Overview of Representation theory

Lecture 9 — Representation of associative algebra (II)

Xiong Rui

August 3, 2020

Hereditary algebra

- We consider only the algebraically closed case.
- We call an algebra is **hereditary** if its projective dimension ≤ 1, i.e. Ext^{>1} = 0. Equivalently, any submodule of projective module is again projective.
- As a result, any homomorphism between indecomposable projective modules is zero of injective. So we can introduce a partial order of "submodule".
- In particular, for an indecomposable projective modules, $\operatorname{End}_R(P) = k$.

Some reduction

- Since projective dimension is a property of category, so it suffices to consider basic algebra R.
- The corresponding surjective algebra homomorphism from path algebra kΓ → R is an isomorphism.
 Hint: we have a partial order on the vertices, so one can uniquely write an element of R into sum of paths by induction on this order.
- If a quiver Γ is acyclic (no loop and no self-circle), then its path algebra $k\Gamma$ is hereditary (we will see next page).
- In other words,

Hereditary algebra \approx Quiver algebra.

Remind of Path algebra

- Let Γ be an acyclic (no loop and no self-circle) quiver, and $R = k\Gamma$. For each vertex v, denote e_v the path of length 0 staying at v.
- It is efficient to consider right modules, as we mentioned in lecture 7, since our conversion of product of path.
- Let V be a right $k\Gamma$ -module, we consider $V_{\nu} = Ve_{\nu}$ for any vertex ν , and $[V_{w} \stackrel{\gamma}{\to} V_{\nu}]$ for any edge $[w \stackrel{\gamma}{\to} \nu]$ in Γ . These data form a "diagram of vector spaces in the shape of Γ ". Conversely, any such diagram forms a right $k\Gamma$ -module.
- Notice: no commutative condition is assumed on diagram.

Review of Path algebra

 \bullet e_vR forms the set of indecomposable projective modules.

	is spanned by
R	paths
rad R	paths of length ≥ 1
$e_{\nu}R$	paths which begins with v
$rad e_{\nu} R$	paths which begins with v of length ≥ 1

So

$$\operatorname{rad} e_{v}R = \bigoplus_{V \to W} e_{w}R.$$

In particular, $\operatorname{Ext}^{>1}(e_{v}R/\operatorname{rad}e_{v}R,-)=0$, then so all the modules.

When the path algebra is of finite representation type

• If so, then for any given dimension of Ve_{v} at each vertex, say dim $Ve_{v}=m_{v}$, the right module V has only finite many isomorphic classes.

$$\frac{k\Gamma \text{ structure over } V \text{ such}}{\text{that } Ve_v = k^{m_v}.} = \prod_{\text{edge } \gamma: v \to w} \mathsf{Hom}(Ve_v, Ve_w).$$

 Two structures are isomorphic if and only if they are in the same orbit under the action of

$$\prod_{\text{vertex } v} \mathsf{GL}(Ve_v).$$

When the path algebra is of finite representation type

• For a quiver Γ , assume the vertices is $\{1, \ldots, n\}$, and there is a_{ij} many edges $i \to j$. Denote the **Cartan matrix** $C = (c_{ij}) = (\delta_{ij} - a_{ij}) + (\delta_{ji} - a_{ji})$. Consider the bilinear form

$$B(x) = \sum_{i} x_i^2 - \sum_{i < j} a_{ij} x_i x_j = \frac{1}{2} x^\top C x.$$

Then consider the dimension of

$$\prod_{\text{edge } \gamma: v \to w} \text{Hom}(Ve_v, Ve_w) / \prod_{\text{vertex } v} \text{GL}(Ve_v) \text{ is finite.}$$

To ensure this is finite we need $B(m) \ge 1$ for all $m = (m_i)$. Since the action of a scalar in the group is trivial.

When the path algebra is of finite representation type

• Now B(x) is positive-definite. The integer solution of B(x)=1 forms a root system. Since the roots are all of the same length, so it is classified by the simply-laced Dynkin diagrams.

Gabriel theorem, necessity

Theorem

For a path algebra $k\Gamma$,

• The rest of efforts will be devoted to show the sufficiency.

• We are going to construct a pair of functors between

$$\operatorname{\mathsf{mod-}} k\Gamma \rightleftarrows \operatorname{\mathsf{mod-}} k\Gamma'$$

with Γ' reverse the direction of edges of Γ from one of the sink (only arrows in).

• We can define the functors to be as the following

• Then the reflection functor set a bijection between

$$\boxed{\text{ind } k\Gamma\text{-module}} \setminus 0^{\cancel{k}\cancel{k}} \longleftrightarrow \boxed{\text{ind } k\Gamma'\text{-module}} \setminus 0^{\cancel{k}\cancel{k}} \longleftrightarrow 0$$

• Moreover, we have a short exact sequence, for indecomposable $Y_* \cdots Y_* \leftrightarrow Y_* \cdots Y_*$,

$$0 \to X' \to \bigoplus Y_* \to X \to 0.$$

• If we denote $Dim(M) = (\dim M_{\nu})_{\nu \text{ vertex}}$, then we can compute

$$\operatorname{Dim}\left(\begin{array}{c}X'\\Y_{*}'&\cdots&Y_{*}\\\dots&\dots\end{array}\right)=s_{i}\operatorname{Dim}\left(\begin{array}{c}X\\Y_{*}&\cdots&Y_{*}\\\dots&\dots\end{array}\right),$$

with $s_i x = x - 2B(x, e_i)e_i$, where $e_i = (\delta_{iv})$, the reflection with respect to the vertex i whose direction changed.

