## Geometry and Representation Seminar

## Symplectic Calculus

Xiong Rui

November 12, 2020

Notations of Manifolds

Symplectic Manifolds

Poisson Structure

Moment Maps

Hamiltonian Reduction

Algebraic Reduction

Lagrangian Submanifolds

Symplectic Resolutions

Kähler Manifolds

Kähler Reduction

HyperKähler Manifolds

**Thanks** 

## $\sim \S$ Notations of Manifolds $\S \sim$

Let M be a manifold, we denote C(M) the structure algebra, and

$$TM$$
 tangent bundle  $T^*M$  cotangent bundle  $T_xM$  tangent space at  $X$   $T_x^*M$  cotangent space at  $X$   $\mathfrak{X}(M)$  global section of  $TM$   $\Omega^1(M)$  global section of  $T^*M$  = all vector fields over  $M$ ; = all 1-forms over  $M$ .

We denote  $X_x \in T_xM$  the value of  $X \in \mathfrak{X}(M)$  at  $x \in M$ . We denote  $\Omega^k(M)$  the space of k-forms over M. There is a natural pairing of

$$\Omega^k(M) \otimes T_{\times} M^{\otimes k} \to \mathbb{k} \quad \text{or} \quad \Omega^k(M) \otimes \mathfrak{X}(M)^{\otimes k} \to \mathcal{C}(M).$$

We will use  $\omega(X_1,\ldots,X_k)=\langle \omega,X_1\otimes\ldots\otimes X_k\rangle$  to denote them.

Over  $\Omega^*(M)$ , there is

$$d$$
  $\Omega^k(M)$   $\to$   $\Omega^{k+1}(M)$  differential  $L_X$   $\Omega^k(M)$   $\to$   $\Omega^k(M)$  Lie derivative  $i_X$   $\Omega^k(M)$   $\to$   $\Omega^{k-1}(M)$  inner product

where  $X \in \mathfrak{X}(M)$ . They satisfies **Cartan magic formula** 

$$L_X = i_X \circ d + d \circ i_X.$$

Over  $\mathfrak{X}(M)$ , there is a Lie bracket [X, Y] = XY - YX.

If we have a local coordinate

$$(x_1,\ldots,x_n): {}^{M\supseteq}U \to \mathbb{k}^n.$$

We will denote

$$\frac{\partial}{\partial x_1}\Big|_{x}, \dots, \frac{\partial}{\partial x_n}\Big|_{x} \in T_x M, 
\frac{\partial}{\partial x_1}, \dots, \frac{\partial}{\partial x_n} \in \mathfrak{X}(U), 
dx_1, \dots, dx_n \in T_x^* M \text{ or } \Omega^1(U).$$

If M = V is a vector space, then there is a natural identification

$$T_{\mathcal{X}}V=V, \qquad T_{\mathcal{X}}^*V=V^*.$$

Under this identification, for any linear functional  $\lambda$ ,  $d\lambda = \lambda$ .

For a morphism  $f: X \to Y$ , it induces

$$f_*: TX \to TY, \qquad f^*: \Omega^k(Y) \to \Omega^k(X).$$

Note that  $f_*$  is often denoted by df. They are adjoint under the pairing,

$$\omega(f_*X_1,\ldots,f_*X_k)=(f^*\omega)(X_1,\ldots,X_k),$$

that is,

$$\langle \omega, f_*(X_1 \otimes \cdots X_k) \rangle = \langle f^*\omega, X_1 \otimes \cdots X_k \rangle.$$

Besides,  $f^*$  commutes with d,

$$d(f^*\omega)=f^*d\omega.$$

Let G be a Lie group, denote the space of left invariant vector fields by  $\mathfrak g$  its Lie algebra. It is also identified with  $T_1G$ . For each  $x\in G$ , the adjoint action

$$Ad_x: G \longrightarrow G \qquad y \longmapsto xyx^{-1},$$

induces

$$\operatorname{\mathsf{ad}}_{\mathsf{X}}:\mathfrak{g}\longrightarrow\mathfrak{g}.$$

This defines  $G \to GL(\mathfrak{g})$  inducing  $\mathfrak{g} \to \mathfrak{gl}(\mathfrak{g})$ , and this defines for  $X \in \mathfrak{g}$ ,

$$\operatorname{ad}_X:\mathfrak{g}\longrightarrow\mathfrak{g}.$$

Actually,  $ad_X(Y) = [X, Y]$ .



For any open subset  $U\subseteq \mathbb{k}$ , a morphism  $s:U\to M$  will be called a **(parameterized) curve**. For  $t\in U$ , we denote the **derivative** of s by  $\dot{s}(t)=s_*(\frac{\partial}{\partial t}\big|_t)$ , where t is the coordinate of  $U\to \mathbb{k}$ . Equivalently, for  $f\in \mathcal{C}(M)$ ,

$$\dot{s}(t) \cdot f = \lim_{\Delta t \to 0} \frac{f(s(t + \Delta t)) - f(s(t))}{\Delta t} = \frac{\partial}{\partial t} f(s(t)).$$

We call a map f defines over an open neighborhood of  $M=0\times M\subseteq \Bbbk\times M$  to M an **infinitesimal homoemorphism** of M if f restricting over M is identity and

$$f(x,t_1) = f(y,t_2) \Longrightarrow f_*(\frac{\partial}{\partial t}|_{(x,t_1)}) = f_*(\frac{\partial}{\partial t}|_{(y,t_2)}).$$

We identify two infinitesimal homoemorphism if they are equal in a neighborhood of  $0 \times M$ . Actually, we have a bijection

{infinitesimal homoemorphism of M} =  $\mathfrak{X}(M)$ .

By the image of  $\frac{\partial}{\partial t}$ . The converse is given by the theory of ordinary differential equations. For a vector field  $X \in \mathfrak{X}(M)$ , we usually call the correspondent infinitesimal homoemorphism the **one-parameter group**, or the **flow generated** by X.

There is a differential morphism called exponential map

$$\exp: \mathfrak{g} \longrightarrow G$$

such that

$$\mathbb{k} \times G \to G$$
  $(t, x) \longmapsto x \cdot \exp tX$ 

is the infinitesimal homoemorphism correspondent to X. Equivalently, for any  $X \in \mathfrak{g}$ , the map

$$e: \mathbb{k} \to G$$
  $t \longmapsto \exp(tX)$ ,

is a group homomorphism with  $\dot{e}(t) = e_* \big( \frac{\partial}{\partial t} \big|_t \big) = X_{e(t)}.$ 

Assume the manifold M is acted by G smoothly. Then it defines a Lie algebra homomorphism (up to a minus due to left-right reason)

$$\mathfrak{g}\longrightarrow \mathfrak{X}(M),$$

such that

$$\mathbb{k} \times M \to M$$
  $(t, x) \longmapsto \exp tX \cdot x$ 

is the infinitesimal homoemorphism correspondent to the image of X.



# $\sim \S$ Symplectic Manifolds $\S \sim$

#### **Definitions**

- ▶ Let M be a manifold, we call  $\omega \in \Omega^2(M)$  a symplectic form, if it is closed and nondegenerate at each point.
- ► That is,  $d\omega = 0$ , and as an anti-symmetric bilinear form over  $T_x M$  at each point  $x \in M$ , it is nondegenerate.
- In particular, dim M is even.

