Overview of Representation theory

Lecture 6 — Representation of lie algebras (II)

Xiong Rui

July 29, 2020

Character

• For two g-representations V and W, we can introduce a g-representation structure on V^{\vee} and $V \otimes W$ by

$$X \cdot f = [v \mapsto -f(Xv)], \qquad X \cdot (v \otimes w) = xv \otimes w + v \otimes xw.$$

• For a \mathfrak{g} -representation V, define its **character**

$$\mathsf{ch}(V) = \sum_{\lambda \in \Lambda} (\mathsf{dim}\ V_\lambda) e^\lambda \in \mathbb{Z}[e^\Lambda]$$

the group ring of weight lattice. Then of course,

$$\operatorname{ch}(V^{\vee}) = \overline{\operatorname{ch}(V)}, \qquad \operatorname{ch}(V \otimes W) = \operatorname{ch}(V) \cdot \operatorname{ch}(W).$$

Weyl group

- For a root system Δ , define the **Weyl group** generated by reflections of roots.
- For compact group G, and a maximal torus T, we define the
 Weyl group to be

$$N_G(T)/T = \{g \in G : gTg^{-1} = T\}/T.$$

Through the adjoint action of $N_G(T)/T$ on $Lie(T) \rightarrow Lie(T)$, they coincides.

ullet The Weyl group acts on ${\mathfrak g}$ by setting the reflection of ${lpha}$ acts as

$$\exp(\operatorname{ad}(X_{\alpha}))\exp(-\operatorname{ad}(Y_{\alpha}))\exp(\operatorname{ad}(X_{\alpha})).$$

The character

• For any representation V, for any weight $\lambda \in \Lambda$ and Weyl group element $w \in W$

$$\dim V_{\lambda} = \dim V_{w\lambda}.$$

• The characters forms a basis for $\mathbb{Z}[e^{\Lambda}]^{W}$, i.e. the symmetric polynomials.

Theorem (Weyl character formula)

Let λ be a dominant weight, the character of unique representation V_{λ} of highest weight λ is

$$\mathsf{ch}(V_{\lambda}) = \frac{\sum_{w \in W} (-1)^w e^{w(\lambda + \rho)}}{\sum_{w \in W} (-1)^w e^{w\rho}}, \qquad \rho = \frac{1}{2} \sum_{\alpha \in \Delta^+} \alpha,$$

where $(-1)^w = \det w$ is 1 if w is a product of even simple reflections, is -1 otherwise.

Special linear algebra

• \mathfrak{sl}_n is a simple Lie algebra.

Lie algebra	\mathfrak{g}	$\mathfrak{sl}_n=\{A\in\mathbb{M}_n(\mathbb{C}): tr A=0\}$
Cartan subalgebra	h	$\{diag(a_1,\ldots,a_n):a_1+\cdots+a_n=0\}$
roots	Δ	$\{lpha(i,j): diag(a_i) \longmapsto a_i - a_j\}_{i eq j}$
the \mathfrak{sl}_2 triple	\mathfrak{s}_{lpha}	$\mathfrak{s}_{lpha(i,j)} = \mathbb{C} \cdot (E_i - E_j) \oplus \mathbb{C} \cdot E_{ij} \oplus \mathbb{C} \cdot E_{ji}$
basis	Ф	$\{\alpha(i,i+1): diag(a_i) \longmapsto a_i - a_{i+1}\}_{i=1}^{n-1}$
polarization	Δ^+	$\{\alpha(i,j): i < j\}$
weight	٨	$\{(\lambda_i) + C : diag(a_i) \longmapsto \sum \lambda_i a_i : \lambda_i - \lambda_j \in \mathbb{Z}\}$
dominant weights	$\Lambda_{\geq 0}$	$\{(\lambda_i) + C : diag(a_i) \longmapsto \sum \lambda_i a_i : \lambda_i decreasing\}$

Special linear algebra

- For \mathfrak{sl}_n , the Weyl group is \mathfrak{S}_n , the reflection of α_{ij} corresponds the the swap $i \leftrightarrow j$.
- Its action on the weight lattice is

$$(\lambda_1,\ldots,\lambda_n)+C\stackrel{\sigma}{\longmapsto}(\lambda_{\sigma(1)},\ldots,\lambda_{\sigma(n)})+C$$

- We can use a Young diagram with length < n to present a dominant weight λ , say, by the unique $(\lambda_1, \ldots, \lambda_{n-1}, 0)$ presented it.
- The $\rho = \frac{1}{2}(n-1, n-3, \cdots, -n+1) + C = (n-1, \cdots, 1, 0)$,

