Quiver Representations II

Xiong Rui

April 25, 2021

A linear algebra problem

▶ For $1 \le i < j \le n$, and angles

$$\theta_{ij} \in \mathbb{R}/2\pi\mathbb{Z}$$

can we find *linear independent* vectors

$$v_1, \ldots, v_n \in \mathbb{R}^n$$
 such that $\angle(v_i, v_j) = \theta_{ij}$.

- **Example** 1. when n = 2, always possible.
- Example 2. We can find in \mathbb{R}^3 three vectors which are pairwise in 119.999°; but cannot find for 120°.

A linear algebra problem

Let us put

$$\begin{pmatrix} 1 & \cos \theta_{12} & \cdots & \cos \theta_{1n} \\ \cos \theta_{12} & 1 & \cdots & \cos \theta_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ \cos \theta_{1n} & \cos \theta_{2n} & \cdots & 1 \end{pmatrix}$$

We can find such vectors if and only if this matrix is positive-definite. (Is this clear?)

Classification of Regular Polyhedra

▶ How many regular polyhedra in \mathbb{R}^3 ? (Answer: 5 of them, Platonic solid).

Classification of Regular Polyhedra

We can do as follows

▶ It reduce to find vectors v_1, v_2, v_3 with

$$\pi - \angle(v_1, v_2) = \frac{\pi}{a}, \quad \pi - \angle(v_2, v_3) = \frac{\pi}{b}, \quad \pi - \angle(v_1, v_3) = \frac{\pi}{2}.$$

Each face is an a-gon; each vertex joints b faces.

Conclusion

► Then

(above problems)
$$\iff \begin{pmatrix} 1 & -\cos\frac{\pi}{a} \\ -\cos\frac{\pi}{a} & 1 & -\cos\frac{\pi}{b} \\ & -\cos\frac{\pi}{b} & 1 \end{pmatrix}$$
 is Pst-Dfnt.

That is,

$$a \ge 3, b \ge 3,$$
 $1 - \cos^2 \frac{\pi}{a} - \cos^2 \frac{\pi}{b} > 0.$

Only (3,3),(3,4),(3,5),(4,3),(5,3) serves. Since

$$n=3 \Longrightarrow \frac{1}{4} = \cos^2 \frac{\pi}{n}, \qquad n \ge 4 \Longrightarrow \frac{1}{2} \le \cos^2 \frac{\pi}{n} \le 1$$

Integral Quadratic Forms

Consider

$$Q(x) = \sum_{i=1}^{n} x_i^2 - \sum_{i < j} a_{ij} x_i x_j$$

with $a_{ij} \in \mathbb{Z}_{\geq 0}$. When

$$x \neq 0 \Rightarrow Q > 0$$
, that is , Q is positive-definite?

- **Example** 1. $x^2 + y^2$ is positive-definite.
- Example 2. $x^2 + y^2 xy$ is positive-definite.
- Example 3. $x^2 + y^2 2xy$ is only semi-positive-definite.
- Example 4. $x^2 + y^2 + z^2 xy xz$ is positive-definite.
- Example 5. $x^2 + y^2 + z^2 xy xz yx$ is semi-PD.

Integral Quadratic Forms

▶ For a positive-definite Q, a_{ij} never takes 2. Since

$$Q = x^2 + y^2 - 2xy + \cdots$$

takes $(x, y, \dots) = (1, 1, 0, \dots)$ as a zero.

Consider

$$R = \{x \in \mathbb{Z}^n : Q(x) = 1\}.$$

Then $e_i \in R$, and if $x, y \in R$, the reflection

$$s_y x \longmapsto x - \frac{2Q(x,y)}{Q(x)} y \in R.$$

Here
$$2Q(x, y) = Q(x + y) - Q(x) - Q(y)$$
.

Gallary

Classification

Above problems reduce to the question, when

$$\begin{pmatrix} 2 & a_{12} & \cdots & a_{1n} \\ a_{12} & 2 & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{1n} & a_{2n} & \cdots & 2 \end{pmatrix} \qquad -a_{ij} \in A$$

is positive-definite for a given discrete set A. For example,

$$A = \{2\cos\frac{\pi}{2}, 2\cos\frac{\pi}{3}, 2\cos\frac{\pi}{4}, \ldots\} = \{0, 1, \sqrt{2}, \cdots\}$$

$$A = \{0, 1, 2, \ldots\} \qquad \text{(essentially } \{0, 1\} \text{)}.$$

Classification

- ▶ The answer to $A = \{0, 1, 2, ...\}$ (essentially $\{0, 1\}$) is the special case.
- ► The answer to

$$A = \{2\cos\frac{\pi}{2}, 2\cos\frac{\pi}{3}, 2\cos\frac{\pi}{4}, \ldots\} = \{0, 1, \sqrt{2}, \cdots\}$$

is given by Coxeter.