## First Example — Symplectic Vector Spaces

- A symplectic vector space is a vector space with a nondegenerate anti-symmetric bilinear form  $\omega$ .
- ▶ By linear algebra, we can take a set of basis such that

$$\omega(e_i, f_j) = \delta_{ij}, \qquad \omega(e_i, e_j) = 0, \qquad \omega(f_i, f_j) = 0.$$

We denote  $p_1e_1 + \cdots + p_ne_n + q_1f_1 + \cdots + q_nf_n$  by  $(p_1, \ldots, p_n, q_1, \ldots, q_n)$ . Then a fortiori,

$$\omega = dp_1 \wedge dq_1 + \cdots + dp_n \wedge dq_n.$$

Since formally  $p_i$ ,  $q_j$  are dual basis for  $e_i$ ,  $f_j$ 



## Second Example — Cotangent bundles

- Let M be a manifold, then there is a natural symplectic structure over  $T^*M$ .
- ► Firstly, there is a 1-form  $\lambda \in \Omega^1(T^*M)$  called the **tautological form** with the following universal property

For any 
$$\alpha \in \Omega^1(M)$$
,  $\alpha \in \Omega^1(M) \stackrel{\alpha^*}{\leftarrow} \Omega^1(T^*M) \ni \lambda$   $\alpha^*\lambda = \alpha$ .  $M \xrightarrow{\alpha} T^*M$ 

► Then we define  $\omega = d\lambda \in \Omega^2(T^*M)$  to be the symplectic form.

## Second Example — Cotangent bundles (continued)

▶ Locally, if  $(q_1, ..., q_n)$  is a local coordinate over  $U \subseteq M$ , then there is a natural coordinate  $(p_1, ..., p_n, q_1, ..., q_n)$  of  $T^*M$ , presenting

$$p_1dq_1+\cdots+p_ndq_n\in T^*_{(q_1,\ldots,q_n)}(U).$$

**ightharpoonup** By the universal property,  $\lambda$  locally must be of the form

$$p_1dq_1+\cdots+p_ndq_n$$
.

So  $\omega = d\lambda$  locally looks like

$$dp_1 \wedge dq_1 + \ldots + dp_n \wedge dq_n$$
,

which is nondegenerate.

## Tips — Why it satisfies the universal property?

Firstly, it is unique if exists since

$$\bigcap_{\alpha\in\Omega^1(M)}\ker[\Omega^1(T^*M) {\overset{\alpha^*}{\to}} \,\Omega^1(M)] = 0.$$

This follows the intuitively trivial fact that for each point  $x \in M$  and  $\alpha_0 \in T_x^*M$   $\sum_{\alpha|_x=\alpha_0} \operatorname{im}[\alpha_*: T_xM \to T_{\alpha_0}(T^*M)] = T_{\alpha_0}(T^*M).$ 

Stare at the following diagram

$$p_1dq_1 + \ldots + p_ndq_n \in T^*U = T^*U \ni \lambda|_*$$
 $\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$ 
 $p_1dq_1 + \ldots + p_ndq_n \in T^*U' = T^*U' \ni \lambda|_*$ 
 $\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$ 
 $(p_1, \ldots, p_n, q_1, \ldots, q_n) \in \mathbb{k}^n \times U' \rightarrow T^*U' \ni \lambda|_*$ 

where  $U' \subseteq \mathbb{k}^n$  is the image of U under the coordinate.



## Second Example — Cotangent bundles (continued)

- It is also suggested to do some computation.
- Consider the following map

$$\begin{array}{cccc} T^*M & \stackrel{\text{bundle projection } \rho}{\longleftarrow} & T(T^*M) \\ \text{bundle projection } \pi \downarrow & & \downarrow \pi_* \\ M & \stackrel{\text{bundle projection}}{\longleftarrow} & TM \end{array}$$

Then we define  $\lambda(X) = \langle \rho(X), \pi_*(X) \rangle$ .

▶ By Cartan magic formula, for  $X, Y \in \mathfrak{X}(T^*M)$ ,

$$\omega(X,Y) = d\lambda(X,Y) = X\lambda(Y) - Y\lambda(X) - \lambda([X,Y]).$$

## Tips — Why it follows from diagram chasing?

► Stare at the following diagram



## $\sim \S$ Poisson Structure $\S \sim$

#### Hamiltonians

Let  $H \in \mathcal{C}(M)$ . Since  $\omega$  is nondegenerate, there is an  $X_H \in \mathfrak{X}(M)$  called the **Hamiltonian vector field** of H, such that

$$\omega(-,X_H)=dH.$$

Or, equivalently,  $dH = -i_{X_H}\omega$ .

- ▶ We say a vector field  $X \in \mathfrak{X}(M)$  is **symplectic** if  $L_X \omega = 0$ . Or equivalently, the infinitesimal homoemorphism preserving  $\omega$ .
- ▶ We say a vector field  $X \in \mathfrak{X}(M)$  is **Hamiltonian** if there exists  $H \in \mathcal{C}(M)$ , such that  $X_H = X$ .

### Poisson Bracket

▶ For  $f, g \in C(M)$ , define the **Poisson Bracket** 

$$\{f,g\} = \omega(X_f,X_g) \in \mathcal{C}(M).$$

Note that

$$\omega(X_f, X_g) = dg(X_f) = X_f g$$
  $\omega(X_f, X_g) = -\omega(X_g, X_f) = -X_g f.$ 

In particular,

$${a,bc} = {a,b}c + b{a,c}.$$

A commutative ring with a Lie algebra structure with this property is called a **Poisson algebra**.

#### **Theorem**

We have the following exact sequence of Lie algebra

$$0 \to H^0(M) \to C^\infty(M) \overset{H \mapsto X_H}{\to} \mathfrak{X}^\omega(M) \overset{X \mapsto i_X \omega}{\to} H^1(M) \to 0,$$

where  $\mathfrak{X}^{\omega}(M)$  is the space of symplectic vector space. The space  $H^0(M)$  and  $H^1(M)$  has the trivial Lie algebra structure.

## The proof

- ► Firstly,  $L_X\omega = d \circ i_X\omega + i_X \circ d\omega = d \circ i_X\omega$ . So for  $H \in \mathcal{C}(M)$ , the Hamiltonian vector field  $X_H$  is symplectic; a vector field  $X \in \mathfrak{X}(M)$  is symplectic if and only if  $i_X\omega$  is closed.
- ▶ Secondly,  $i_{X_H}\omega = -dH$ . So a vector field  $X \in \mathfrak{X}(M)$  is Hamiltonian if and only if  $i_X\omega$  is exact.
- ▶ Since  $\omega$  is nondegenerate,  $X \mapsto i_X \omega$  is surjective.
- For a symplectic vector field X,  $d(Xf) = L_X df = L_X \omega(-, X_f) = \omega(-, [X, X_f])$ . In particular,  $X_{\{f,g\}} = [X_f, X_g]$ .

