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Associative Algebras

▶ Let k be a field.
▶ Let A be a (finite dimensional) algebra over k.
▶ Example 1: Matn×n(k).
▶ Example 2: n × n upper triangular matrices.
▶ Example 3: k[t] (this is not finite dimensional).
▶ Example 4: Group algebra or finite groups.
▶ A representation of A is a finite dimensional module of A.
▶ Main task in representation theory of associative algebra is

Given an algebra, classify all reps .
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Examples

▶ For C[G] of some finite group G, then

Classification ⇐⇒ Classification of Irrep︸ ︷︷ ︸
by characters

▶ For k

Classification ⇐⇒ Classification of vector spaces︸ ︷︷ ︸
by dimension
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Examples
▶ For k[x], then

Classification
⇑
⇓

Classification of a vector space + an linear endormorphism
⇑
⇓

Classification of conjugacy class of a matrix︸ ︷︷ ︸
by Jordan form

▶ For k[x]/(x2),

Classification
⇑
⇓

Classification of conjugacy class of 2-nilpotent matrices
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Examples
▶ For k× k,

Classification ⇐⇒ Classification of two vector spaces

▶ For
(k k

k
)
, then

Classification
⇑
⇓

Classification of a pair of vector + a linear map
⇑
⇓

Classification of equivalence class
of a linear transform︸ ︷︷ ︸

by rank
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Examples

▶ For k[x, y],

Classification
⇑
⇓

Classification of conjugacy class of a pair of commuting matrices

▶ For k ⟨x, y⟩, then

Classification
⇑
⇓

Classification of conjugacy class of a pair of matrices
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Quivers
▶ We can summary above examples by quivers (oriented graphs)

• •⟳ • • •−→•

⟲

•⟳
k k[t] k× k

(k k
k
)

k ⟨x, y⟩

▶ Not every algebra can be recovered from quivers. But if we
know the relations the arrows should satisfy, then it can.

•⟳rolling twice=0

⟲

•⟳ commuting

k[t]/t2 k[x, y]
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Undecidedness

Theorem (Baur; Kokorin and Mart’yanov)
The algebra k ⟨x, y⟩ is undecidable.
▶ A is said to be decidable if there is a Turing machine

algorithm which will decide the truth or falsehood of any
sentence in the language of finite dimensional A-modules.

▶ W. Baur. Decidability and undecidability of theories of abelian
groups with predicates for subgroups. Compositio Math. 31
(1975), 23-30.

▶ A. I. Kokorin and V. I. Mart’yanov. Universal extended
theories. Algebra, Irkutsk (1973), 107-114.
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Types

▶ A is said to be of finite representation type if there are finite
many representations V1,V2, . . ., such that any representation
M can be written as

M ∼= V1 ⊗
k

M1 ⊕ V2 ⊗
k

M2 ⊕ · · · ,

with M1,M2, . . . are finite dimensional k-vector spaces (i.e.
the multiplicity spaces).
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Types

▶ A is said to be of tame representation type if for any n, there
are finite many A[t]-representations V1(t),V2(t), . . .
parametrized by an indeterminant t such that any
A-representation M of dim n can be written as

M ∼= V1(t) ⊗
k[t]

M1 ⊕ V2(t) ⊗
k[t]

M2 ⊕ · · · ,

with M1,M2, . . . are finite dimensional k[t]-modules.
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Types

▶ A is said to be of wild representation type if the classification
of A “includes” the classification of finite dimensional
indecomposable representations of k ⟨x, y⟩.

Theorem (Drozd, Crawley–Boevey)
Over algebraic closed field, an algebra is either of finite, tame, or
wild representation type.
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Quiver Representations

▶ Now, let us go back to quivers. For a quiver Q, we can assign
an algebra called the path algebra k[Q] of it. Then the
classification of “representation of the shape of Q”

(vertex, arrow)−→(vector space, linear map)

is equivalent to the classification of k[Q].
▶ As we see before, k[t], k ⟨x, y⟩ ,

(k k
k
)

are all path algebra of
their quivers. But k[t] and k[x, y] are not.
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Gabriel Theorem

Theorem (Gabriel)
Over an algebraic closed field k. Then
▶ a quiver Q is of finite representation type iff Q is a Dynkin

diagram without multiple edges (orientation does not matter);
▶ a quiver Q is of tame representation type iff Q is an affine

Dynkin diagram without multiple edges (orientation does not
matter).

See next two pages.



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Dynkin Diagrams

An : ◦−−−−−◦−−−−−· · ·−−−−−◦−−−−−◦

Dn : ◦−−−−−◦−−−−−· · ·−−−−−

◦
||
◦−−−−−◦

E6 : ◦−−−−−◦−−−−−

◦
||
◦−−−−−◦−−−−−◦

E7 : ◦−−−−−◦−−−−−

◦
||
◦−−−−−◦−−−−−◦−−−−−◦

E8 : ◦−−−−−◦−−−−−

◦
||
◦−−−−−◦−−−−−◦−−−−−◦−−−−−◦
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Affine Dynkin Diagrams

Ãn :
◦
1

· · · ◦
1

UUUUUUU
1◦

iiiii
ii D̃n : ◦

1
−−−−−

1◦
||
◦
2
−−−−−· · ·−−−−−

1◦
||
◦
2
−−−−−◦

1

Ẽ6 : ◦
1
−−−−−◦

2
−−−−−

1◦
||
◦2
||
◦
3
−−−−−◦

2
−−−−−◦

1

Ẽ7 : ◦
1
−−−−−◦

2
−−−−−◦

3
−−−−−

2◦
||
◦
4
−−−−−◦

3
−−−−−◦

2
−−−−−◦

1

Ẽ8 : ◦
1
−−−−−◦

2
−−−−−◦

3
−−−−−◦

4
−−−−−◦

5
−−−−−

1◦
||
◦
6
−−−−−◦

4
−−−−−◦

2
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Auslander–Reiten Theory

▶ The idea of AR theory is, not only try to classify modules, but
consider maps between them.

▶ For any subcategory, we define the AR quiver
Vertex : [M]

iso-classes of reps which
cannot be written into smaller V1 ⊕ V2

Arrow : |
↓
[N]

A choice of basis of rad(M,N)/ rad2(M,N).

where rad(M,N) is the space of non-invertible maps from
M→N (it is a linear space), and rad(M,N)2 the space
spanned by g ◦ f with f ∈ rad(M, L) and g ∈ rad(L,N).
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Auslander–Reiten Theory

▶ Roughly, speaking,{
Vertex : minimal information to recover all reps
Arrow : minimal information to recover all morphisms

▶ For the subcategory of projective modules of a path algebra
k[Q], we will get back the quiver Q.

▶ Description of Dynkin type quiver — known, combinatorially.
▶ General algebras — the central topic in representation theory

of associative algebras.
▶ More theory of quivers — another long story.