Schur polynomial again

• By the Weyl character formula,

$$\operatorname{ch}(V_{\lambda}) = \frac{\sum_{\sigma \in \mathfrak{S}_n} (-1)^{\sigma} e^{\sigma(\lambda + \rho)}}{\sum_{w \in W} (-1)^{\sigma} e^{\sigma(\rho)}} = \frac{\det(x_j^{\lambda_i + n - i})}{\det(x_j^{n - i})} = s_{\lambda}(x)$$

where s_{λ} the Schur polynomial (see lecture 4), with

$$x_i = \exp(0, \dots, 0, \underbrace{1}_i, 0, \dots, 0), \qquad x_1 \cdots x_n = 1,$$

Equivalently, it is a function in $diag(x_1, ..., x_n) \in SL(n)$.

characters of
$$\mathfrak{sl}_n = \mathsf{Schur}$$
 polynomials

• Let V be the natural representation of $\mathfrak{sl}_n \to \mathfrak{gl}_n = \mathfrak{gl}(V)$. Put the standard basis by e_1, \ldots, e_n . The highest weight is $(1, \ldots, 0)$, with vector e_1 .

Consider

$$V^{\otimes m}=V\otimes\stackrel{m}{\cdots}\otimes V.$$

It is a representation of \mathfrak{gl}_n , but also a representation of \mathfrak{S}_m (write by right action). The action of them commutes.

- Let λ be a partition λ of m, and fix some filling of λ from 1 to $|\lambda|$ (no repetition) and denote again by λ . Denote r_{λ} and c_{λ} the row sum and column sum (see lecture 4).
- Consider $V_{\lambda} = V^{\otimes m} \cdot c_{\lambda} r_{\lambda}$.

• We present a monomial $v_1 \otimes \cdots \otimes v_m$ in Young diagram with v_i at the position filled by i.

• For a filling of λ with 1 to n, it corresponds to a monomial

- For a filling of λ with 1 to n, we consider the monomial of it by M.
- If there is some repetition in some column, then $Mc_{\lambda}r_{\lambda}=0$.
 - Since c_{λ} is an alternative sum.
- The weight of M is (ϕ_1, \ldots, ϕ_n) with ϕ_i the number of i used to fill λ .
- The monomial M_0 of the filling *i*-th row by *i* is such that $M_0 c_{\lambda} r_{\lambda} \neq 0$.
 - Since the coefficient of M_0 itself is 1.

- If there is no repetition in some column, then $M \cdot c_{\lambda} r_{\lambda} \neq 0$, and M_0 is the only highest weight.
 - Since we can first make the first row, then the second, etc.

• As a result, $V^{\otimes m} \cdot c_{\lambda} r_{\lambda}$ is the \mathfrak{sl}_n -irreducible representation of highest weight λ .

Schur–Weyl Duality

Theorem (Schur-Weyl)

$$V^{\otimes m} = \bigoplus_{\lambda \vdash m, length < n} V_{\lambda} \otimes S^{\lambda}.$$

where S^{λ} is a right \mathfrak{S}_m module via $\sigma \mapsto \sigma^{-1}$.

$$egin{array}{ll} V^{\otimes m} &= igoplus_{\lambda dash m} \operatorname{\mathsf{Hom}}^{\mathfrak{S}_m}(S^\lambda, V^{\otimes m}) \otimes S^\lambda \ &= igoplus_{\lambda dash m} \operatorname{\mathsf{Hom}}^{\mathfrak{S}_m}(r_\lambda c_\lambda \mathbb{C}[G], V^{\otimes m}) \otimes S^\lambda \ &= igoplus_{\lambda} \operatorname{\mathsf{Hom}}^{\mathfrak{S}_m}(c_\lambda r_\lambda \mathbb{C}[G], V^{\otimes m}) \otimes S^\lambda \ &= igoplus_{\lambda} V^{\otimes m} c_\lambda r_\lambda \otimes S^\lambda = igoplus_{\lambda} V_\lambda \otimes S^\lambda \end{array}$$

Schur–Weyl Duality

• Actually, there is a general fact about duality.

Theorem

Let V be a semisimple module of some algebra $R \subseteq \operatorname{End}_k(V)$. Then $R' = \operatorname{End}_R(V)$ is semisimple, and $R = \operatorname{End}^{R'}(V)$. Moreover, V has the decomposition as R, R'-bimodule

$$V = \bigoplus_{U \text{ irr rep of } R} U \otimes \operatorname{\mathsf{Hom}}_R(U,V),$$

with $Hom_R(U, V)$ pairwise nonisomorphic irreducible R'-modules.

Schur–Weyl Duality

• In our case, it is easy to see that

$$\operatorname{End}(V^{\otimes m})^{\mathfrak{S}_m} = (\operatorname{End}(V)^{\otimes m})^{\mathfrak{S}_m} = S^n(\operatorname{End}(V))$$
$$= \operatorname{span}\{g^m = g \otimes \cdots \otimes g : g \in \operatorname{GL}_n\}$$

Hint: we can solve $x^k y^{m-k}$ in $(x + \lambda y)^m$ by Vandermonde determinant of different λ .

