Geometry and Representation Seminar

Symplectic Calculus

Xiong Rui

November 12, 2020


https://www.cnblogs.com/XiongRuiMath/p/13818413.html

Notations of Manifolds
Symplectic Manifolds
Poisson Structure
Moment Maps
Hamiltonian Reduction
Algebraic Reduction
Lagrangian Submanifolds
Symplectic Resolutions
Kahler Manifolds
Kahler Reduction
HyperKahler Manifolds
Thanks



~ § NOTATIONS OF MANIFOLDS § ~




Let M be a manifold, we denote C(M) the structure algebra, and

™ tangent bundle ™M cotangent bundle
M tangent space at x T;M  cotangent space at x
x(M) global section of TM QY(M) global section of T*M
= all vector fields over M; = all 1-forms over M.

We denote Xy € TxM the value of X € X(M) at x € M. We
denote Q%(M) the space of k-forms over M. There is a natural
pairing of

QM) @ TM®% 5k or QK(M) @ (M)®F = C(M).

We will use w(Xi,...,Xx) = (w, X1 ®...® Xg) to denote them.



Over Q*(M), there is
d QM) — QKL(M) differential
Ly QM) — QK(M) Lie derivative
ix QM) — QK-1(M) inner product
where X € X(M). They satisfies Cartan magic formula

Lx =ixod+doix.

Over X(M), there is a Lie bracket [X, Y] = XY — YX.



If we have a local coordinate
(X1, xn) : M2U = k"

We will denote

0
8X1

d
el € TM,
d

o)
ook € X(U),
dx,...,dx, € T;M or QL(U).

If M = V is a vector space, then there is a natural identification
W=V, T,V =V~

Under this identification, for any linear functional A, dA = .



For a morphism f : X — Y, it induces
fo: TX=TY, QR (Y) = QK(X).

Note that f, is often denoted by df. They are adjoint under the

pairing,
w(f X1, ..., £ Xe) = (Frw)(Xe, ..oy Xk),

that is,
(W, L X1 @ Xi)) = (Fw, X1 @ - X) .

Besides, f* commutes with d,

d(f*w) = fdw.



Let G be a Lie group, denote the space of left invariant vector
fields by g its Lie algebra. It is also identified with T1G. For each
x € G, the adjoint action

Ady: G — G y — xyx L,
induces
ady : g — g.

This defines G — GL(g) inducing g — gl(g), and this defines for
X € g,
adx : g — g.

Actually, adx(Y) = [X, Y].



For any open subset U C k, a morphism s : U— M will be called a
(parameterized) curve. For t € U, we denote the derivative of s
by §(t) = s*(%‘t), where t is the coordinate of U — k.
Equivalently, for f € C(M),

f(s(t+ At)) —f(s(t)) 0

5(¢) = lim_ < = 5. f(s(2)).




We call a map f defines over an open neighborhood of
M=0x MCkx M to M an infinitesimal homoemorphism of
M if f restricting over M is identity and

f(X7 tl) = f(y7 t2) = ﬂ‘(%}(x,tl)) = ﬂ(%’(%b))'

We identify two infinitesimal homoemorphism if they are equal in a
neighborhood of 0 x M. Actually, we have a bijection

{infinitesimal homoemorphism of M} = X(M).

By the image of %. The converse is given by the theory of
ordinary differential equations. For a vector field X € X(M), we
usually call the correspondent infinitesimal homoemorphism the
one-parameter group, or the flow generated by X.



There is a differential morphism called exponential map
exp:g— G

such that
kxG—G (t,x) — x - exp tX

is the infinitesimal homoemorphism correspondent to X.
Equivalently, for any X € g, the map

e:k— G t — exp(tX),

is a group homomorphism with &(t) = e, (Z],) = Xe(r).



Assume the manifold M is acted by G smoothly. Then it defines a
Lie algebra homomorphism (up to a minus due to left-right reason)

g — X(M),

such that
kxM—M (t,x) —> exptX - x

is the infinitesimal homoemorphism correspondent to the image of
X.