► We put

$$\circ \frac{\stackrel{n}{\longrightarrow}}{\stackrel{\circ}{\longrightarrow}} \iff -a_{ij} = 2\cos\frac{\pi}{n},$$

and

$$n=3$$
 $\circ ---\circ \atop i$ $n=2$ $\circ \atop i$ $\circ \atop j$

Coxeter Diagrams

With $-a_{ij} \in \{0,1\}$ (i.e. simply-laced)

Coxeter Diagrams

With some $a_{ij} \neq \{0,1\}$

$$B_{n} = C_{n} : \circ - - \circ - - \circ - \frac{4}{\circ} \circ$$

$$F_{4} : \circ - - \circ - \frac{4}{\circ} \circ$$

$$G_{2} : \circ - \frac{6}{\circ} \circ$$

$$H_{3} : \circ - - \circ - \frac{5}{\circ} \circ$$

$$I_{n} : \circ - \frac{n}{\circ} \circ$$

Dynkin Diagram (in this case, the problem is not only for angles, but also for lengths. Precise formulation later.)

$$B_n: \circ \longrightarrow \circ \longrightarrow \circ$$
 $C_n: \circ \longrightarrow \circ \longrightarrow \circ$
 $F_4: \circ \longrightarrow \circ \longrightarrow \circ$
 $G_2: \circ \Longrightarrow \circ$

Relation to Quiver Representations

▶ Let Q = (I, H) be a quiver, with $I = \{1, ..., n\}$. For a representation V, we denote

$$\underline{\dim} V = (\dim V_1, \dim V_2, \dots, \dim V_n).$$

$$\circ \qquad \bigvee_{\downarrow} V_1 \\
\circ \Longrightarrow \circ \longrightarrow \circ \qquad V_2 \stackrel{g}{\Longrightarrow} V_3 \stackrel{k}{\Longrightarrow} V_4 \\
\dim = (\dim V_1, \dim V_2, \dim V_3, \dim V_4).$$

Quiver Varieties

- ► Then, given dimension vector $x = (x_1, x_2, ..., x_n)$, how many isomorphic classes of dimension x?
- ► It is

$$\prod_{i \to j} \mathsf{Hom}_{\Bbbk}(\Bbbk^{x_i}, \Bbbk^{x_j}) \bigg/ \mathsf{isomorphism}$$

$$\underline{\dim} = (1, 2, 3, 4)$$

$$\mathbb{k}^{2} \xrightarrow{g} \mathbb{k}^{3} \xrightarrow{k} \mathbb{k}^{4}$$

$$(\mathit{f}, \mathit{g}, \mathit{h}, \mathit{k}) \in \mathsf{Hom}(\Bbbk^1, \Bbbk^3) \times \mathsf{Hom}(\Bbbk^2, \Bbbk^3) \times \mathsf{Hom}(\Bbbk^2, \Bbbk^3) \times \mathsf{Hom}(\Bbbk^3, \Bbbk^4)$$

Quiver Varieties

Actually,

$$\begin{array}{c} \prod_{i \to j} \mathsf{Hom}_{\Bbbk}(\Bbbk^{x_i}, \Bbbk^{x_j}) \bigg/ \mathsf{isomorphism} \\ \parallel \\ \prod_{i \to j} \mathsf{Hom}_{\Bbbk}(\Bbbk^{x_i}, \Bbbk^{x_j}) \bigg/ \mathsf{conjugation \ action \ of} \prod_{i \in I} \mathsf{GL}(\Bbbk^{x_i}) \end{array}$$

Then?

In general, for a manifold

$$\dim(X/G) \ge \dim X - \dim G$$
.

So

$$\begin{split} & \dim \bigg(\prod_{i \to j} \mathsf{Hom}_{\Bbbk}(\Bbbk^{x_i}, \Bbbk^{x_j}) \bigg/ \prod_{i \in I} \mathsf{GL}(\Bbbk^{x_i}) \bigg) \\ & \geq \dim \prod_{i \to j} \mathsf{Hom}_{\Bbbk}(\Bbbk^{x_i}, \Bbbk^{x_j}) - \dim \prod_{i \in I} \mathsf{GL}(\Bbbk^{x_i}) \end{split}$$

Note that the constant matrix $\in \prod GL(\mathbb{k}^{x_i})$ acts trivially. So the above inequality is strict for $x \neq 0$.

