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Torus and sl

Abelian lie groups

Any abelian lie group is a direct product of copies of R, T and
discrete abelian group.

Compact group

cire group
T=S={zeC:|z|=1}

torus
"

Lie algebra

one-diemensional space
R, with [,] = 0.

vector space
R”, with [,] = 0.

Complex group

multiplicative group
Gn=C*=C\0

commplex torus
n
&

Lie algebra

one-diemensional space
C, with [,] = 0.

vector space
C", with [,] = 0.
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Representation of torus

@ Let T be a torus, and T — GL(V) be a representation, then

@ Vy, {veV: it -v=x(t)v},

XEX(T)

where X(T) = Homjie group( T, Gm) the character group.

o Let t be a commutative lie algebra, and t — gl(V) be a
representation, then

V= Vv, VA={veV:(t-\t)>° v=0},

AetY

where tV the dual space of t.
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Torus and sly

The lie algebra sl;

@ sly is the semisimple lie algebra of minimal dimension.

Compact group

special unitary group
SU(2) ={XeSL: XX =1}
={(52) :laP+|82 =1}

Lie algebra

special unitary algebra

SUo :{X65[2:X+7T:0}
_ B . .
= {(_aﬁ _a) ra € iR}

Complex group

special linear group
SL(2) ={(25) : ad — bc =1}

Lie algebra

special linear algebra
sh={(?5):a+d=0}
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Representations of SU(2)

@ Denote the diagonal matrices
T=A{(% 1) :zeT}CSU2).
e For any irreducible representation SU(2) — GL(V), then

Vv — @ Vi, Vy={veV:t-v=x(t)yv},
xEX
V V(in)={veV: (% __) v=2z"v}
X(T):Zneg (m) =1 ( z ) }

@ SU(2) acts on n-dimensional homogenous polynomials V/,, of
two variables by f(x,y) & £((x,y)A),
Vo= Cy" @ Cxy" '@ - Cx"lye Cx".
~ —— —_— =
Va(=n)  Va(=n+2) Va(n—=2)  Va(n)

These are all irreducible, and the full list of irreducible
representations.
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Torus and sly

Representations of sl
@ Denote H = (1 71),X = (0 1), Y = (1 0), and t =CH.
Then
sh= CH & CX & CY [X,Y]=H=—[Y,X].

@ Any irreducible representation takes the form

X X X X X
—_— — —_— — A
0. Cv,_o Cv o @ - _ @ Cvypo @ Cyv, 0

YUYUY YUYU

H H H
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Structures of Lie algebras

Maximal torus theory

@ For a compact Lie group G, a subgroup T C G is called a
maximal torus if if is a torus and maximal among such
subgroups.

@ The adjoint action Lie(G) 2 Lie(G) of t € T induced from

txt 1 . . ..
G ™= G gives rise a decomposition

Lie(G)e= @D v oy = {X € Lie(G)c : ad X = x(t)X},
X€X(T)
with go = Lie(T).
e Call each x € X(T) \ 0 such that g, # 0 a root of G.
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Structures of Lie algebras

Maximal torus theory

@ For a semisimple complex lie algebra g, a subalgebra b is
called a cartan subalgebra if it is commutative and maximal
among such subalgebra.

[H,-]

.. . H,—] . . .
@ The adjoint action g — " Lie(G) of H € b gives rise a
decomposition (assuming semisimplicity and using regular
element)

s=P o o={Xeg:[HX]=AHX},
Aepv

with go = b. Note that [gx, g,] C gty
e Call each A € hV \ 0 such that gy # 0 a root of g.
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Structures of Lie algebras

The s, triple

Theorem

For a complex semisimple Lie algebra g, and a root «. If we denote
ha = [gaag—a] - h, then

sh =CHOCXPCY Zh, B ga D g _a := Sa

as Lie algebra. We will denote H,, X, Yo € g the elements
corresponding to H, X, Y respectively.
For a compact Lie group G, and a root «, there is a lie group
homomorphism

SU(2) —» G

such that the induced sly — Lie(G)c gives the isomorphism above.
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Structures of Lie algebras

Root system

@ For each root «, g is a s,-representation by adjoint action.
Denote H, € § corresponds to the H € sl,. For any root 3,
consider the s,-representation on the “straight line”

0 98-« 52 98 ® 98+a ©--
N—— ~—~ N——
[Ha]=(B—a)(Ha)*  [Ha¥]=B(Ha)x  [Ha,¥]=(B+a)(Ha)*

By the representation theory of sly, gg # 0 = gg4na # 0
where the n such that —(H,) = 8(Ha) + na(H,). Note that
a(Hy) =2, so

B is a root =>so is § — B(Hqa)cv.
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Structures of Lie algebras

Root system

@ An abstract root system A is a finite subset of R-space V
without zero spanning V/, and

For all o € A, there exists a¥ € VV such that A

is invariant under the hyperplane reflection [v —
v—{(a",v)a], and a¥(A) € Z.

e We also assume A to be reduced, that is, Ra N A = {£a},
because the root systems of semisimple lie algebras suit this.