=>>  Questions? <K



~ § SYMPLECTIC MANIFOLDS § ~




Definitions

» Let M be a manifold, we call w € Q?(M) a symplectic form, if
it is closed and nondegenerate at each point.

» That is, dw = 0, and as an anti-symmetric bilinear form over
T«M at each point x € M, it is nondegenerate.

» In particular, dim M is even.



First Example — Symplectic Vector Spaces

P> A symplectic vector space is a vector space with a
nondegenerate anti-symmetric bilinear form w.

» By linear algebra, we can take a set of basis such that
w(e, fi) =05, wlei,g) =0,  w(fi,f)=0.

» We denote pie; + -+ pnen + qifi + -+ + qnfs by
(p1,---,PnsQ1s---,Gn). Then a fortiori,

w=dp1 Ndgy + -+ dp, A dqg,.

Since formally p;, g; are dual basis for e;, f;



Second Example — Cotangent bundles

» Let M be a manifold, then there is a natural symplectic
structure over T*M.
> Firstly, there is a 1-form \ € Q(T*M) called the
tautological form with the following universal property
ae QM) & QYT*M) >
For any a € QY(M),
A= a. M = TM

07

» Then we define w = d\ € Q?(T*M) to be the symplectic
form.



Second Example — Cotangent bundles (continued)

» Locally, if (g1,...,qn) is a local coordinate over U C M, then
there is a natural coordinate (p1,...,pPn,q1,-..,qn) of T*M,
presenting

pidgy + -+ ppdan € Tiy (V).
» By the universal property, A locally must be of the form
p1dqy + - - + pndq,.
So w = dA locally looks like
dpy ANdgy + ...+ dpn A dgp,

which is nondegenerate.



Tips — Why it satisfies the universal property?

> Firstly, it is unique if exists since

M kerlQY(T*M) % QY (M)] = 0.
aeQl(M)
This follows the intuitively trivial fact that for each point

x € Mand agc T;M
Za‘xzao imlas : TeM — To o (T*M)] = Too(T*M).

> Stare at the following diagram

p1dgir + ...+ padq, € TU = T*U >3\
I l

pidgi+ ...+ ppdga € TU = T*U 3.
I {

(P1y- s PnsQ1y---5qn) € K"x U — T*U 35\,

where U’ C k" is the image of U under the coordinate.



Second Example — Cotangent bundles (continued)

P It is also suggested to do some computation.

» Consider the following map

bundle projection
T*M JEEHON L T (T*M)
bundle projection 7 \l, \lf Tx
bundle projection
M & ™

Then we define A\(X) = (p(X), m(X)).
» By Cartan magic formula, for X, Y € X(T*M),

w(X,Y) = dAX,Y)=XA(Y) = YAX) = \([X, Y]).



Tips — Why it follows from diagram chasing?

> Stare at the following diagram

M bundle(Lojection ™
a i/ i Qe
T*M bundle <|Lojection p _,_( T+ M)
bundle projection 7 \l, \l, Tx
M bundle(Lojection ™

a*A(€) = Max€) = (p(axf), me(ax)) = (o, §)



=>>  Questions? <K



~ § POISSON STRUCTURE § ~




Hamiltonians

» Let H € C(M). Since w is nondegenerate, there is an
Xu € X(M) called the Hamiltonian vector field of H, such
that

w(—, XH) = dH.
Or, equivalently, dH = —ix,w.
» We say a vector field X € X(M) is symplectic if Lxyw = 0. Or
equivalently, the infinitesimal homoemorphism preserving w.

» We say a vector field X € X(M) is Hamiltonian if there
exists H € C(M), such that Xy = X.



Poisson Bracket

» For f,g € C(M), define the Poisson Bracket
[F.g} = w(Xe, X) € C(M).
> Note that
w(Xr, Xg) = dg(Xe) = Xeg w(Xp, Xg) = —w(Xg, Xr) = =X, f.
» In particular,
{a, bc} ={a, b}c + b{a, c}.

A commutative ring with a Lie algebra structure with this
property is called a Poisson algebra.