Note that

$$s_i \operatorname{Dim} \left(\underbrace{0 \overset{k_{\kappa}}{\cdots 0}}_{0 \overset{k_{\kappa}}{\cdots 0}} \right) = - \operatorname{Dim} \left(\underbrace{0 \overset{k_{\kappa}}{\cdots 0}}_{0 \overset{k_{\kappa}}{\cdots 0}} \right).$$

Gabriel theorem, sufficiency

- Then, a combinatorial argument shows, for a quiver Γ whose underlying undirected diagram is loopfree, we can do the arrow-reverse operator to some sink several times and go back to itself. What's more, each vertices are operated once.
- For any composition of reflection with respect to e_1, \ldots, e_n in any order, say g, for any v, there is some i such that $g^i v$ has some index negative for some $i \le \text{ord } g$.

 Hint: consider $v + gv + g^2v + \cdots$.
- This means, there is a finite series of reflection functors S_1, S_2, \ldots, S_N such that for any indecomposable M, $S_i \cdots S_1(M) = 0$, for some i.
- Thus $S_{i-1} \cdots S_1(M)$ is a simple module for the smallest i. So the number of M is finite.

What's more can we say?

 We see, that the reflection functor is reversible on an indecomposable M if and only if the reflection on Dim M is nonnegative. So

ind
$$k\Gamma$$
-module \leftrightarrow positive roots.

 Actually, we can do the arrow-reverse operator to get any orientation for a quiver of underlying graph loopfree.
 Hint: a such operator is just put a lowest vertex to the topmost.

Remarks

- The ring of projective dimension ≤ 1 is well-understood, for example, a hereditary commutative Noetherian ring is product of Dedekind domain. The Artinian case is nearly what we discussed today. The general noncommutative Dedekind domain is also considered in ring theory.
- The classification of the algebra with radical 2-nilpotent is proven by a stable equivalence to path algebra. More exactly, for an algebra R with $\mathrm{rad}^2 R = 0$, then it is of finite representation type if and only if the quiver associated to the algebra $\binom{R/\operatorname{rad} R}{R/\operatorname{rad} R}$ is a disjoint of simply-laced Dynkin diagrams.

Remarks

- The above theorem only works for algebraically closed field.
 For general case, it appears non-simply-laced Dynkin diagrams.
- The tame type is also classified by affine Dynkin diagrams (i.e. Euclidean diagrams).
- Actually, we do not get the whole "representation theory" for ADE type quiver. To get the Auslander–Reiten quiver is still a not short way to go.
- To see an isomorphic class to be a orbit under the action of ∏ GL leads to a more geometric consideration, i.e. quiver variety.

Tilting theory

• A question is what is the transpose of a simple module?

$$\bigoplus_{v\to w} e_w R \to e_v R \to S_v \to 0$$

$$Re_{\nu} \rightarrow \bigoplus_{\nu \rightarrow w} Re_{w} \rightarrow \operatorname{Tr} S_{\nu} \rightarrow 0$$

Add
$$P = \bigoplus_{a \neq v} Re_a$$
, and $T = \operatorname{Tr} S_v \oplus P$.

• When v is a peak (only arrows out), then the (inverse) reflection functor can be expressed as $V \mapsto V'$ where

$$V \otimes_R egin{pmatrix} Re_v \\ P \end{pmatrix} o V \otimes_R egin{pmatrix} \bigoplus_{v o w} Re_w \\ P \end{pmatrix} o V' o 0$$

So
$$V' = V \otimes_R T$$
.

Tilting theory

• Conversely, when v be a sink the reflection functor can be expressed as $V' \mapsto V''$,

$$0 \to V'' \to \mathsf{Hom}^R(T, V') \to \mathsf{Hom}^R(T, V'),$$

for some
$$T$$
, so $V'' = \text{Hom}^R(T, V')$.

- Actually, in above two cases, End(T) gives the quiver algebra with desired arrow reversed.
- In term of the modern language, the module T is called a tilting module.

References for associative algebras

- Pierce. Associative algebras.
- Etingof, Golberg, Hensel, Liu, Schwendner, Vaintrob,
 Yudovina, Gerovitch. Introduction to representation theory.
- Auslander, Reiten, Smalo. Representation theory of Artin algebras.
- Benson. Representations and cohomology.
- Assem, Simson, Skowroński. Elements of the Representation Theory of Associative Algebras Volume 1 Techniques of Representation Theory.
- Kirillov Jr. Quiver representation and quiver varieties.

Gabriel theorem, necessity Gabriel theorem, sufficiency Remarks References

Thanks