### Example

- Let M be a manifold, and  $T^*M$  with symplectic structure as we stated.
- Pick a local coordinate  $(p_1, \ldots, p_n, q_1, \ldots, q_n)$ . Under  $\omega = dp_1 \wedge dq_1 + \cdots + dp_n \wedge dq_n$ ,

$$X_{p_i} = \frac{\partial}{\partial q_i}, \qquad X_{q_i} = -\frac{\partial}{\partial p_i}.$$

▶ The Poisson bracket of  $f, g \in C(T^*M)$  is locally given by

$$\{f,g\} = \sum \left( \frac{\partial g}{\partial p_i} \frac{\partial f}{\partial q_i} - \frac{\partial f}{\partial p_i} \frac{\partial g}{\partial q_i} \right).$$

Since 
$$\begin{cases} df = \sum \frac{\partial f}{\partial p_i} dp_i + \sum \frac{\partial f}{\partial q_i} dq_i \\ dg = \sum \frac{\partial g}{\partial p_i} dp_i + \sum \frac{\partial g}{\partial q_i} dq_i \end{cases}.$$

## Digression

▶ Consider the space of differential operators over M, that is, locally with coordinate  $(q_1, \ldots, q_n)$  over U, like

$$\mathsf{Diff}(U) = \left\{ \sum_{\mathbf{k} = (k_1, \cdots, k_n)} f_{\mathbf{k}}(q) \frac{\partial^{|\mathbf{k}|}}{\partial q_1^{k_1} \cdots \partial q_n^{k_n}} \left( \mathsf{finite sum} \right) \right\}$$

• We can define for  $D=\sum_{|\mathbf{k}|}f_{\mathbf{k}}(q)\frac{\partial^{|\mathbf{k}|}}{\partial q^{\mathbf{k}}}\in \mathsf{Diff}(U)$  its symbol  $\sigma(D)\in \mathcal{C}(T^*U)$  by

$$\sigma(D) = \sum_{\mathbf{k}} f_{\mathbf{k}}(q) p^{\mathbf{k}},$$

simply changing  $\frac{\partial}{\partial q_i}$  to  $p_i$ .

## Digression

▶ Let  $\mathsf{Diff}^{\leq n}$  of the differential operators with order  $\leq n$ , then there is a Poisson algebra structure over  $\mathsf{gr}\,\mathsf{Diff}^{\bullet}(M)$ , induced by commutator,

$$\operatorname{gr}^k\operatorname{Diff}^{ullet}(M)\times\operatorname{gr}^h\operatorname{Diff}^{ullet}(M)\longrightarrow\operatorname{gr}^{k+h-1}\operatorname{Diff}^{ullet}(M).$$

Actually, through  $\sigma$ , it coincides with the Poisson structure over  $\mathcal{C}(T^*M)$ . Since due to Leibniz rule, it suffices to check the generator. Under  $\omega = \sum dp_i \wedge dq_i$ ,  $X_{p_i} = \frac{\partial}{\partial q_i}$ . It is easy to check now

$$\begin{aligned}
\{\sigma(\frac{\partial}{\partial q_i}), \sigma(f)\} &= \{p_i, f\} = \frac{\partial f}{\partial q_i}; \\
\sigma(\left[\frac{\partial}{\partial q_i}, f\right]) &= \sigma(\frac{\partial}{\partial q_i} f - f \frac{\partial}{\partial q_i}) = \sigma(\frac{\partial f}{\partial q_i}) = \frac{\partial f}{\partial q_i}.
\end{aligned}$$



# $\sim \S$ Moment Maps $\S \sim$

#### Hamiltonian action

Let M be a symplectic manifold with a smooth G-action.

• We say it is **symplectic**, if  $\omega$  is preserved. Equivalently, the induced map  $\mathfrak{g} \to \mathfrak{X}(M)$  factor through symplectic vector field

$$\mathfrak{g} \to \mathfrak{X}(M)^{\omega} \to \mathfrak{X}(M)$$
.

▶ We say it is **Hamiltonian**, if the induced map  $\mathfrak{g} \to \mathfrak{X}(M)$  factors through

$$\mathfrak{g} \stackrel{H}{\rightarrow} \mathcal{C}(M) \stackrel{H \mapsto X_H}{\longrightarrow} \mathfrak{X}(M),$$

where we assume H to be Lie algebra homomorphism.



## Moment map

 $\triangleright$  For a Hamiltonian action of G on M, we call

$$\mu: M \longrightarrow \mathfrak{g}^* \qquad x \longmapsto [X \mapsto H(X)(x)]$$

the moment map.

#### **Theorem**

Assume G is connected, then the moment map is G-equivariant. Besides,

$$\mu^*: \mathcal{Sg} = \mathbb{k}[\mathfrak{g}^*] \to \mathcal{C}(M)$$

preserves the Poisson bracket.

## The proof

- ► Firstly, to show it preserves Poisson bracket, it suffices to check at the generator due to the Leibniz rule.
- $\blacktriangleright \text{ For } X \in \mathfrak{g} = \mathbb{k}[\mathfrak{g}^*]^1,$

$$\mu^*(X)(x) = X(\mu(x)) = X(H(-)(x)) = H(X)(x).$$

So  $\mu^*$  is induced by H. So it follows from definition.

To show it is equivariant,

$$\forall g \in G, x \in M, \qquad \mu(gx) = \operatorname{Ad}_g \mu(x),$$

it suffices to show the infinitesimal version

$$\forall X \in \mathfrak{g}, x \in M, \qquad \mu_*(X_x^\#) = \operatorname{ad}_X \mu(x),$$

where  $X^{\#} = X_{H(X)} \in \mathfrak{X}(M)$  is the image of  $X \in \mathfrak{g}$ .

 $\blacktriangleright \ \mathsf{Let} \ Y \in \mathfrak{g} \in T^*\mathfrak{g}^* = \mathfrak{g},$ 

$$\begin{array}{ll} \mu_*(X_x^\#)(Y) &= (X_x^\#)(\mu^*Y) = (X_x^\#)(H(Y)) \\ &= \{H(X), H(Y)\}(x) = H([X,Y])(x), \\ \operatorname{ad}_X \mu(x)(Y) &= \big[\operatorname{ad}_X (H(-)(x))\big](Y) \\ &= \big[H([X,-])(x)\big](Y) = H([X,Y])(x). \end{array}$$

#### A Question

- For a vector field  $X \in \mathfrak{X}(M)$ , it induces a infinite small homoemorphism of M, then induces a infinite small homoemorphism of  $T^*M$ , so finally defines a vector field  $\tilde{X} \in \mathfrak{X}(T^*M)$ . How to compute it?
- ▶ Denote  $g_t : M \to M$  a family of homoemorphism, denote  $g_t^* : T^*M \to T^*M$ . Let  $f \in \mathcal{C}(T^*M)$ .
- Firstly, we pick coordinate,  $(p_1, \ldots, p_n, q_1, \ldots, q_n)$  over  $T^*U$ . Assume  $X = \sum X^i(q) \frac{\partial}{\partial q_i}$ .
- ► To do the computation, it suffices to compute  $\lim_{t\to 0} \frac{f(g_t^*\alpha)-f(\alpha)}{t}$  for  $\alpha\in T_x^*M$  for  $f=p_i$  and  $q_i$ .

