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A linear algebra problem

» For 1 < i< j< n, and angles
b € R/2nZ
can we find linear independent vectors
Vi,...,Vp €R" such that Z(vi, vj) = 0.

> Example 1. when n = 2, always possible.

» Example 2. We can find in R3 three vectors which are
pairwise in 119.999°; but cannot find for 120°.



A linear algebra problem

> Let us put
1 cosbip --- cosby,
cos 012 1 -+ cosbh,
cosbi, cosly, --- 1

» We can find such vectors if and only if this matrix is
positive-definite. (Is this clear?)



Classification of Regular Polyhedra

» How many regular polyhedra in R3? (Answer: 5 of them,
Platonic solid).
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https://en.wikipedia.org/wiki/Platonic_solid

Classification of Regular Polyhedra

» We can do as follows

» |t reduce to find vectors vy, vo, v3 with

™ s ™
™ — Z(Vl, V2) = ;, W—Z(Vz, V3) = B, ™ — Z(Vl, V3) = E

Each face is an a-gon; each vertex joints b faces.



Conclusion

> Then
1 —cos 2
(above problems) <= | —cosZ 1 —cos ¢ | is Pst-Dfnt.
—cos § 1
That is,
a>3,b>3, 1—coszg—cos2%>0.

Only (3,3),(3,4),(3,5),(4,3),(5,3) serves. Since

1 1
n:3:>f:coszz, n24:>7§coszz§1
4 n 2 n



Integral Quadratic Forms
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Consider
n

Q) =D X = ajxix;

i=1 i<j

with ajj € Zzo. When
x#0= Q >0, thatis, Q is positive-definite?

Example 1. x> + ) is positive-definite.

Example 2. x*> + y? — xy is positive-definite.

Example 3. x*> + y? — 2xy is only semi-positive-definite.
Example 4. x> + y? + 22 — xy — xz is positive-definite.
Example 5. x*> + y? + 22 — xy — xz — yx is semi-PD.



Integral Quadratic Forms

» For a positive-definite @, ajj never takes 2. Since
Q=R +y?— 2yt

takes (x,y,---) =(1,1,0,...) as a zero.

» Consider
R={xeZ": Q(x) =1}.

Then e € R, and if x, y € R, the reflection

2Q(x,y)
QR(x)

Here 2Q(x, y) = Q(x+ y) — Q(x) — Q(y).

€R.

SyXl—>X—
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Classification

» Above problems reduce to the question, when

2 app - a
a2 2 .-+ ap
— ajj cA
din da2n "¢ 2

is positive-definite for a given discrete set A. For example,
A={2cos5,2cos §,2cos 7,...} = {O,l,\fZ,---}

A={0,1,2,...} (essentially {0,1} ).



Classification

» The answer to A= {0,1,2,...} (essentially {0,1}) is the
special case.

» The answer to
A={2cos5,2cos§,2cosG,...} = {0,1,v2,---}
is given by Coxeter.

> We put

n

™
0 <= —aj = 2cos —,
n

and




Coxeter Diagrams

With —aj; € {0,1} (i.e. simply-laced)

A,:o




Coxeter Diagrams
With some a; # {0, 1}

B,=C,:o0 %)
Fy:0 4 o
Gy:o—5 o

Dynkin Diagram (in this case, the problem is not only for angles, but also
for lengths. Precise formulation later. )

B,: o . ——=—0
C,, He; . —=——0
F4 (e, ——=—<( ’s)



Relation to Quiver Representations

» Let Q= (/,H) be a quiver, with /= {1,...,n}. For a
representation V, we denote

dim V= (dim Vq,dim V5, ... dim V).

(e] V]_
l g I
o—Zo—s>o0 V2 V3»V4

dim = (dim V4, dim Vg,dlm V3, dim Vy).



Quiver Varieties

» Then, given dimension vector x = (x1,x2, ..., Xn), how many
isomorphic classes of dimension x?

> Itis

H Homk(]kx",k)g)/isomorphism

i—j

dim = (1,2,3,4) k!
f
k2 2 k3 Kt
h
(f, g, h, k) € Hom(k!, k3) x Hom(k?,k3) x Hom(k?,k3) x Hom(k3, k*)



Quiver Varieties

> Actually,

ITi~; Hom]k(]kx",kxf)/isomorphism
|
Il Homk(kx",k@')/conjugation action of [ [;o,; GL(k*)

kl
81
N .

]k2 82 k3 83 ]k4 84
N AN AN
k2 ——=k3 —k*

(g1>g21g37g4) € GL(kl) X GL(kz) X GL(ks) X GL(k4)



Then?

» In general, for a manifold
dim(X/G) > dim X — dim G.
> So
dim (Hi_)jHomk(kX",ka)/ HI.E,GL(]]«X")>
> dimJ[;_, ;Homg(k*, k*) — dim [ [;c, GL(k*)

> Note that the constant matrix € [[ GL(k*) acts trivially. So
the above inequality is strict for x # 0.



» So, if Q has finite representation type, then at least
dim (H Homk(]kx",kxf)/ 1T GL(]kX")> -0
i—j iel

(i.e. discrete).

» By above, for any dimension vector x # 0,
0 <dim]];,GL(k¥) —dim]]
=i 8 = D hixix.

here hy = #{i— j} + #{j—i}.
> So

Homy (k*/, k*)

i—J

’ Q is of fnt-rep-type ‘ :>‘ Q is a disjoint union of ADE quiver |.




The converse

» The converse is also true (using reflection functors).

» Amazingly, the following maps are bijection
dim
#{irreducible reps} ——— #{simple roots}.

dim
#{indecomposable reps} ——— #{positive roots}.

Here the simple roots are the standard basis ;.
» irre = no proper subrep

» ind = no proper summand.



A type

> For A,-type.

A,:o )

there should be n(n+ 1)/2 many ind-reps.
» For any 1 < i< n, consider
i-1 i,

0
i 0 — k— 0 — .-

they give all irre reps.
» For 1 < i< j< n, consider

They are indecomposable.



Rep dim in usual notation | how many
=17 i+1
-010 (= Xi — Xj+1 n
i—1 i J I
-1
.01---10 e+ +e Xi — Xji1 n(n2)

So they give all ind-reps.



D type

» For D,-type.

D, : o ° - o

there should be n(n — 1) many ind-reps.
P> Let us label them by

1 — 2 ... n-3 — n—-2 — n-1



» There is a phenomenon that

kx0

AN

k x k <— diagonal k

/

0xk

is indcomposable.

» Actually, we need not to be careful about the orientation.

kx0 kx0
\]k « k addition Kk \E; « k addition Kk
0xk 0xk

are also indcomposable.



—3)(n—2

010---00 € .01 10---00 et -+ e (n )2(n )
0 0

...... 10 €n—2 ...01---10 €+ -+ ep2 n—2
0 0

...... 01 €n—1 ..01---11 e+--+en n—1
1 1

...... 00 €n ..01---10 €+ ---+ep_2+ey n—1
1

B B c01---11 &+ +en n—2

- - L erteten (n-3)(n-2)

.01---12---21 +et++en 2 2

Here 1's and 2’s are connected with identity. The map of 1 —2 or

2 —1 is explained above.



For A,,

#{ind-reps} = #{diagonals in (n+ 3)-gon} — n

o—Ppog—ogGg—o—Po ) —»() «—k €—k—Pk