Theorem
We have the following exact sequence of Lie algebra
HI—_))XH

0— HO(M) — C®(M) x9(M) 25 HY (M) — 0,

where X“(M) is the space of symplectic vector space. The space
HO(M) and HY(M) has the trivial Lie algebra structure.



The proof

» Firstly, Lxw = doixw+ ix odw = d o ixw. So for H € C(M),
the Hamiltonian vector field Xy is symplectic; a vector field
X € X(M) is symplectic if and only if ixw is closed.

» Secondly, ix,w = —dH. So a vector field X € X(M) is
Hamiltonian if and only if ixw is exact.

» Since w is nondegenerate, X > ixw is surjective.

» For a symplectic vector field X,
d(Xf) = Lxdf = Lxw(—, Xf) = w(—,[X, X¢]). In particular,
Xirgy = [Xr, Xl



Example

» Let M be a manifold, and T*M with symplectic structure as

we stated.
» Pick a local coordinate (p1,...,Pn,q1,---,qn). Under
w = dp1 Adqgy + -+ dpy A dqp,
0 0
Xp = Xy = — .
P ag 7 opi

» The Poisson bracket of f,g € C(T*M) is locally given by
0g Of  Of Og
f = — .
tf. &} Z <8Pi dq;  Op; 3Qi>

. Z L dp; + Z L daqi
nce
dg Z £ dp; + Z £ dg;




Digression

» Consider the space of differential operators over M, that is,
locally with coordinate (qi, ..., qn) over U, like

oIkl
Diff(U) = > flq)—————— (finite sum)
k=(kp,— 1kn) 9qy" - Oqn”

> We can define for D = 3, f(q)3e € Diff(U) its symbol
o(D) € C(T*U) by

o(D) =Y fl(a)p",

k

simply changing 8%; to p;.



Digression

> Let DiffS" of the differential operators with order < n, then
there is a Poisson algebra structure over gr Diff*(M), induced
by commutator,

gr Diff*(M) x gr Diff*(M) — gr¥*h=1 Diff*(M).

» Actually, through o, it coincides with the Poisson structure
over C(T*M). Since due to Leibniz rule, it suffices to check
the generator. Under w =) dp; A dgj, Xy, = a . It is easy
to check now

{o(gg), o)y = 1{pi,f} = 5L

0([8‘3’.,7‘}) :U(a%f faaq,) U(g;,-):g;,'




=>>  Questions? <K



~ § MOMENT MAPS § ~




Hamiltonian action

Let M be a symplectic manifold with a smooth G-action.

> We say it is symplectic, if w is preserved.
Equivalently, the induced map g — X(M) factor through
symplectic vector field

g—X(M)Y — X(M).

» We say it is Hamiltonian, if the induced map g — X(M)
factors through

g 2 e(m) 23 2 (m),

where we assume H to be Lie algebra homomorphism.



Moment map

» For a Hamiltonian action of G on M, we call
p:M—g* x — [X — H(X)(x)]
the moment map.

Theorem
Assume G is connected, then the moment map is G-equivariant.
Besides,

w2 Sg = k[g"] = C(M)

preserves the Poisson bracket.



The proof

> Firstly, to show it preserves Poisson bracket, it suffices to
check at the generator due to the Leibniz rule.

» For X € g =Kk[g*]*,

So p* is induced by H. So it follows from definition.



» To show it is equivariant,
Vg€ G,xeM,  pu(gx) = Adg u(x),
it suffices to show the infinitesimal version
VX €g,xeM,  p(XF) =adx u(x),

where X# = Xh(x) € X(M) is the image of X € g.
> let Yege T'g" =y,

(XN (Y)

adx u(x)(Y)



A Question

» For a vector field X € X(M), it induces a infinite small
homoemorphism of M, then induces a infinite small
homoemorphism of T*M, so finally defines a vector field
X € X(T*M). How to compute it?

» Denote g; : M — M a family of homoemorphism, denote
g T*"M— T*M. Let f € C(T*M).

» Firstly, we pick coordinate, (p1,...,Pn,q1,---,qn) over T*U.