▶ For the case  $f = q_i$ , it is clear, the answer is  $X^i$ . More exactly,

$$\tilde{X}^i(p,q)=X^i(p).$$

► To do the rest case, we pick an  $\alpha \in \Omega^1(U)$ , and  $x \in M$ , consider

$$f(g_t^*(\alpha_x)) = f((g_{-t}^*\alpha)_{g_t x}).$$

Then using  $H(t,s) = f((g_t^*\alpha)_{g_s \times})$ , and taking in  $f = p_i$ ,

$$\begin{split} H_t(0,0) &= p_i(L_X\alpha)_x = \left\langle \frac{\partial}{\partial q_i}, L_X\alpha \right\rangle_x \\ H_s(0,0) &= (X(p_i(\alpha_\bullet)))(x) = X \left\langle \frac{\partial}{\partial q_i}, \alpha \right\rangle_x. \end{split}$$

► Sc

$$\begin{split} \lim_{t \to 0} \frac{f(g_t^* \alpha) - f(\alpha)}{t} &= -\left\langle \frac{\partial}{\partial q_i}, L_X \alpha \right\rangle_X + X \left\langle \frac{\partial}{\partial q_i}, \alpha \right\rangle_X \\ &= \left\langle [X, \frac{\partial}{\partial q_i}], \alpha \right\rangle_X \\ &= \left\langle -\sum_j \frac{\partial X^j}{\partial q_i} \frac{\partial}{\partial q_j}, \alpha \right\rangle_X = -\sum_j \frac{\partial X^j}{\partial q_i} p_j(\alpha_X). \end{split}$$

As a result.

$$\tilde{X} = \sum X^{i}(q) \frac{\partial}{\partial q_{i}} - \sum_{i} \left( \sum_{j} \frac{\partial X^{j}}{\partial q_{i}} p_{j} \right) \frac{\partial}{\partial p_{i}}$$

lackbox On the other hand, under  $\omega=dp_1\wedge dq_1+\cdots+dp_n\wedge dq_n$ ,

$$X_{p_i} = \frac{\partial}{\partial q_i}, \qquad X_{q_i} = -\frac{\partial}{\partial p_i}.$$

▶ The symbol  $\sigma(X) \in \mathcal{C}(T^*M)$  of X, that is by natural pairing,  $\alpha_x \mapsto \langle X, \alpha_x \rangle$ ,

$$\sigma(X) = \sum X^i(q)p_i.$$

So

$$d\sigma(X) = \sum X^{i}(q)dp_{i} + \sum_{i} \left(\sum_{j} \frac{X^{j}(q)}{\partial q_{i}}\right)dq_{i}.$$

It corresponds to the Hamiltonian vector field

$$X_{\sigma(X)} = \sum X^{i}(q) \frac{\partial}{\partial q_{i}} - \sum_{i} \left( \sum_{i} \frac{\partial X^{j}}{\partial q_{i}} p_{j} \right) \frac{\partial}{\partial p_{i}}$$

exactly  $\tilde{X}$ .

Let M be a smooth manifold acted by G. Then the action of G on  $T^*M$  is Hamiltonian, with moment map

$$\mu: T^*M \longrightarrow \mathfrak{g}^* \qquad \alpha_{\mathsf{X}} \longmapsto \left[ \mathsf{X} \mapsto \left\langle \mathsf{X}^\#, \alpha_{\mathsf{X}} \right\rangle \right].$$

▶ In particular, let  $\mathbb{R}^3$  acts on  $T^*\mathbb{R}^3$  by translation, the moment map is

$$\mu: T^*\mathbb{R} \longrightarrow (\mathbb{R}^3)^* \qquad (\mathbf{p}, \mathbf{q}) \longmapsto [\mathbf{x} \mapsto \langle \mathbf{x}, \mathbf{p} \rangle].$$

So under the inner product, it is actually given by  $\mathbf{p}$  the linear momentum.



▶ In particular, let  $SO_3$  act on  $\mathcal{T}^*\mathbb{R}^3$  by rotation, the moment map is

$$\mu: \mathcal{T}^*\mathbb{R} \longrightarrow (\mathfrak{so}_3)^* \qquad (\mathbf{p}, \mathbf{q}) \longmapsto [A \mapsto \langle A\mathbf{q}, \mathbf{p} \rangle].$$

▶ But for \$03, it is famous that

$$(\mathfrak{so}_3,[,])\cong (\mathbb{R}^3, imes) \qquad \left(egin{matrix} 0 & a_3 & -a_2 \ -a_3 & 0 & a_1 \ a_2 & -a_1 & 0 \end{matrix}
ight) \longleftrightarrow (a_1,a_2,a_3).$$

So under the inner product over  $\mathbb{R}^3$ , the moment map is  $\mathbf{q} \times \mathbf{p}$ , the angular momentum.



▶ Consider two vector space V, W, and G = GL(V). Note that by the trace pairing,  $Hom(V, W)^* = Hom(W, V)$ . The map induced by left multiplication

$$G \times \operatorname{\mathsf{Hom}}(V,W) \longrightarrow \operatorname{\mathsf{Hom}}(V,W) \qquad (g,f) \mapsto (f \circ g^{-1})$$

induces

$$\mathfrak{gl}(V) \longrightarrow \mathfrak{X}^*(\mathsf{Hom}(V,W)) \qquad X \longmapsto [f \mapsto -f \circ X].$$

So the moment map is

$$\operatorname{\mathsf{Hom}}(V,W)\oplus\operatorname{\mathsf{Hom}}(W,V)\longrightarrow \mathfrak{gl}^*(V) \qquad (f,g)\longmapsto [X\longmapsto\operatorname{\mathsf{tr}}(-f\circ V)]$$

So under the trace pairing,  $\mathfrak{gl}^*(V) = \mathfrak{gl}(V)$ , it is given by  $(f,g) \mapsto -gf$ .



Similarly, consider the map induced by adjoint action

$$G \times \operatorname{End}(V) \longrightarrow \operatorname{End}(V) \qquad (g, f) \mapsto (g \circ f \circ g^{-1})$$

induces

$$\mathfrak{gl} \longrightarrow \mathfrak{X}^*(\operatorname{End}(V)) \qquad X \longmapsto [f \mapsto [X, f]].$$

So the moment map is

$$\operatorname{\mathsf{End}}(V) \oplus \operatorname{\mathsf{End}}(V) \longrightarrow \mathfrak{gl}^* \ (f,g) \longmapsto [X \longmapsto \operatorname{\mathsf{tr}}([X,f] \circ g)] = \operatorname{\mathsf{tr}}(X \circ [f,g]).$$

So under the trace pairing,  $\mathfrak{gl}^*(V) = \mathfrak{gl}(V)$ , it is given by  $(f,g) \mapsto [f,g]$ .

# Digression

If G is compact and semisimple, so  $\mathfrak g$  is semisimple, then the moment map always uniquely exists. Since  $H^1(\mathfrak g;\mathbb R)=0$  implies  $[\mathfrak g,\mathfrak g]=\mathfrak g$ , but

$$d\omega(X,Y) = di_Y i_X \omega = L_Y i_X \omega - i_Y di_X \omega$$
  
=  $L_Y i_X \omega - i_Y L_X \omega + i_Y i_X d\omega = L_Y i_X \omega = L_Y (\omega(X,-))$   
=  $(L_Y \omega)(X,-) + \omega(L_Y X,-) = \omega(-,[X,Y]).$ 

In conclusion  $X_{\omega(X,Y)} = \omega(-,[X,Y])$ . So  $\mathfrak g$  takes value in the Hamiltonian vector fields.

