neory

T1 . . . 1 .

Lecture 8 — Representation of associative algebra (I)

Xiong Rui

August 3, 2020

7 tiong 1 tu

We still assume the modules mentioned to be finite dimensional.

What is easy

 $| \text{projective modules} | \leftrightarrow | \text{simple modules} | \leftrightarrow | \text{injective modules} |.$

▶ What is difficult

indecomposable modules .

Can we find a category such that indecomposable modules is "easy"?

$$\mathsf{Fun}(R) = \left\{ \begin{array}{ll} \mathbf{Object}: & F: R\text{-}\mathsf{mod} \to k\text{-}\mathsf{vec} & \mathsf{additive} \ \mathsf{functor} \\ \\ \mathbf{Morphism}: & & & \alpha & \mathsf{natural} \ \mathsf{transform} \\ \\ & & & & \\ F' = R\text{-}\mathsf{mod} \to k\text{-}\mathsf{vec} \end{array} \right.$$

 \blacktriangleright It forms a sub-abelian category of $\mathcal{A}^{\mathcal{C}}$

 $(k\text{-vec})^{R\text{-mod}}$ in $\mathcal{A}^{\mathcal{C}}$. Or more exactly

Let R be a finite dimensional k-algebra. Consider Fun(R) the full subcategory of additive functors of

$$\widetilde{*}: R\operatorname{-mod} \to \operatorname{Fun}(R) \qquad M \mapsto \operatorname{Hom}_R(M,-).$$

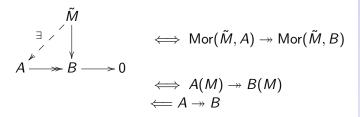
Theorem (Yoneda)

$$\mathsf{Mor}_{\mathsf{Fun}(R)}(\tilde{M},F) = F(M).$$
 $\mathsf{Hom}_R(M,N) = \mathsf{Mor}_{R\text{-mod}}(M,N) = \mathsf{Mor}_{\mathsf{Fun}(R)}(\tilde{N},\tilde{M}).$
 $M \overset{\sim}{\oplus} N = \tilde{M} \oplus \tilde{N} \qquad \widetilde{\mathsf{cok}} \, f = \ker \tilde{f}.$

▶ We call an $F \in \operatorname{Fun}(R)$ representable if $F \cong \tilde{M}$.

hanks

▶ For an $M \in R$ -mod, \tilde{M} is projective



► So

$$| representability | \Rightarrow | projectivity |$$

- ▶ We call an $F \in \text{Fun}(R)$ is **finitely generated** if it is isomorphic to some quotient of \tilde{M} .
- ▶ If *F* is finitely generated and projective, then it is representable.

F projective

 \iff some nontrivial idempotent $\tilde{e}: \tilde{M} \to F \to \tilde{M}$

 \iff some nontrivial idempotent $e: M \to M, F = e(\tilde{M})$

$$| projectivity + f.g. | \Rightarrow | representability |$$

Through the Yoneda embedding,

$$\{R\text{-module}\} \stackrel{\text{1:1}}{\longleftrightarrow} \{\text{f.g. projective object}\}$$

 $\{\text{indecomposable }R\text{-module}\}\leftrightarrow \{\text{f.g. indecomposable projective object}\}$

- For any simple object $S \in \operatorname{Fun}(R)$, there is a unique indecomposable $M \in R$ -mod, such that $F = \tilde{M} / \operatorname{rad} \tilde{M}$.
- ► Actually, *M* is the indecomposable module such that

$$S(M) \neq 0 \iff \exists \tilde{M} \stackrel{\neq 0}{\rightarrow} S \stackrel{\text{s is simple}}{\Rightarrow} \exists \tilde{M} \twoheadrightarrow S.$$

It is unique by the general fact of projective covering.

Then we get

$$\{R\text{-module}\} \stackrel{\text{1:1}}{\longleftrightarrow} \{\text{semisimple object in Fun}(R)\}$$

 $\{\text{indecomposable } R\text{-module}\} \leftrightarrow \{\text{simple object}\}$

▶ When M, N is indecomposable,

 $\operatorname{rad} \tilde{M}(N) = \{M \xrightarrow{f} N : f \text{ is not invertible}\} := \operatorname{rad}(M, N).$

$$\operatorname{rad}(\operatorname{rad} \tilde{M})(N)\{M \xrightarrow{f} L \xrightarrow{g} N : f \in \operatorname{rad}(M, L), g \in \operatorname{rad}(L, N)\} := \operatorname{rad}^{2}(M, L)$$