— i o)
Assume X =3 X'(q) 5, -
» To do the computation, it suffices to compute

lim w for a € T} M for f = p; and g;.
t—0



» For the case f = q;, it is clear, the answer is X'. More exactly,
X'(p,q) = X'(p)-

» To do the rest case, we pick an a € Q}(U), and x € M,
consider

f(gt (ax)) = F((82¢)gux)-
Then using H(t,s) = f((g{ ®)g.x), and taking in f = p;,

He(0.0) = pi(Lxa)x = (& Lxa)
Hi(0,0) = (X(pila)))() = X (5.0)






» On the other hand, under w = dpy A dg1 + - -+ + dpn A dgp,

0 0
Xy, = Xy = — .
P dg @ opi
» The symbol o(X) € C(T*M) of X, that is by natural pairing,
= (X, ay),
=> X(a)p
So

=Y X'(q) dp,+2(§: 3 )dq

» It corresponds to the Hamiltonian vector field

L0 oxi \ 0
Xo(x) = le(q)(‘)q; > <Z 3qipj>8pf
J

1

exactly X.



Example

> Let M be a smooth manifold acted by G. Then the action of
G on T*M is Hamiltonian, with moment map

w: T"M — g* axr—>[Xr—><X#,ax>}
» In particular, let R3 acts on T*R3 by translation, the moment
map is
p: TR — (R (p,q) — [x— (x,p)].

So under the inner product, it is actually given by p the linear
momentum.



Example

» In particular, let SO3 act on T*R3 by rotation, the moment
map is

p: T"R — (s03)* (p,q) — [A— (Aq,p)]
» But for so3, it is famous that

0 a3 —ap

(son.[]) = (B3, x) ( 5 ) s (a1, 22, 23).

a —a1 0

So under the inner product over R3, the moment map is
g X p, the angular momentum.



Example

» Consider two vector space V, W, and G = GL(V). Note that
by the trace pairing, Hom(V, W)* = Hom(W, V). The map
induced by left multiplication
G x Hom(V, W) — Hom(V, W)  (g,f)— (fog™?)
induces
gl(V) — X*(Hom(V, W)) X +— [f = —foX].
So the moment map is
Hom(V, W)&Hom(W, V) — gl*(V) (f,g) — [X — tr(—fc

So under the trace pairing, gl*(V) = gl(V), it is given by
(f.g) — —eaf.



Example

» Similarly, consider the map induced by adjoint action
G x End(V) — End(V)  (g,f)+—=(gofog™)
induces
gl — X*(End(V)) X — [f = [X,f]].
So the moment map is

End(V) @ End(V) — gl*
(f,g) —— [Xr—tr([X,f]log)] =tr(Xo]f,g]).

So under the trace pairing, gl*(V) = gl(V), it is given by
(f.g) =~ [f. &l



Digression

» If G is compact and semisimple, so g is semisimple, then the
moment map always uniquely exists. Since H(g;R) =0

implies [g, g] = g, but

dw(X,Y) =diyixw = Lyixw — iydixw
= Lyixw — iylLxw + iyixdw = Lyixw = Ly(w(X, —))
= (LyW)(X, _) + W(LYX, _) = W(—, [X7 Y])

In conclusion X,(x,y) = w(—, [X, Y]). So g takes value in the
Hamiltonian vector fields.



Digression

» Since H?(g;R) = 0, so the first row split

0— H(M) — pull back — g —0

| 1 )
0— H'M) — ¢c(M) — xHm(Mm) —o

So we get desired lift.



=>>  Questions? <K



~ § HAMILTONIAN REDUCTION § ~




Calculation

> For further use, let us denote X# € X(M)“ for X € g the
corresponding vector field. Note that X# = Xpyx.

» For X € g, as a function over g* then p*(X) = H(X), since
(X)) = (X, 1(x)) = (X, H(=)(x)) = HX)(0).
> For X € Q(g*) = g, then u*(X) = dH(X). Since
pH(X) = p*(dX) = du*(X) = dH(X).

» For X € g, and v € TM, then
(X, pe(v)) = dH(X)(v) = w(v, X*). Since

(X, p(v)) = (WX, v) = (dH(X),v) = w(v, X7).