# Digression

▶ Since  $H^2(\mathfrak{g}; \mathbb{R}) = 0$ , so the first row split

So we get desired lift.



# $\sim \S$ Hamiltonian Reduction $\S \sim$

#### Calculation

- ▶ For further use, let us denote  $X^\# \in \mathfrak{X}(M)^\omega$  for  $X \in \mathfrak{g}$  the corresponding vector field. Note that  $X^\# = X_{H(X)}$ .
- ▶ For  $X \in \mathfrak{g}$ , as a function over  $\mathfrak{g}^*$  then  $\mu^*(X) = H(X)$ , since

$$\mu^*(X)(x) = \langle X, \mu(x) \rangle = \langle X, H(-)(x) \rangle = H(X)(x).$$

For  $X \in \Omega^1(\mathfrak{g}^*) = \mathfrak{g}$ , then  $\mu^*(X) = dH(X)$ . Since

$$\mu^*(X) = \mu^*(dX) = d\mu^*(X) = dH(X).$$

For  $X \in \mathfrak{g}$ , and  $v \in TM$ , then  $\langle X, \mu_*(v) \rangle = dH(X)(v) = \omega(v, X^\#)$ . Since

$$\langle X, \mu_*(v) \rangle = \langle \mu^* X, v \rangle = \langle dH(X), v \rangle = \omega(v, X^\#).$$



# Moment map again

#### **Theorem**

Let M be symplectic manifold, with a Hamiltonian G-action with moment map  $\mu$ . At  $x \in M$ ,

$$\ker d\mu = T_{X}(Gx)^{\omega \perp} = \{X \in T_{X}M : \substack{Y \in T(Gx) \\ \Rightarrow \omega(X,Y) = 0}\},$$
  
$$\operatorname{im} d\mu = \mathfrak{g}_{X}^{\perp} = \{\lambda \in \mathfrak{g} : \substack{X \in \mathfrak{g}, X_{X}^{\#} = 0 \\ \Rightarrow \lambda(X) = 0}\}.$$

- Note that  $T_x(Gx)$  is exactly  $\{Y_x^\#: Y \in \mathfrak{g}\}$ , the assertion for kernel is clear.
- ► For  $\lambda \in \mathfrak{g}^*$ ,  $\lambda(X)$  can be presented by  $\omega(v, X_x^\#)$  if  $X_x^\# = 0 \Rightarrow \lambda(X) = 0$  by nondegenerateness of  $\omega$ .

#### Restriction

- Let p be a regular value of  $\mu$ . The preimage  $\mu^{-1}(p)$  is a manifold. Let  $\mathbb{O}_p \subseteq \mathfrak{g}^*$  be the orbit of p.
- ▶ The restriction of  $\omega$  on  $X = \mu^{-1}(\mathbb{O}_p)$  is generally not nondegenerate. For  $x \in M$ , we should consider rad  $\omega|_{\mathcal{T}_xX}$ . Note that for  $v \in \mathcal{T}_xX$ , then

$$\omega(v,X^{\#})=dH(X)(v)=\left\langle X,\mu^{*}(v)\right\rangle =0.$$

So  $T_X(Gx) \subseteq \operatorname{rad} \omega|_{T_XX}$ .

- Note that  $\dim \operatorname{rad} \omega|_{T_xX} = \operatorname{codim} X = \operatorname{codim} \mathbb{O}_p = \dim\{g \in G : \operatorname{Ad}_g p = p\}.$
- ▶ To ensure  $T_X(Gx) = \operatorname{rad} \omega|_{T_XX}$ , and X/G a manifold we should assume the action of G is proper, and the stablizer  $G_p$  acts on X freely.

#### Theorem (Marsden-Weinstein)

Let M be symplectic manifold, with a proper Hamiltonian G-action with moment map  $\mu$ . Let  $p \in \mathfrak{g}^*$  be a regular value of  $\mu$ , and the stablizer  $G_p$  acts on  $\mu^{-1}(p)$  freely, then

$$\mu^{-1}(p)/G_p = \mu^{-1}(\mathbb{O}_p)/G$$

has a natural symplectic structure.

$$\mu^{-1}(p)/G_p$$
  $M$ 
 $\mu^{-1}(p)$ 

#### Theorem (Marsden-Weinstein)

Let M be symplectic manifold, with a proper Hamiltonian G-action with moment map  $\mu$ . Assume G acts on  $\mu^{-1}(0)$  freely, then

$$\mu^{-1}(0)/G$$

has a natural symplectic structure.

#### **Theorem**

Let M be a manifold with free proper G-action, then

$$T^*(M/G) = \mu^{-1}(0)/G.$$



# $\sim \S$ Algebraic Reduction $\S \sim$

# Algebraic Reduction

Now, turn everything into algebraic.

Manifolds Varieties
Symplectic Structure Poisson Structure

We say a variety X having a **Poisson strucuture** if it have over  $\mathcal{O}_X$ .

▶ In this case, we can also consider moment map, but since variety is of singularities, we should not only consider the regular value.

# Algebraic Reduction

Let X be a nonsingular affine algebraic variety acted by reduction group G. Now assume  $\mu: T^*X \to \mathfrak{g}^*$  is the moment map.

#### **Theorem**

For  $\chi$  a character, then  $\mu^{-1}(0)//\chi G$  has a Poisson structure. Besides,

$$\mu^{-1}(0)//_{\chi}G \rightarrow \mu^{-1}(0)//G$$

preserves Poisson structure.

# The proof

Since  $\mu^{-1}(0)$  is defined by  $\mu = 0$ , that is  $\left\{x \in X : \frac{\forall X \in \mathfrak{g},}{\mu(x)(X) = 0}\right\}$ . But  $\mu(x)(X) = H(X)(x)$ , so  $\mu^{-1}(0)/\!/G$  is defined by  $\left(\mathbb{k}[X]/\left\langle H(X) : X \in \mathfrak{g}\right\rangle\right)^G.$ 

We simply define

$$\{f,g\} = \{\hat{f},\hat{g}\} \mod \langle H(X) : X \in \mathfrak{g} \rangle$$

where  $\hat{f}, \hat{g}$  is some lift.

# The proof (continued)

▶ To show this is well-defined, we should show  $\langle H(X): X \in \mathfrak{g} \rangle$  is stable under this bracket. For  $f \in (\mathbb{k}[X]/\langle H(X): X \in \mathfrak{g} \rangle)^G$ ,

$$\{f, H(X)g\} = \{f, H(X)\}g + \{f, g\}H(x);$$
  
 $\{f, H(x)\} = X^{\#}f \in \langle H(X) : X \in \mathfrak{g} \rangle.$ 

This follows from *G*-invariance.

- ▶ Then, we also need to show  $\{f,g\}$  is G-invariant. But the action of G commutes with bracket.
- ► The proof of  $\mu^{-1}(0)//_{\chi}G$  is similar, since it is locally f/g with  $f,g\in \mu^{-1}(0)^{G,\chi^n}$ .

#### Theorem

Let  $X^s \subseteq X$  be the subvariety of  $\chi$ -stable points, so that  $X^s//_\chi G \subseteq X//_\chi G$  is a smooth subvariety; similarly, let  $(\mu^{-1}(0))^s \subseteq \mu^{-1}(0)$  be the subvariety of  $\chi$ -stable points, so that  $\mu^{-1}(0)^s//_\chi G \subseteq \mu^{-1}(0)//_\chi G$  is smooth. Then the restriction of the Poisson bracket to  $\mu^{-1}(0)^s//_\chi G$  is nondegenerate, i.e. comes from a symplectic form on it, and  $\mu^{-1}(0)^s//_\chi G$  contains  $T^*(X^s//G)$  as an open (possibly empty) subset.