One can define the Auslander-Reiten quiver

```
vertices = \{indecomposable modules\},\
\dim \frac{\operatorname{rad}(M,N)}{\operatorname{rad}^2(M,N)} many edges M \to N.
```

- Actually, Fun(R) is equivalent to the category of modules of its Auslannder algebra (may be infinite dimensional). Then the radical is literally radical.
- Actually, denote $S_M = \tilde{M} / \operatorname{rad} \tilde{M}$,

$$\begin{aligned} \mathsf{Ext}_{\mathsf{fun}(R)}(S_M, S_N) &= \mathsf{Hom}_{\mathsf{fun}(R)}(\mathsf{rad}\,\tilde{M}/\,\mathsf{rad}^2\,\tilde{M}, S_N) \\ &\stackrel{?}{=} \mathsf{Hom}_{\mathsf{fun}(R)}(S_N, \mathsf{rad}\,\tilde{M}/\,\mathsf{rad}^2\,\tilde{M}) \\ &= \mathsf{Hom}_{\mathsf{fun}(R)}(\tilde{N}, \mathsf{rad}\,\tilde{M}/\,\mathsf{rad}^2\,\tilde{M}) \\ &= \frac{\mathsf{rad}(M, N)}{\mathsf{rad}^2(M, N)} \end{aligned}$$

For any module L, any map $M \rightarrow L$, either factors through N, either admits a $M \rightarrow N$ retraction.

$$\begin{array}{c}
M \xrightarrow{f} N \\
\downarrow \downarrow \downarrow \\
L \xrightarrow{} M
\end{array}$$

is called **left minimal** if $M \xrightarrow{f} N$ $\forall h$ is invertible.

- Assume M is indecomposable,
 - $\tilde{\it N} \stackrel{\tilde{\it f}}{\longrightarrow} \tilde{\it M} \rightarrow \tilde{\it M}/\operatorname{rad} \tilde{\it M} \rightarrow 0$ is a minimal resolution \iff f is left almost split and left minimal.

Xiong Rui

If a short exact sequence

$$0 \to M \xrightarrow{f} N \xrightarrow{g} L \to 0$$

satisfies the following equivalent conditions, we will call it almost split sequence

- f is left almost split and left minimal.
- f is left almost split and g is right almost split.
- g is right almost split and right minimal.
- M is indecomposable, and g is right almost split.
- L is indecomposable, and f is left almost split.

▶ Let $M \in R$ -mod.

Auslander–Reiten

References

$$P_1 \xrightarrow{f} P_0 \to M \to 0 \qquad \text{minimal projective resolution}$$

$$\downarrow \qquad \qquad \text{apply } *^t = \operatorname{Hom}_R(*, R)$$

$$0 \to M^t \to P_0^t \xrightarrow{f^t} P_1^t \to \operatorname{Tr} M \to 0 \qquad \operatorname{Tr} M = \operatorname{cok} f^t$$

▶ Note that Tr : R-mod $\rightarrow R^{op}$ -mod,

$$\begin{array}{c} \text{nonprojective left modules} \\ \xrightarrow{\text{Tr}} \\ \text{Tr} \end{array}$$

$$\underline{\mathsf{Hom}}_R(M,N) = \frac{\mathsf{Hom}_R(M,N)}{\{M \to P \to N : \text{ for some projective } P\}}$$

Theorem (Auslander-Reiten Formula)

For $M, N \in R$ -mod,

$$\frac{\operatorname{Hom}_R(M,N)}{=\operatorname{D}\operatorname{Ext}^R(\operatorname{Tr}M,\operatorname{D}N)}=\operatorname{D}\operatorname{Ext}_R(N,\operatorname{D}\operatorname{Tr}M),$$

where $DM = M^{\vee}$ the dual space.

Theorem (Auslannder–Reiten)

If M is indecomposable and non-projective, then there exists an almost split sequence

$$0 \rightarrow D \operatorname{Tr} M \rightarrow E \rightarrow M \rightarrow 0.$$

$$0 \neq * \in D(S_M) \hookrightarrow D \underline{\mathsf{Hom}}(M, M) \cong \mathsf{Ext}(M, \mathsf{D} \mathsf{Tr} M) \ni [E].$$

When M is indecomposable and projective, then rad $M \rightarrow M$ is right almost split and right minimal.