▶ So, if *Q* has finite representation type, then at least

$$\dim \bigg(\prod_{i \to j} \mathsf{Hom}_{\Bbbk}(\Bbbk^{\mathsf{x}_i}, \Bbbk^{\mathsf{x}_j}) \bigg/ \prod_{i \in I} \mathsf{GL}(\Bbbk^{\mathsf{x}_i}) \bigg) = 0$$

(i.e. discrete).

▶ By above, for any dimension vector $x \neq 0$,

$$0 < \dim \prod_{i \in I} \operatorname{GL}(\mathbb{k}^{x_i}) - \dim \prod_{i \to j} \operatorname{Hom}_{\mathbb{k}}(\mathbb{k}^{x_i}, \mathbb{k}^{x_j}) = \sum_{i=1}^n x_i^2 - \sum_{i < j} h_{ij} x_i x_j.$$

here
$$h_{ij} = \#\{i \to j\} + \#\{j \to i\}.$$

So

Q is of fnt-rep-type \Longrightarrow Q is a disjoint union of ADE quiver.

The converse

- ▶ The converse is also true (using reflection functors).
- Amazingly, the following maps are bijection

$$\#\{\text{irreducible reps}\} \xrightarrow{\underline{\dim}} \#\{\text{simple roots}\}.$$

$$\#\{\text{indecomposable reps}\} \xrightarrow{\underline{\dim}} \#\{\text{positive roots}\}.$$

Here the simple roots are the standard basis e_i .

- ▶ irre = no proper subrep
- ▶ ind = no proper summand.

A type

▶ For A_n -type.

$$A_n$$
: \circ — \circ — \circ

there should be n(n+1)/2 many ind-reps.

For any $1 \le i \le n$, consider

$$\cdots - \stackrel{i-1}{0} \stackrel{0}{-\!\!\!-\!\!\!-} \stackrel{i}{\mathbb{k}} \stackrel{0}{-\!\!\!\!-\!\!\!\!-} \stackrel{i+1}{0} \cdots$$

they give all irre reps.

▶ For $1 \le i < j \le n$, consider

$$\cdots \longrightarrow 0 \stackrel{i-1}{\longrightarrow} \stackrel{i}{\Bbbk} \stackrel{id}{\longrightarrow} \cdots \stackrel{id}{\longrightarrow} \stackrel{j}{\Bbbk} \stackrel{0}{\longrightarrow} 0 \stackrel{j+1}{\longrightarrow} \cdots$$

They are indecomposable.

Rep	<u>dim</u>	in usual notation	how many
<i>i</i> −1 <i>i i</i> +1			
$\cdots \ 0 \ 1 \ 0 \ \cdots$	e_i	$x_i - x_{i+1}$	n
<i>i</i> −1 <i>i j j</i> +1			, ,
$ \underline{ \ \cdots \ 0 \ 1 \cdots 1 \ 0 \ \cdots }$	$e_i + \cdots + e_j$	$x_i - x_{j+1}$	$\frac{n(n-1)}{2}$

So they give all ind-reps.

D type

ightharpoonup For D_n -type.

there should be n(n-1) many ind-reps.

Let us label them by

► There is a phenomenon that

is indcomposable.

Actually, we need not to be careful about the orientation.

are also indcomposable.

0	e_i	0	$e_i + \cdots + e_i$	$\frac{(n-3)(n-2)}{2}$
$\cdots 010 \cdots 00$	C,	$\cdots 01 \cdots 10 \cdots 00$	$e_i + \cdots + e_j$	2
0		0		n – 2
$\cdots\cdots 10$	e_{n-2}	$\cdots 01 \cdots 10$	$e_i + \cdots + e_{n-2}$	II - Z
0	e_{n-1}	0	$e_i + \cdots + e_{n-1}$	n – 1
$\cdots\cdots01$		$\cdots 01 \cdots 11$		
1		1		n-1
$\cdots\cdots00$	e _n	0110	$e_i + \cdots + e_{n-2} + e_n$	11 – 1
		1		n – 2
_	_	$\cdots 01 \cdots 11$	$e_i + \cdots + e_n$	II - Z
		1	$e_i+\cdots+e_n$	$\frac{(n-3)(n-2)}{2}$
_		$\cdots 01 \cdots 12 \cdots 21$	$+e_{j}+\cdots+e_{n-2}$	2

Here 1's and 2's are connected with identity. The map of $1\to 2$ or $2\to 1$ is explained above.

For A_n ,

$$\#\{\mathsf{ind\text{-}reps}\} = \#\{\mathsf{diagonals} \ \mathsf{in} \ (\mathit{n}+3)\text{-}\mathsf{gon}\} - \mathit{n}$$

