Quiver Representations I

Xiong Rui

April 19, 2021

Associative Algebras

- Let \mathbb{k} be a field.
- Let A be a (finite dimensional) algebra over \mathbb{k}.
- Example 1: Mat $_{n \times n}(\mathbb{k})$.
- Example 2: $n \times n$ upper triangular matrices.
- Example 3: $\mathbb{k}[t]$ (this is not finite dimensional).
- Example 4: Group algebra or finite groups.
- A representation of A is a finite dimensional module of A.
- Main task in representation theory of associative algebra is

> Given an algebra, classify all reps

Examples

- For $\mathbb{C}[G]$ of some finite group G, then

- For \mathbb{k}

Examples

- For $\mathbb{k}[x]$, then

Classification of a vector space + an linear endormorphism

Classification of conjugacy class of a matrix
by Jordan form

- For $\mathbb{k}[x] /\left(x^{2}\right)$,

Classification

\square
Classification of conjugacy class of 2-nilpotent matrices

Examples

- For $\mathbb{k} \times \mathbb{k}$,

Classification \Longleftrightarrow Classification of two vector spaces

- For $\binom{\mathbb{k} \mathbb{k}}{\mathbb{k}}$, then

Classification of a pair of vector + a linear map

Examples

- For $\mathbb{k}[x, y]$,

Classification

Classification of conjugacy class of a pair of commuting matrices

- For $\mathbb{k}\langle x, y\rangle$, then

Classification

Classification of conjugacy class of a pair of matrices

Quivers

- We can summary above examples by quivers (oriented graphs)

- Not every algebra can be recovered from quivers. But if we know the relations the arrows should satisfy, then it can.

Undecidedness

Theorem (Baur; Kokorin and Mart'yanov)
The algebra $\mathbb{k}\langle x, y\rangle$ is undecidable.

- A is said to be decidable if there is a Turing machine algorithm which will decide the truth or falsehood of any sentence in the language of finite dimensional A-modules.
- W. Baur. Decidability and undecidability of theories of abelian groups with predicates for subgroups. Compositio Math. 31 (1975), 23-30.
- A. I. Kokorin and V. I. Mart'yanov. Universal extended theories. Algebra, Irkutsk (1973), 107-114.

Types

- A is said to be of finite representation type if there are finite many representations V_{1}, V_{2}, \ldots, such that any representation M can be written as

$$
M \cong V_{1} \underset{\mathbb{k}}{\otimes} M_{1} \oplus \underset{\mathbb{k}}{\otimes} M_{2} \oplus \cdots
$$

with M_{1}, M_{2}, \ldots are finite dimensional \mathbb{k}-vector spaces (i.e. the multiplicity spaces).

Types

- A is said to be of tame representation type if for any n, there are finite many $A[t]$-representations $V_{1}(t), V_{2}(t), \ldots$ parametrized by an indeterminant t such that any A-representation M of $\operatorname{dim} n$ can be written as

$$
M \cong V_{1}(t) \underset{\mathbb{k}[t]}{\otimes} M_{1} \oplus V_{2}(t) \underset{\mathbb{k}[t]}{\otimes} M_{2} \oplus \cdots,
$$

with M_{1}, M_{2}, \ldots are finite dimensional $\mathbb{k}[t]$-modules.

Types

- A is said to be of wild representation type if the classification of A "includes" the classification of finite dimensional indecomposable representations of $\mathbb{k}\langle x, y\rangle$.

Theorem (Drozd, Crawley-Boevey)
Over algebraic closed field, an algebra is either of finite, tame, or wild representation type.

Quiver Representations

- Now, let us go back to quivers. For a quiver Q, we can assign an algebra called the path algebra $\mathbb{k}[Q]$ of it. Then the classification of "representation of the shape of Q "

$$
\text { (vertex, arrow) } \longrightarrow \text { (vector space, linear map) }
$$

is equivalent to the classification of $\mathbb{k}[Q]$.

- As we see before, $\mathbb{k}[t], \mathbb{k}\langle x, y\rangle,\binom{\mathbb{k} \mathbb{k}}{\mathbb{k}}$ are all path algebra of their quivers. But $\mathbb{k}[t]$ and $\mathbb{k}[x, y]$ are not.

Gabriel Theorem

Theorem (Gabriel)
Over an algebraic closed field \mathbb{k}. Then

- a quiver Q is of finite representation type iff Q is a Dynkin diagram without multiple edges (orientation does not matter);
- a quiver Q is of tame representation type iff Q is an affine Dynkin diagram without multiple edges (orientation does not matter).
See next two pages.

Dynkin Diagrams

Affine Dynkin Diagrams

Auslander-Reiten Theory

- The idea of AR theory is, not only try to classify modules, but consider maps between them.
- For any subcategory, we define the $A R$ quiver

where $\operatorname{rad}(M, N)$ is the space of non-invertible maps from $M \rightarrow N$ (it is a linear space), and $\operatorname{rad}(M, N)^{2}$ the space spanned by $g \circ f$ with $f \in \operatorname{rad}(M, L)$ and $g \in \operatorname{rad}(L, N)$.

Auslander-Reiten Theory

- Roughly, speaking,
$\begin{cases}\text { Vertex: } & \text { minimal information to recover all reps } \\ \text { Arrow: } & \text { minimal information to recover all morphisms }\end{cases}$
- For the subcategory of projective modules of a path algebra $\mathbb{k}[Q]$, we will get back the quiver Q.
- Description of Dynkin type quiver - known, combinatorially.
- General algebras - the central topic in representation theory of associative algebras.
- More theory of quivers - another long story.