• Example,

$$V \otimes V = S^2 V \oplus \bigwedge^2 V$$
.

More Duality theorem

• Duality is a very deep topic in representation theory.

Theorem (Howe duality)

There is a duality of GL(n) and GL(k) over $S(\mathbb{C}^n \otimes \mathbb{C}^k)$, and

$$S(\mathbb{C}^n \otimes \mathbb{C}^k) = \bigoplus_{\substack{\lambda \ length < \min(k,n)}} V_{\lambda}(n) \otimes V_{\lambda}(k).$$

• It can be derived from Schur–Weyl duality. An explanation of why GL(n) and GL(k) dually commute is given by Weyl algebra.

More Duality theorem

- Schur—Weyl duality is for GL(n), so are there any analogue for SO(n), O(n) or Sp(n)?
- The general problem is to determine

$$(\mathsf{End}(V^{\otimes m}))^G = V^{\otimes m} \otimes (V^{\vee})^{\otimes m} \overset{\mathsf{self dual by quadratic form}}{\cong} V^{\otimes 2m}$$

- It turns out for G = O(n) or Sp(n), the invariant of linear functor of $V^{\otimes m}$ is generated by pairing (when m is not even, there is no invariant).
- For G = SO(n), determinant is another invariant.

Brauer algebra

• So for G = O(n) or Sp(n), the right analogue to replace \mathfrak{S}_n is the **Brauer algebra**.

Construction

• Consider the natural representation V of G = SO(n) or Sp(n). Then

$$V^{\otimes m} c_{\lambda} r_{\lambda} \cap \bigcap_{i < j} \ker \left[V^{\otimes m} \stackrel{\mathsf{pair}}{\to} \stackrel{i \text{ and } j}{\to} V^{\otimes (m-2)} \right]$$

is an irreducible analytic representation of G (equivalently of $\mathfrak{g}=\mathsf{Lie}(G)$).

• What is interesting, this constructs all irreducible representations for Sp(n), sp_n , SO(n). But not for so_n , since it is not simply connected. To get the remain irreducible representations, one should consider the **spin representations**.

Littlewood-Richardson again

- Due to the character reason, the multiplicity of V_{λ} in $V_{\mu} \otimes V_{\nu}$ is given by Littlewood–Richardson coefficient. Actually, more beautiful combinatorial explanation is given.
- The main data is $\lambda_i \lambda_{i+1}$ for a partition λ .

Bernstein-Zelevinsky triangle

Theorem (Bernstein and Zelevinsky)

The multiplicity of V_{λ} in $V_{\mu} \otimes V_{\nu}$ is the number of way to fulfill the Bernstein triangles with nonnegative integers.

For each side, the sum of two elements of each triangles left-to-right gives $\xi_i - \xi_{i+1}$, where $\xi = \lambda$ for left side, μ for right side and ν for lower side. And for each hexagon $\frac{b}{a}\frac{c}{y}$, we have a + b = x + v, a + c = x + z, b + c = y + z.

$$\begin{matrix} 0^{1}0 \\ 0^{0}1 & 1^{0}1 \\ 0^{1}1 & 0^{1}0 & 2^{0}0 \\ 0^{1}0 & 1^{0}0 & 0^{0}0 & 2^{0}0 \end{matrix}$$

Tao-Knutson Honey comb

Theorem (Tao and Knutson)

The multiplicity of V_{λ} in $V_{\mu} \otimes V_{\nu}$ is the number of Honey comb corresponds to μ, ν, λ .

For each side, the spread of two lines left-to-right gives $\xi_i - \xi_{i+1}$, where $\xi = \lambda$ for left side, μ for right side and ν for lower side.

Tao-Knutson Puzzle

Theorem (Tao and Knutson)

The multiplicity of V_{λ} in $V_{\mu} \otimes V_{\nu}$ is the number of tiling the triangles with puzzles $\triangle \triangle \diamondsuit$ (rotation permitted but not reflection).

The color of sides of puzzles is compatible, with the corresponding sides the projection of the boundry of Young diagrams.

References

- Fulton and Harris. Representation theory.
- Goodman and Wallach. Symmetry, Representations, and Invariants.
- Adams. Lectures on Exceptional Lie groups.
- Berenstein, and Zelevinsky. Triple multiplicities for (r+1) and the spectrum of the exterior algebra of the adjoint representation.
- Knutson, Tao. The honeycomb model of GL(n) tensor products I: proof of the saturation conjecture. [arXiv]
- Knutson, Tao, Woodward. The honeycomb model of GL(n) tensor products II: puzzles give facets of the L-R cone. [arXiv]
- PBS Infinite Series. Hilbert's 15th Problem Schubert Calculus. [Youtube, Bilibili]

Thanks