Moment map again

Theorem
Let M be symplectic manifold, with a Hamiltonian G-action with

moment map . At x € M,

kerdp = To(Gx)t = {X e TM: TS0 o}

, Xeg, X =0
imdpy =g ={Aeg: :>€>\EEX):0

> Note that T, (Gx) is exactly {Y : Y € g}, the assertion for
kernel is clear.

> For A € g*, A(X) can be presented by w(v, X7 if
X# = 0= MX) = 0 by nondegenerateness of w.



Restriction

» Let p be a regular value of x. The preimage p~1(p) is a
manifold. Let O, C g* be the orbit of p.

» The restriction of w on X = u~1(0),) is generally not
nondegenerate. For x € M, we should consider rad w| T, x.
Note that for v € T, X, then

w(v, X#*) = dH(X)(v) = (X, pu*(v)) = 0.

So T«(Gx) Cradw|T,x.

» Note that dimradw|7,x = codim X = codim O, = dim{g €
G : Adg p = p}.

» To ensure T,(Gx) =radw|7 x, and X/G a manifold we
should assume the action of G is proper, and the stablizer G,
acts on X freely.



Theorem (Marsden—Weinstein)

Let M be symplectic manifold, with a proper Hamiltonian G-action
with moment map . Let p € g* be a regular value of 11, and the
stablizer G, acts on u~1(p) freely, then

pH(p)/Gp =1 (0p)/G
has a natural symplectic structure.

w1(p)/ Gy M

p(p)



Theorem (Marsden—Weinstein)

Let M be symplectic manifold, with a proper Hamiltonian G-action
with moment map . Assume G acts on i~ 1(0) freely, then

nH0)/6
has a natural symplectic structure.

Theorem
Let M be a manifold with free proper G-action, then

T*(M/G) = n~(0)/G.



=>>  Questions? <K



~ § ALGEBRAIC REDUCTION § ~




Algebraic Reduction

> Now, turn everything into algebraic.

Manifolds Varieties
Symplectic Structure Poisson Structure

We say a variety X having a Poisson strucuture if it have
over Ox.

» In this case, we can also consider moment map, but since
variety is of singularities, we should not only consider the
regular value.



Algebraic Reduction

> Let X be a nonsingular affine algebraic variety acted by
reduction group G. Now assume p: T*X — g* is the moment

map.
Theorem

For x a character, then n=1(0)// G has a Poisson structure.
Besides,

nH0)//xG = n7H0)//G

preserves Poisson structure.



The proof

> Since p~1(0) is defined by 1 =0, that is {x € X : Ziig(%’():o}'

But u(x)(X) = H(X)(x), so n~1(0)//G is defined by
(k[X]/ (H(X): X € g))°.
> We simply define
{f.g}={F.&} mod (H(X): X €g)

where ?,gf is some lift.



The proof (continued)

» To show this is well-defined, we should show (H(X) : X € g) is
stable under this bracket. For f € (k[X]/(H(X): X € g))G,

{f.H(X)g} ={f,H(X)}g +{f.g}H(x);
(FLH(x)) = X#f e (H(X): X €g).

This follows from G-invariance.

» Then, we also need to show {f, g} is G-invariant. But the
action of G commutes with bracket.

» The proof of 171(0)//,G is similar, since it is locally f/g with
f.g € u1(0)5X".



Theorem

Let X* C X be the subvariety of x-stable points, so that
X°//xG C X//G is a smooth subvariety;

similarly, let (1=1(0))* C u~1(0) be the subvariety of x-stable
points, so that u=(0)*//,G C u=1(0)//G is smooth.

Then the restriction of the Poisson bracket to 1=1(0)°//, G is
nondegenerate, i.e. comes from a symplectic form on it, and
p~1(0)°//G contains T*(X$//G) as an open (possibly empty)
subset.

» (By our discussion) This is not true in general, but it is true
for quiver varieties, see Theorem 2.3,

» | believe the above follows from the proof of
Marsden—Weinstein reduction theorem, and Luna slide
theorem. In this case, stable points are the point acted freely.