- ▶ (By our discussion) This is not true in general, but it is true for quiver varieties, see Theorem 2.3.
- ▶ I believe the above follows from the proof of Marsden-Weinstein reduction theorem, and Luna slide theorem. In this case, stable points are the point acted freely.



# $\sim \S$ Lagrangian Submanifolds $\S \sim$

## Lagrangian submanifolds

- For a symplectic vector space V, a subspace  $W\subseteq V$  is called  $\left\{ \begin{array}{l} \textbf{isotropic} \\ \textbf{coisotropic} \\ \textbf{Lagrangian} \end{array} \right\} \text{ if } \left\{ \begin{array}{l} W\subseteq W^{\perp\omega} \\ W\supseteq W^{\perp\omega} \\ W=W^{\perp\omega} \end{array} \right.$
- For a symplectic manifold M,  $N \subseteq M$  a submanifold is called  $\left\{\begin{array}{c} \textbf{isotropic} \\ \textbf{coisotropic} \\ \textbf{Lagrangian} \end{array}\right\}$  if  $T_xN$  is  $\left\{\begin{array}{c} \textbf{isotropic} \\ \textbf{coisotropic} \\ \textbf{Lagrangian} \end{array}\right\}$  in  $T_xM$  for all  $x \in N$ .
- ▶ In particular, if *N* is Lagrangian in *M*, then dim  $N = \frac{1}{2} \dim M$ .

► Let *X*, *Y* be symplectic manifolds, equip *X* × *Y* the symplectic form by

$$\omega_X \oplus (-\omega_Y) = \operatorname{pr}_X^* \omega_X - \operatorname{pr}_Y^* \omega_Y.$$

► Then  $f: X \to Y$  is symplectic (that is,  $f^*\omega_Y = \omega_X$ ) if and only if the graph

$$graph(f) = \{(x, f(x)) \in X \times Y : x \in X\}$$

is Lagrangian in  $X \times Y$ .

▶ Since f factors through  $X \cong \operatorname{graph}(f) \xrightarrow{\iota} X \times Y \xrightarrow{\operatorname{pr}_Y} Y$ .

$$\iota^* \omega_{X \times Y} = \iota^* (\operatorname{pr}_X^* \omega_X - \operatorname{pr}_Y^* \omega_Y) = \omega_X - f^* \omega_Y.$$



Let M be a manifold, and  $\alpha \in \Omega(M)$  a 1-form. Then it is closed if and only if the image of  $\alpha: M \to T^*M$ ,

$$\mathsf{image}(\alpha) = \{(\alpha_x) \in T^*M : x \in M\}$$

is Lagrangian in  $T^*M$ .

▶ Since  $\alpha$  factors through  $M \rightarrow \text{image } \alpha \rightarrow T^*M$ .

$$\alpha^*\omega = \alpha^*(d\lambda) = d(\alpha^*\lambda) = d\alpha,$$

where  $\lambda$  is the tautological form over  $T^*M$ .

► Let *M* be a manifold, *N* be a submanifold. Then the conormal bundle

$$N^*(N, M) = \{\alpha \in T_x^*(M) : \alpha(T_x N) = 0\} = (T_x M/T_x N)^*$$

is Lagrangian in  $T^*M$ .

This follows from local computation.

- We keep the convention of product of symplectic form (with a minus).
- Let  $f: M \rightarrow N$  be a smooth function, denote its infinitesimal graph

$$graph(f^*) = \{(x, f^*\alpha, f(x), \alpha) \in T^*M \times T^*N : x \in M, \alpha \in T^*_{f(x)}N\}$$

- is Lagrangian.
- ▶ Actually,  $f^*(T^*N) \cong \operatorname{graph}(f^*) \subseteq T^*M \times T^*N$ .

## Tips

Let  $f: M \to N$ , and  $f^*(T^*N)$  the pull back of cotangent bundle of N. Then the pull back of tautological form of  $T^*N$  and  $T^*M$  coincide by direct computation

$$\begin{array}{ccc}
f^*(T^*N) & \xrightarrow{df} & T^*M \\
\downarrow & & \\
T^*N
\end{array}$$

► Consider  $\begin{bmatrix} f^*(T^*N) \to & T^*M \\ \downarrow & \searrow & \uparrow \\ T^*N & \leftarrow & T^*M \times T^*N \end{bmatrix}$  So  $\operatorname{pr}_1^* \lambda_M - \operatorname{pr}_2^* \lambda_N$  pull back to  $f^*(T^*M)$  to be zero.

#### Tips

Pick local coordinates  $(q_i)=(q_1,\ldots,q_m)$  for M, and  $(Q_j)=(Q_1,\ldots,Q_n)$  for N. Assume  $Q_j=f_j(q)$ , and denote  $f_{ji}=\frac{\partial f_j}{\partial q_i}$ . Then

$$f^*: T^*_{f(q)}N \longrightarrow T^*_qM: \sum_j P_jdQ_j \longmapsto \sum_{ij} P_j(y)f_{ji}(q)dq_i$$

So the map  $f^*(T^*N) \to T^*M$  is locally given by  $\begin{cases} p_i = \sum_j P_j(y) f_{ji}(y) \\ q_i = q_i \end{cases}$ , so

pull back of 
$$p_i dq_i = \sum_i P_j(y) f_{ji}(q) dq_i$$
.

▶ So the map  $f^*(T^*N) \rightarrow T^*N$  is locally given by  ${P_i=P_i \choose Q_i=f_i(q)}$ , so

pull back of 
$$P_i dQ_i = \sum_i P_j(y) f_{ji}(q) dq_i$$
.



# Digression

We keep the convention of product of symplectic form (with a minus). By a twist

$$\sigma: T^*M \times T^*N \longrightarrow T^*(M \times N) \quad (x,\alpha) \times (y,\beta) \longmapsto (x,y,\alpha,-\beta)$$

They are identified.

▶ On one hand, given a symplectic map  $f: T^*M \to T^*N$ , we get graph $(f) \subseteq T^*M \times T^*N$ . On the other hand, for  $F \in \mathcal{C}(M \times N)$  such that graph $(dF) \subseteq T^*(M \times N)$ . If they coincide, we say F is the generating function of f. Equivalently,

$$f:(x,(d_xF)_{(x,y)})\longmapsto(y,-(d_yF)_{(x,y)})$$

is well-defined.



# Digression

▶ For example, if  $F \in \mathcal{C}(M \times M)$  is the generating function of  $f: T^*M \to T^*M$ , then the fixed point of f is one-to-one correspondent to the critical point of  $\varphi(x) = F(x,x) : \mathcal{C}(M)$ . Since



# $\sim \S$ Symplectic Resolutions $\S \sim$

### Resolution of Singularities

For variety  $\mathcal M$  and nonsingular variety  $\tilde{\mathcal M}$ , a morphism

$$\pi: \tilde{\mathcal{M}} \longrightarrow \mathcal{M}$$

is called a **resolution of singularities** if it is proper and birational.