Theorem (Auslannder-Reiten)

If M is indecomposable and non-injective, then there exists an almost split sequence

$$0 \rightarrow M \rightarrow E \rightarrow \text{Tr D } M \rightarrow 0.$$

When M is indecomposable and injective, then $M \rightarrow M / \text{soc } M$ is left almost split and left minimal. ► In conclusion, if *M* is indecomposable, the finitely generated minimal resolution exists and is

$$\begin{cases} 0 \to \widetilde{\operatorname{Tr} \operatorname{D} M} \to \widetilde{E} \to \widetilde{M} \to \widetilde{M} / \operatorname{rad} \widetilde{M} \to 0 & M \text{ is non-injective} \\ 0 \to \widetilde{M/\operatorname{soc} M} \to \widetilde{M} \to \widetilde{M} / \operatorname{rad} \widetilde{M} \to 0 & M \text{ is injective} \end{cases}$$

ightharpoonup In particular, for M, N indecomposable,

$$ilde{\it E}/\operatorname{\sf rad} ilde{\it E}\cong\operatorname{\sf rad} ilde{\it M}/\operatorname{\sf rad}^2 ilde{\it M}$$

So any
$$f \in \operatorname{rad}(M, N) / \operatorname{rad}^2(M, N)$$
 is from $M \to E \stackrel{\oplus}{\longrightarrow} N$.

▶ When we take a decomposition of E into indecomposable modules $E = \bigoplus E_i$. Then $\{M \to E \twoheadrightarrow E_i \cong N\}$ forms a basis for $rad(M, N)/rad^2(M, N)$.

Theorem

If R is of finite representation type, then its Auslander–Reiten quiver has no multiple edges.

- ▶ Otherwise, assume that $M \rightarrow N$ has more than 2 edges.
- ▶ If $f \in rad(M, N) \setminus rad^2(M, N)$, by consider the im f, we know that f is surjective or injective but not isomorphic.
- ▶ Without loss of generality that dim $M > \dim N$.

$$0 \to \mathsf{Tr} \: \mathsf{D} \: \mathsf{N} \to \mathsf{M}^2 \oplus \mathsf{E} \to \mathsf{N} \to \mathsf{0}$$

So dim Tr D $N \ge$ dim N, and Tr D $N \rightarrow M$ has more than 2 edges.

Continue this process, we get infinite indecomposable modules of different dimensions.

Theorem (Brauer-Thrall conjecture)

A finite dimensional algebra is either of finite representation type or there exist indecomposable modules with arbitrarily large dimension.

Theorem (Harada and Sai)

If M_i 's are indecomposable and dim $M_i \leq b$, Any chain of maps

$$M_1 \stackrel{f_1}{\rightarrow} \cdots \stackrel{f_{2^b-1}}{\rightarrow} M_{2^b}$$

has its composition vanishing.

▶ If $\mathsf{Hom}(M,N) \neq 0$, then M and N can be connected by directed path $M \to \cdots \to N$ in Auslander–Reiten quiver since

$$0 = \operatorname{\mathsf{rad}}^{2^b}(M,N) \subseteq \cdots \subseteq \operatorname{\mathsf{rad}}(M,N)^2 \subseteq \operatorname{\mathsf{rad}}(M,N) \subseteq \operatorname{\mathsf{Hom}}(M,N).$$

- For any indecomposable M, there exists an indecomposable P with $Hom(P, M) \neq 0$.
- But indecomposable projective modules are finite, and by Auslander–Reiten theorem (the existence of minimal resolution), Auslander–Reiten quiver are "locally finite", so there is only finite many vertices.

$$f.g. proj. object = \underline{Hom}(-, M)$$
 $f.g. inj. object = Ext(-, M).$

▶ One can also consider $\underline{\operatorname{Fun}}(R) \subseteq \operatorname{Fun}(R)$ the category of functors F vanishing over all projective modules. Then

f.g. proj. object
$$= \underline{\text{Hom}}(M, -)$$
.

► The Auslander–Reiten formula describes how this reflects duality functor

$$R\text{-mod} \xrightarrow{M \mapsto \underline{\operatorname{Hom}}(M,-)} \underline{\operatorname{Fun}}(R)$$

$$\downarrow D \operatorname{Tr} \downarrow \qquad \qquad \downarrow D$$

$$R\text{-mod} \xrightarrow{M' \mapsto \operatorname{Ext}(-,M')} \underline{\operatorname{Fun}}^{\vee}(R)$$

- Auslander, Reiten, Smalø. Representation theory of Artin algebras.
- Benson. Representations and cohomology.
- Assem, Simson, Skowroński. Elements of the Representation Theory of Associative Algebras Volume 1 Techniques of Representation Theory.

Lecture 8 — Representation of associative algebra (I)

Xiong Rui

Functor category

Auslander–Reiten heory

recicione

Thanks

Thanks