=>>  Questions? <K



~ § LAGRANGIAN SUBMANIFOLDS § ~




Lagrangian submanifolds

P For a symplectic vector space V/, a subspace W C V is called

isotropic W C wtw

coisotropic if w o wte |

Lagrangian W= wtv

» For a symplectic manifold M, N C M a submanifold is called

isotropic isotropic

coisotropic , if T,N is { coisotropic » in T, M for all

Lagrangian Lagrangian

x e N.

» In particular, if N is Lagrangian in M, then dim N = %dim M.



Examples

> Let X, Y be symplectic manifolds, equip X x Y the
symplectic form by

wx D (—wy) = pr}} wx — pr*;/ wy.

» Then f: X — Y is symplectic (that is, f*wy = wx) if and
only if the graph

graph(f) = {(x,f(x)) e X x Y : x € X}

is Lagrangian in X x Y.

Pry,

> Since f factors through X 2 graph(f) == X x Y =% Y.

Cwxxy = 5(pry wx — prywy) = wx — frwy.



Examples

» Let M be a manifold, and oo € Q(M) a 1-form. Then it is
closed if and only if the image of a: M — T*M,

image(a) = {(ax) € T"M : x € M}

is Lagrangian in T*M.
» Since « factors through M — imagea— T*M.

afw = a*(d\) = d(a*\) = da,

where A is the tautological form over T*M.



Examples

» Let M be a manifold, N be a submanifold. Then the conormal
bundle

N*(N, M) = {a € TX(M) : o TxN) = 0} = (TxM/TxN)*

is Lagrangian in T*M.

» This follows from local computation.



Example

» We keep the convention of product of symplectic form (with a
minus).

» Let f: M — N be a smooth function, denote its infinitesimal
graph
graph(f*) = {(x,*a,f(x),a) € T"MxT*N:x € M,a € T;(X)N}

is Lagrangian.
» Actually, f*(T*N) = graph(f*) C T*M x T*N.



Tips

» Let f: M— N, and f*(T*N) the pull back of cotangent
bundle of N. Then the pull back of tautological form of T*N
and T*M coincide by direct computation

FT*N) -2 oM

|

TN

F(T*N) — T*M
> Consider 4 AV T So pri Am — pri Ay
T*N +— T*MxT*N
pull back to f*(T*M) to be zero.



=(q91,...,9m) for M, and
., Qn) for N. Assume Q; = fi(q), and denote

TN — ToM: ZPde »—>ZP q)dq;

» So the map f*(T*N)— T*M is locally given by
Pi=2; PiGi(y) o

, SO
qi=qi

pull back of p;dg; = Z Pi(y)fi(a)dg;.

» So the map f*(T*N)— T*N is locally given by {gil:i(q), so
-

pull back of P;dQ; = ZP(y)ﬂ, )dqi.



Digression

» We keep the convention of product of symplectic form (with a
minus). By a twist

o: T*"MxT*N — T*(MxN) (x,a)x(y,B)— (x,y,a,—p)

They are identified.

» On one hand, given a symplectic map f : T"M — T*N, we
get graph(f) C T*M x T*N. On the other hand, for
F € C(M x N) such that graph(dF) C T*(M x N). If they
coincide, we say F is the generating function of f.
Equivalently,

F 1 (% (deF) ) — (v, —(dy F)(xy))

is well-defined.



Digression

» For example, if F € C(M x M) is the generating function of
f: T*M— T*M, then the fixed point of f is one-to-one
correspondent to the critical point of p(x) = F(x, x) : C(M).
Since

point of T*M point x of M such
with (X7 dXF) =|=|that (dXF)(x,x) =|=
(v, —dyF) (_dxF)(x,x)

point x of M such
that (dy)|x =0




=>>  Questions? <K



~ § SYMPLECTIC RESOLUTIONS § ~




Resolution of Singularities

> For variety M and nonsingular variety M, a morphism
T M— M

is called a resolution of singularities if it is proper and
birational.

» For variety M with Poisson structure and nonsingular variety
M with symplectic structure, a Poisson morphism

T M— M

is called a symplectic resolution of singularities if it is
proper and birational.