For variety  $\mathcal{M}$  with Poisson structure and nonsingular variety  $\tilde{\mathcal{M}}$  with symplectic structure, a <u>Poisson</u> morphism

$$\pi: \tilde{\mathcal{M}} \longrightarrow \mathcal{M}$$

is called a **symplectic resolution of singularities** if it is proper and birational.

▶ Assume a nonsingular affine variety *X* is acted by a reductive group *G*. Denote

$$\mathcal{M}_{\chi} = \mu^{-1}(0) / /_{\chi} G$$

the algebraic reduction.

#### **Theorem**

Assume  $\mathcal{M}_{\chi}$  is connected and nonsingular and the subset of regular points  $\mathcal{M}_{0}^{\text{reg}}$  is nonempty, then

$$\mathcal{M}_{\chi} \longrightarrow \mathcal{M}_0$$

is a symplectic resolution of singularities.

### Example

▶ Let  $X = \mathbb{k}^2$ , and  $G = \mathbb{k}^{\times}$ . Then

$$T^*X = X \oplus X^* = \left\{ (i,j) : \mathbb{k} \underset{i}{\overset{j}{\rightleftharpoons}} \mathbb{k}^2 \right\}.$$

- The action  $G \times X \to X$  is taken to be  $\lambda \cdot j = \lambda^{-1}j$ , so  $G \times T^*X \to T^*X$  is given by  $\lambda \cdot (i,j) = (\lambda i, \lambda^{-1}j)$ .
- ► The moment map,

$$T^*X \longrightarrow \underbrace{(\operatorname{Lie} G)^*}_{=\Bbbk} \qquad (i,j) \longmapsto -ij.$$

So 
$$\mu^{-1}(0) = \{(i,j) : ij = 0\}.$$

Consider

$$\{(i,j): ij=0\}/\!/\mathbb{k}^{\times} \longrightarrow \mathbb{M}_{2\times 2}(\mathbb{k}) \qquad (i,j)\longmapsto j\circ i.$$

- ▶ Claim: the image is  $\{A \in \mathbb{M}_{2\times 2}(\mathbb{k}) : \det A = \operatorname{tr} A = 0\}$ , and the above morphism is isomorphism. (Linear algebra)
- But

$$\{A \in \mathbb{M}_{2 \times 2}(\mathbb{k}) : \det A = \operatorname{tr} A = 0\} = \left\{ \begin{pmatrix} a & c \\ b & -a \end{pmatrix} : a^2 + bc = 0 \right\}$$

is a quadric in  $\mathbb{k}^3$ . It obviously has a singularity at the origin.

- ▶ Points with trivial stablizer is  $\{(i,j): i \neq 0 \text{ or } j \neq 0\}$ .
- Such points lying in a closed orbit is  $\{(i,j): i \neq 0 \text{ and } j \neq 0\}$ . Equivalently,  $\{(i,j): ji \neq 0\}$ . So  $(\mu^{-1}/\!/\!\mathbb{k}^{\times})^{\text{reg}} = \{a^2 + bc = 0\} \setminus 0$ .

Now consider the character  $\chi = id$ .

$$\mathbb{k}^{\times} \times T^{*}X \times \mathbb{k} \longrightarrow T^{*}X \times \mathbb{k} \qquad (\lambda, i, j, z) \longmapsto (\lambda i, \lambda^{-1}j, \lambda z).$$

So  $\chi$ -semistable points  $\{(i,j): j \neq 0\}$ .

As a result,

$$\mu^{-1}(0)//_{\chi} \mathbb{k}^{\times} = \{(i,j): j \neq 0\}/\mathbb{k}^{\times}.$$

Consider the fibre

We see  $\mu^{-1}(0)//_{\chi} \mathbb{k}^{\times}$  is a line bundle over  $\mathbb{P}^1_{\mathbb{k}}$ .

- Actually, this is the cotangent bundle of  $\mathbb{P}^1_{\Bbbk}$ . (Directly or by reduction)
- ▶ Direct way: a cotangent vector at  $V \in \mathbb{P}^1_{\Bbbk}$  is a functional  $\Bbbk^2 \to \Bbbk$  restrict V trivially.
- ▶ Reduction way:  $\mu^{-1}(0)$  contains  $T^*(X^s//G)$  as open subset (from construction of quotient).
- Now,  $\mu^{-1}(0)//_{\chi} \mathbb{k}^{\times}$  is nonsingular, so

$$\mu^{-1}(0)//_{\chi} \mathbb{k}^{\times} \longrightarrow \mu^{-1}(0)//\mathbb{k}^{\times}$$

is a symplectic resolution of singularities.

### Springer Resolutions

- The above example is a good example of Springer resolution. Let G be a semisimple Lie group, and  $\mathfrak{g}$  its Lie algebra.
- Consider the nilpotent cone

$$\mathcal{N} = \{x \in \mathfrak{g} : x \text{ is nilpotent}\}$$

- Let  $\mathcal{B} = G/B = \{\text{all Borel subgroups}\} = \{\text{all Borel subalgebras}\}.$
- Denote

$$\tilde{\mathcal{N}} = \{(x, \mathfrak{b}) \in \mathcal{N} \times \mathcal{B} : x \in \mathfrak{b}\}.$$



## Springer Resolutions

Let  $G = SL_n$  be a semisimple Lie group, and  $\mathfrak{sl}_n$  its Lie algebra.

$$\mathcal{N} = \{x \in \mathfrak{sl}_n : x \text{ is nilpotent}\}.$$

and  $\mathcal{B} = \{\text{all flags in } \mathbb{k}^n\}.$ 

$$\tilde{\mathcal{N}} = \{(x, \mathcal{F}) \in \mathcal{N} \times \mathcal{B} : x\mathcal{F}_i \subseteq \mathcal{F}_{i-1}\}.$$

ightharpoonup We can change to  $GL_n$ .

#### **Theorem**

As the notations above,

- (1)  $\tilde{\mathcal{N}} = T^*\mathcal{B}$ ;
- (2) The moment map is given by  $\begin{bmatrix} \tilde{\mathcal{N}} \longrightarrow \mathfrak{g} \\ (x,\mathfrak{b}) \longmapsto x \end{bmatrix}$ ;
- (3)  $\tilde{\mathcal{N}} \to \mathcal{N}$  is a symplectic resolution of singularities.

- The tangent space at  $\mathfrak{b} \in \mathcal{B}$  is  $\mathfrak{g}/\mathfrak{b}$ . So cotangent space at  $\mathfrak{b} \in \mathcal{B}$  is, by trace pairing  $\kappa$  (Killing form),  $\{x \in \mathfrak{g} : \kappa(x,\mathfrak{b}) = 0\} = \{x \in \mathcal{N} : x \in \mathfrak{b}\}.$
- ▶ The moment map, still by Killing form  $\kappa$ ,

$$\mu: \tilde{\mathcal{N}} \longrightarrow \mathfrak{g}^* = \mathfrak{g} \qquad (x, \mathfrak{b}) \longmapsto [X \mapsto \kappa(x, X)] = x.$$

- Consider regular nilpotent element  $x \in \mathfrak{g}$ , there is only one Borel subalgebra  $\mathfrak{b} \ni x$ . In the  $\mathfrak{sl}_n$  case, it is  $x^{n-1} \neq 0$ , so the corresponding flag is by  $\ker x^i = \operatorname{im} x^{n-i}$ .
- ▶ But the regular nilpotent element is open and dense. Besides,  $\mu$  is proper, since it is a closed subvariety of  $\mathcal{N} \times \mathcal{B}$ .
- ▶ It is symplectic since moment map is Poisson.