@ We can introduce an inner product such that the reflections
are invariant.
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Structures of Lie algebras

Polarization and basis

@ Geometrically, the hyperplane of ker oV cut the unit sphere
into several congruent pieces of hyper triangles. Pick one of
such piece S (called Weyl chambre), define its Coxeter
diagram

. 2 cos /HH'
vertices = hyperplanes along S, H sy

When it is labelled by 2, i.e. H L H’, we omit the arrow.

@ We call the corresponding choice of root ® a basis for A.
Equivalently, its Coxeter diagram

. —2cos Lo
vertices = O, a = g 15}

This defines a polarization, say A = AT LA™ by
AT ={aeA (0,0 >0}, A ={acA, () <0l
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Dimension 2 case

@ Two of roots have very limited case, here we list all of them,
and we modify the arrow between them by

% AV AN

AN NP

This is called the Dynkin diagram of the root system.
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Structures of Lie algebras

All connected Dynkin diagrams

E7

Eg
Fa
Go

O
O——=—0
O—=——0
[e)
O .. O
o
(e O
o
O
(e
O
O O——=—0
o=—=o0
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Structures of Lie algebras

Root system determines the lie algebra

The Cartan subalgebras are all conjugated, in particular, the root
system does not depend on the choice of Cartan subalgebra.

The Dynkin diagram does not depend on the choice of basis.

Theorem (Serre)

The Dynkin diagram of the Root system of semisimple lie algebra
determines the lie algebra structure. Actually, there exists a
semisimple lie algebra for each Dynkin diagram.
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Representations

e Consider an irreducible representation g — gl(V). Then

V=@ va, Va={veV:H v=2AH)v}
AepV

since [ga, V] = Vi1, the right hand side is a
g-representation. Call each A such that V) # 0 a weight of
V, and v € V, \ 0 weight vector.

It is also an s,-representation, so A(H,) € Z.

@ Denote the weight lattice A = {\ € bV : \(H,) € Z} the
candidate of weight vectors.
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Representations

@ Let A = AT LUA™ be a polarization. For a representation V/,
call the weight X such that [g,, Vi] =0 for all a € At a
highest weight, the corresponding weight vector highest
weight vector.

Note that by the representation theory for s,, A(Hy) > 0 for
all AT,

o We call a A in weight lattice A a dominant weight, if
A(Hy) > 0 for all AT,

For each dominant weight \, there exists a unique g-representation
V\\ of highest maximal \. They form the full list of representations
of g.
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Borel subalgebra

@ Define the Borel subalgebra
b=be P g
AEA+

Then the highest weight space forms a representation of b
with g, acts trivially.

@ For any X € hY, we can define a b-representation C\, an one
dimensional space spanning by v by

H-v=MAH)v, ga+ - v=0.
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Verma modules

@ It turns out that it is very useful to consider the Verma
modules. For each weight A € A, the Verma module is
defined to be a module with highest weight vector vy to A,

for any other module V with a vo € M

highest weight vector v to A,
there is a unique g-module map
M?* — V sending v to v. v e V

Actually, M* = CA1E.
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Remarks

Borel subgroup

@ One can define the Borel subgroup B of a complex analytic
group G to be the maximal connected solvable subgroup.
When the group is semisimple, Lie(B) = b.

The picture illustrates
Grothendieck's vision of
a pinned reductive group:
the body is a maximal
torus T, the wings are
the opposite Borel sub-
groups B, and the pins
rigidify the situation.
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Remarks

Borel-Weil theorem

@ For a compact Lie group G and maximal torus T, the flag
manifold /variety G/ T has a holomorphism /variety structure,
actually, G/ T = G¢/B with B the Borel subgroup. For each
AeEN,

G x T Q)\ =G x B Q)\

forms a holomorphic/algebraic line bundle over G/ T = G¢/B.
Then the group of holomorphic/algebraic global sections

VY, X is dominant,

0, otherwise.

F(G XTC):{

e For example, SU(2)/T =SL(2)/{(* 1)} = PL
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