» Assume a nonsingular affine variety X is acted by a reductive
group G. Denote

My = u1(0)//x6
the algebraic reduction.

Theorem
Assume M., is connected and nonsingular and the subset of
regular points My* is nonempty, then

MX—>M0

is a symplectic resolution of singularities.



Example

> Let X = k2, and G = k*. Then

J
T'X=X@X* = {(i,j) : 11@:}118}.

I

» The action G x X — X is taken to be \-j = A\71j, so
G x T*X — T*X is given by X - (i,j) = (Ai, A\7L)).
» The moment map,
T*X — (Lie G)* (i,j) — —ij.

——
=k

So u1(0) = {(i.j) : i = 0}.



Consider
{(i,4) - ij = 0}//k* — Maxo(k)  (i,j)—>joi.

Claim: the image is {A € May2(k) : det A =tr A =0}, and
the above morphism is isomorphism. (Linear algebra)
But

{A€ Mpyo(k) :det A=trA=0}={(}5,):a*+ bc=0}

is a quadric in k3. It obviously has a singularity at the origin.
Points with trivial stablizer is {(i,;) : i # 0 or j # 0}.

Such points lying in a closed orbit is {(/,/) : i # 0 and j # 0}.
Equivalently, {(/,) : ji # 0}. So

(u™t//k>)"e€ = {a® + bc = 0} \ 0.



» Now consider the character y = id.
K x T*X xk — T*X xk (N i,j,2z) — (M, A7L, A\z2).
So x-semistable points {(/,) : j # 0}.
» As a result,
pH0)// 3k = {(i, ) # 0} /K™
Consider the fibre

{(i,J) ZJH# O}/l — {j:J #HO}/]1<§X

.\ . dim V=1,V Ck? 1
{(v,i) -;;11221—>v;i\v:o} - Py

We see 1 ~1(0)//,k* is a line bundle over PL.



Actually, this is the cotangent bundle of IP’ﬂlg. (Directly or by
reduction)

Direct way: a cotangent vector at V € ]P’ﬂ}i is a functional
k? — k restrict V trivially.

Reduction way: ;~1(0) contains T*(X*//G) as open subset
(from construction of quotient).

Now, 1~1(0)//,k* is nonsingular, so

pH0)//xk* — nTH(0) /K

is a symplectic resolution of singularities.



Springer Resolutions

» The above example is a good example of Springer resolution.
Let G be a semisimple Lie group, and g its Lie algebra.

» Consider the nilpotent cone
N = {x € g: x is nilpotent}

> Let
B = G/B = {all Borel subgroups} = {all Borel subalgebras}.

» Denote N
N ={(x,b) e N x B: x € b}.



Springer Resolutions

» Let G = SL, be a semisimple Lie group, and sl,, its Lie
algebra.
N = {x € sl, : x is nilpotent}.

and B = {all flags in k"}.
N: {(X,.F) eEN xB: xFi C JT"i—l}-

» We can change to GL,.



Theorem

As the notations above,

()N = T*B;

(2) The moment map is given by [ N }

(x,6)—x
(3) N — N is a symplectic resolution of singularities.



The tangent space at b € B is g/b. So cotangent space at
b € B is, by trace pairing x (Killing form),
{x€eg:r(x,b) =0} ={x e N :xeb}

The moment map, still by Killing form x,
p:N—g =g (x,b) — [X = k(x, X)] = x.

Consider regular nilpotent element x € g, there is only one
Borel subalgebra b > x.

In the sl, case, it is x"~! # 0, so the corresponding flag is by
ker x' = im x"~'.

But the regular nilpotent element is open and dense. Besides,
14 is proper, since it is a closed subvariety of N x B.

It is symplectic since moment map is Poisson.



=>>  Questions? <K



~ § KAHLER MANIFOLDS g ~




Kahler Manifolds

» A Kalher manifold is a manifold M with the

complex structure J;
symplectic structure w;
Riemannian metric g.

compatible
w(.’ ) — g(_j., .)’

where J is the product with i. We can define a Hermitian
(unitary) metric over TEM,

(x,y) = g(x,y) +iw(x,y).