# $\sim \S$ Kähler Manifolds $\S \sim$

#### Kähler Manifolds

A Kälher manifold is a manifold M with the

complex structure 
$$J$$
; symplectic structure  $\omega$ ; Riemannian metric  $g$ . compatible  $\omega(\cdot,\cdot)=g(J\cdot,\cdot)$ ,

where J is the product with  $\mathbf{i}$ . We can define a Hermitian (unitary) metric over  $T_{\mathbb{C}}^*M$ ,

$$(x,y)=g(x,y)+\mathbf{i}\omega(x,y).$$

### **Projective Spaces**

- ▶ Projective space  $\mathbb{C}P^n$  is Kähler, by the **Fubini-Study form**, induced from the metric from the unitary metric  $S^{2n+1}$ .
- ➤ Since every complex submanifold of a Kähler manifold is Kähler, this implies that every smooth projective variety is Kähler.

### First Example

Assume there the coordinate is  $(p_1, \dots, p_n, q_1, \dots, q_n)^{\top}$ . There are three kinds of structures over  $V = \mathbb{R}^{2n}$ , they are the **inner product** 

$$g=\sum q_i^2+\sum p_i^2\in S^2V^*,\quad \text{that is, }\quad g(x,y)=y^{\mathbf{t}}\tbinom{1_n}{1_n}x,$$

the symplectic structure

$$\omega = p_i \wedge q_i \in \Lambda^2 V^*, \quad \text{that is,} \quad \omega(x,y) = y^{\mathbf{t}} \binom{-1_n}{1_n} x,$$

and the **complex structure** with identification  $z_i = p_i + \mathbf{i} q_i$ , or formally, it is given by the multiplication by  $\mathbf{i}$ , usually denoted by J,

$$J \cdot x = \binom{-1_n}{1_n} x.$$

### Computation of Moment map

Note that Sp(V) acts on V. It is actually Hamiltonian.

$$\mathfrak{sp}(V) \longrightarrow \mathfrak{X}(V) \qquad A \mapsto [x \mapsto Ax].$$
 By  $H_A = \frac{1}{2}\omega(x,Ax)$ , for  $x \in V$ , and  $y \in T_x^*V = V$ , 
$$dH_A(y) = \frac{1}{2}\omega(dx,Ax)(y) + \frac{1}{2}\omega(x,Adx)(y) = \frac{1}{2}\omega(y,Ax) + \frac{1}{2}\omega(x,Ay) = \omega(y,Ax).$$
 Since  $\omega(x,Ay) = -\omega(Ax,y)$ .

► So moment map is given by

$$\mu: V \longmapsto \mathfrak{sp}(V)^* \qquad x \mapsto \left[A \longmapsto \frac{1}{2}\omega(x, Ax)\right].$$



▶ It is better to rewrite symplectic form and Riemannian metric in term of complex form. Now we use complex coordinate.

$$g(x,y) = \Re(y^{\mathbf{h}}x) = \frac{1}{2}(y^{\mathbf{h}}x + x^{\mathbf{h}}y)$$
  
$$\omega(x,y) = \Im(y^{\mathbf{h}}x) = \frac{1}{2}(y^{\mathbf{h}}x - x^{\mathbf{h}}y).$$

▶ So the action of unitary group  $U(V) \subseteq Sp(V)$ , the moment map is given by

$$\mathbb{C}^n \longrightarrow \mathfrak{u}(\mathbb{C}^n)^* \qquad x \longmapsto \left[A \longmapsto \frac{1}{2\mathbf{i}}((Ax)^{\mathbf{h}}x)\right].$$

Note that  $u = \{A : A + A^h = 0\}$ , and

$$\mathsf{U}(V) = \mathsf{GL}(V) \cap \mathsf{O}(V) = \mathsf{GL}(V) \cap \mathsf{Sp}(V) = \mathsf{Sp}(V) \cap \mathsf{O}(V)$$



# $\sim \S$ Kähler Reduction $\S \sim$

#### **Theorem**

Let V be a Kähler vector space, and  $K \subseteq U(V)$  a compact subgroup, and let  $G \subseteq GL(V)$  be the complexification of K, then for any  $x \in \mu^{-1}(0)$ , the orbit Gx is closed. And

$$\mu^{-1}(0)/K \to V//G$$

is a bijection.

#### Example

- Let V be a complex space, over End(V), by trace pairing, then  $\omega(f,g) = \Im \operatorname{tr}(g^{\mathbf{h}}f)$ .
- Now U(V) acts on End(V) by conjugation, then it factors through U(End(V)). The moment map is given by

$$\begin{array}{ccc} \operatorname{End}(V) & \longrightarrow & \mathfrak{u}(V)^* \\ x & \longmapsto & \left[A \longmapsto \frac{1}{2\mathbf{i}}\operatorname{tr}\left([A,x]^\mathbf{h}x\right) = \frac{\mathbf{i}}{2}\operatorname{tr}(A[x,x^\mathbf{h}])\right]. \end{array}$$

So

$$\mu^{-1}(0)=\{x\in \operatorname{End}(V): [x,x^{\mathbf{h}}]=0\}=\{\text{normal operators}\}.$$

As a result,

$$\operatorname{End}(V)/\!/\operatorname{GL}(V) = \mu^{-1}(0)/\operatorname{U}(V) = \mathbb{C}^n/\mathfrak{S}_n.$$



▶ Under the assumption above, a point  $x \in \mu^{-1}(0)$  is called **regular**, if the stablizer  $K_x$  of x in K is trivial.

#### **Theorem**

The quotient  $\mu^{-1}(0)^{reg}/K$  has a natural structure of a Kähler manifold.

The restriction of the map  $\mu^{-1}(0)^{reg}/K \to V^{reg}//G$  is an isomorphism of complex manifolds.

In particular, if K acts on  $\mu^{-1}(0)$  freely, then  $\mu^{-1}(0)/K \to V//G$  is nonsingular and Kähler.

For a character  $G \to \mathbb{C}^{\times}$ , then the restriction  $K \to S^1$ , so  $\chi_* : \mathfrak{k} \to i\mathbb{R}$ . We think  $i\chi_*$  as a point of  $\mathfrak{k}$ .

#### **Theorem**

Let V be a Kähler vector space, and  $K \subseteq U(V)$  a compact subgroup, and let  $G \subseteq GL(V)$  be the complexification of K, then for any  $x \in \mu^{-1}(i\chi_*)$ , the orbit Gx is closed and semistable. And

$$\mu^{-1}(i\chi_*)/K \rightarrow V//_{\chi}G$$

is a bijection.



## $\sim \S$ HyperKähler Manifolds $\S \sim$

## HyperKähler Manifolds

Let us see the text book.



# $\sim \S$ Thanks $\S \sim$

#### References

- Kirillov Jr. Quiver Representations and Quiver Varieties.
- Chriss, Ginzburg. Representation Theory and Complex Geometry.
- Silva. Lectures on Symplectic Geometry.