1) - -- (1 + x0;), and induction on /.
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The Schubert Polynomials

The Combinatorics Il

@ It is suggested to use the pipe dream to expend the brackets above.
A pipe dream for w is a filling of the board with pipes + and 7
connected left i to upper w(i) such that no pair of pipes cross twice.

@ For a pipe dream T, define its weight

Wt(ﬂ-) = H X the row number of the +
+em

12 3 45 6 -

$ah:
7
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The Schubert Polynomials

The Combinatorics |l

Theorem (Bergeron and Billey, 1993)

For a permutation w € G,

Sw(x) = Z wt (7).

pipe dream w for w

The proof.

6 5 4 3 2 1
1 1 X183 X182 X181 \—N\\ } 1
X205 X004 1 X202 12
1 1 x303 N 3
11 N N
1 5
s
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REMARKS, APPLICATIONS AND
REFERENCES
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Remarks, Applications and References

Remarks

@ For any reductive groups G, we have the same clue to compute
H*(G/B) for B the Borel subgroup. Actually,

G/B = {Borel subalgebra b C g = Lie(G)}.

@ For positive characteristic field k, it can be shown that the kernel of
1 is still generated by a regular sequence, and H*(G/B) is freely over
the image of ¢ (due to Kac).
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Remarks, Applications and References

Remarks

@ One can consider the set of the k partial flags, i.e. the length k flags
in dimension n space F/,(C"), and the Grassmanians Gr(C", k).

@ Note that ke
Fl(C") =GL,/ rooux

Gr(C" k) = GL, / | * 2+

*

All of them can be computed by both cell method and the fibre
bundle method.
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Remarks, Applications and References

Grassmanian

@ Especially, for the Grassmanian case, consider the map
FUC™) — Gr(C", k),

Clearly, BwpB/B is mapped to BwpP/P = BwP/P, where
pEGS,XG, k.
@ So the homology map is surjective and splits, with

H.(Gr(C", 1)) = {[Bwlg/g] (1_62( :(Sen:yailmal among}

is  minimal among}

H*(Gr(C", 1)) = {[XW] VIEGi X Gpk

_ls /(w) is minimal among
LY T w6k x G '
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Remarks, Applications and References

Grassmanian

@ Such permutation is so-called a shuffle, and determined by a
partition (geometrically, the corresponding Schubert cell)

0 OO0 Ood
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Remarks, Applications and References

Grassmaninan

o Ji(- - XAXAT )= XxATIxA!

1
® Jwes = mzaeﬁk( 1)%0.

S e

n 1 n2
“Tn—1

"H' L )‘Z+k 2. ’ Schur polynomial S (z
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Remarks, Applications and References

Demazure operator V

@ We can also define the push forward for G/B = G/P; (in algebraic
sense). For a locally trivial bundle £, we can define the Demazure

operator on L
0L = ¥ (m(L)).

@ For any B-equivariant bundle L,
8,(G XB I'(Zw,ﬁ)) =G XB I'(Zs,.,.,,ﬁ),

where ¥, = Bw~1B/B.
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Remarks, Applications and References

Demazure character formula

Theorem (Borel-Weil)

GxgC\ L )\ [ d [ t
ForCA= | | |, T(CA)={ wor WA ISCOMNANG o1, is the
G/B 0 otherwise.

irreducible representation of maximal weight \.

Theorem (Demazure)
For L = Cwo, denote D,, =T (X, L). Then the character of T can be

described by (written as a function on t)

ch(Dy) — e *i+1s; - ch(Dy,)

1 — eXi—Xi+1

ch(Dsw) = if {(siw) = {(s) + 1.

In particular, costing some computation, ['(L) = D,,, has the same
expression as the Weyl character formula.
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Remarks, Applications and References

@ Here is basic calculus for SLy, e = €™, then X172

x1 + xo = 0.
e—ng efi’—eje" |
_L-e i 100 - -
=e "+ -te |
_ d 12/, _ |
n n e n n
e "+ e e+ ) g
:e_n+...+e” |
@ Then we can do the calculation for SL3,
000 000 100
0000 00000 1100
000000 9. 000000 % 111100
0000000 — 7 0000000 — 7 1111100
00000000 00000000 11111100
0000000 0000000 1111110
100000 111111 11
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Remarks, Applications and References

Summary

’cellular strucure‘ the basis

H*(F?) Schubert polynomials

multiplication

s> * _ DEMAZURE OPERATORS  *

pull-push, on Chern class, on cells, on polynomials, on vector bundles
(Geometry/y) H*(Gr)—two applications—y(Ly) ($=0Algebra)
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Remarks, Applications and References

Questions motivating next lecture

@ |t turns out to be very useful to consider the equivariant
(co)homology. How to compute it for G/B? More exactly,

Hs(G/B) = H'(Eg x5 G/B), Hi(G/B) = H'(Ec xc G/B),

where E, the classifying space for .

@ There is a perfect pairing
NH, xH*(G/B) — k (0, &) — 0u6,(0) = I,

So NH, = H.(G/B) with 8,, <> [Bwow~1B/B]J. It indicates that
there will be a product over H,(G/B). On the other hand, the Hecke
algebra in philosophy “should” be interpolated as a convolution. How
to realize it geometrically?
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Remarks, Applications and References

References

Fulton. Young tableaux.

Billey. Kostant polynomials and the cohomology ring for G/B.

Knutson. Schubert polynomials, pipe dreams, equivariant classes, and
a co-transition formula.

Fomin and Stanley. Schubert polynomials and Nil-coxeter algebras.

Bergeron and Billey. RC-Graphs and Schubert Polynomials.

Fomin and Kirillov. Yang-Baxter equation, symmetric functions, and
Schubert polynomials.

@ MacDonald. Notes on Schubert Polynomials.
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Remarks, Applications and References

THANKS.

~ § Next Lecture would be More Interesting § ~/
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