Projective Spaces

» Projective space CP" is Kahler, by the Fubini-Study form,
induced from the metric from the unitary metric 5271

» Since every complex submanifold of a Kahler manifold is
Kabhler, this implies that every smooth projective variety is
Kahler.



First Example

» Assume there the coordinate is (p1, -+, Pn, g1, - - ,q,,)T.
There are three kinds of structures over V = R2", they are

the inner product
g = Z q? —|—Zp,-2 € S2Vv*, thatis, g(x,y)= yt(l”ln)x,
the symplectic structure

w=piAgi € N2V*, thatis, w(x,y)= yt(ln_l”)x,

and the complex structure with identification z; = p; + i g;,
or formally, it is given by the multiplication by i, usually
denoted by J,

Jox= (3, 7)x



Computation of Moment map

» Note that Sp(V) acts on V. It is actually Hamiltonian.
sp(V) — X(V) A= [x — Ax].

By Ha = lw(x,Ax), forx € V,and y € T}V =V,

dHa(y) = jw(dx, AX)(y) + 3w(x, Adx)(y)
%w(y, Ax) + %w(x7 Ay)
w(y, Ax).

Since w(x, Ay) = —w(Ax, y).

» So moment map is given by

w:Vi—sp(V)* x> [Ar— Tw(x, Ax)].



> It is better to rewrite symplectic form and Riemannian metric
in term of complex form. Now we use complex coordinate.

(y"x) = 3(y"x + xy)
(y"x) = 5 (y"x — x"y).

glx,y) =
w(X7y) =

="

» So the action of unitary group U(V) C Sp(V), the moment
map is given by

C" — u(C")* x— [A— %((Ax)hx)].
Note that u = {A: A+ A" =0}, and

U(V) = GL(V) N O(V) = GL(V) N Sp(V) = Sp(V) N O(V)



=>>  Questions? <K



~ § KAHLER REDUCTION § ~




Theorem

Let V be a Kahler vector space, and K C U(V) a compact
subgroup, and let G C GL(V') be the complexification of K, then
for any x € 1=1(0), the orbit Gx is closed. And

pH0)/K=V//G

is a bijection.



Example

> Let V be a complex space, over End(V), by trace pairing,
then w(f,g) = Str(ghf).

» Now U(V) acts on End(V) by conjugation, then it factors
through U(End(V)). The moment map is given by

End(V) — u(V)* _
x — [Ar— 2tr ([Ax]"x) = Str(Alx, x"])].

> So
11(0) = {x € End(V) : [x, x"] = 0} = {normal operators}.
As a result,

End(V)// GL(V) = 1 1(0)/ U(V) = C"/&,.



» Under the assumption above, a point x € £ ~1(0) is called
regular, if the stablizer K, of x in K is trivial.

Theorem

The quotient 11 ~1(0)®€/K has a natural structure of a Kahler
manifold.

The restriction of the map p~1(0)®€/K — V"€ //G is an
isomorphism of complex manifolds.

In particular, if K acts on ~1(0) freely, then u=1(0)/K — V//G is
nonsingular and Kahler.



» For a character G — C*, then the restriction K — S1, so
Xx . €= iR. We think iy, as a point of &.

Theorem

Let V' be a Kihler vector space, and K C U(V) a compact
subgroup, and let G C GL(V) be the complexification of K, then
for any x € Y (ix«), the orbit Gx is closed and semistable. And

(i) /K = V[ G

is a bijection.



=>>  Questions? <K
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HyperKahler Manifolds

> Let us see the text book.



=>>  Questions? <K



N§ THANKS §N



References

» Kirillov Jr. Quiver Representations and Quiver Varieties.

» Chriss, Ginzburg. Representation Theory and Complex
Geometry.

» Silva. Lectures on Symplectic Geometry.



	Notations of Manifolds
	Symplectic Manifolds
	Poisson Structure
	Moment Maps
	Hamiltonian Reduction
	Algebraic Reduction
	Lagrangian Submanifolds
	Symplectic Resolutions
	Kähler Manifolds
	Kähler Reduction
	HyperKähler Manifolds
	Thanks

