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Young diagrams

@ A partition ) of n is a series of integers \; > Ay > --- > 0 such that
AM+A+--=n

Denote |A\| = n and A n. Call the number of nonzero A; the length.

@ A partition A can be presented by Young diagrams with i-boxes in
i-th row. ‘

8=4+3+1,

@ We can define its transpose
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Symmetric groups

Symmetric groups

@ Denote G, the n-th symmetric group.
@ Let \ be a partition of n, denote
disjoint cycles
—~~
c(A\) = the conj.class of (---)---(---),
~—— ~—~—
M A
and
n!
Z(A) = ‘C(A)| = ].ilil! . d,'dl'd!

where ij = #{k : A\ = j}.
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Symmetric groups

Row sum and column sum

e We denote the sign function to be o — (—1)7.

@ Let A be a partition A of length n, and fix some filling of A from 1 to
|A| (no repetition) and denote again by A . We define two elements in

Cl&.l
rp = Z g

oc€G,:0 permutes inside each row

o = > (-1)%.

0€G,:0 permutes inside each column
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Symmetric groups

Row sum and column sum

o = 2. 7 2[3]4]

1
0€6(1,2,3,4} X6 5,6,7} XS (s} 506
g
Cp = g (-1)%0. | |8

0€6 1,58} X6 2,6) XS (3,7} XS4y

~N|w

o If by lexicographical order A < u, then
Cy - C[Gn] = 0.

@ For the same ),
CA'C[G,,]-I’)\:(C~C)\-I’)\.
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Symmetric groups

Specht moduless

@ One can define permutation modules and specht modules by

=C[6,]-n 2 S*=C[6,-cn-rn #0.

Theorem

T@;A XX Gy, and S* is irreducible.

o If by lexicographical order A < p, then S* does not appear in M*,

since
HOmgn(S)\, Mﬂ) =C)\* - C[@n] hy = 0.

In particular, S* = S* if and only if the underlying Young diagram of

A and p are the same.
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Symmetric groups

The character

e It is not very hard to compute the character of M?*,
Ua(e(n)) = g#ly 1y Tty € 6i)
= (computation)

= coefficient of xl)‘1 <o x2nin

n

(X{’Ll_i_..._f_xﬁl)...(xl*_i_..._'_xn*)‘

where ¢ € ¢(p), and &) =6, x --- x &,,. Lastly

p=p1 == e >202>0.
~—~
>0
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Symmetric polynomials

Symmetric polynomials

e A polynomial f € C[xg,--- ,xy] is called symmetric if it is fixed by

the index-permutation-action of &,,.

@ Define the elementary symmetric polynomials {e; : k =1,...,n},

€ = E Xip =+ Xig»

1<in<-<ik<n

@ Define the complete symmetric polynomials
{hx:k=1,...,n,...},

h, = Z Xy *** X, -

1< <-<ig<n
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Symmetric polynomials

Symmetric polynomials

Theorem (Fundamental theorem of symmetric polynomials)

Every symmetric function is a unique polynomial of elementary symmetric
polynomials.

@ For a partition A of length < n, define the complete symmetric
polynomials

hy=hy, -+ hy,.
If AT = 1, define the elementary symmetric polynomials
e =€y €,

define the monomial symmetric polynomials

my = Zthe orbit of the monomial xlAl .- x under &,
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Symmetric polynomials

Schur polynomials

@ For a partition A of length < n, define the Schur polynomial

A1+n—1 A1+n—1
Xl an
Abn—i ne ' e
det (¢T)  rtrn L e
S\ = det: : n—i - n—1 n—1
etij(x""") X X
0 0
X1 DY Xn

@ It turns out that {s) : length of A < n} forms a basis too.
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Symmetric polynomials

Power sum

@ Define for i > 1, the power sum

and pp = 1 for convention.
@ For a partition A of length < n, define

PXx = Px; " Px,-

@ It turns out that {p, : length of A < n} forms a basis too.
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Symmetric polynomials

An inner product

@ By a more or less interesting computation

11 =2l
1<ij<n
= ZS)\(X S,\
A
=2 mn)
D

1—&M

@ One can introduce a bilinear form such that

Z(/\)

<h)\7 mu> — <S)\7 SM> <p>\7pu> = (S)\,,u,
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Symmetric polynomials

The character of M*

e So
¥a(c(p)) = coefficient of xi\l " in py.

= pu=)_ Uale(n) - my == da(e(n) = (pu hy).-
A

@ For any class function ¢,
Jldegree-n symmetric polynomial f, such that p(c(i)) = (pu, f) -

o If p <> f and ¥ <> g, then

LY 0) o) = (Fos).

O'EGn
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Symmetric polynomials

Jacobi—Trudy identity

Theorem (Jacobi—Trudy identity, Giambelli formula)
hy, o g
S\ = . : .
hx—nt1 --- hy,

Convention: hg =1, and h.g = 0.

e So

upper triangle matrix
5= Kby =3 Ko
B> U=

with Ky, =1 > 0.

@ In particular,

GramSchmidt process along >
h S\
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Symmetric polynomials

The character of S*

e Since Homg, (S#, M) = 0 when 11 < ),

M= kinS" k> 1.
HZA

@ In particular,

GramSchmidt process along >

{5 XA

@ So we get
Xa(e(r)) = (P Sa) -
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Symmetric polynomials

The character of S*

@ By the definition of Schur polynomial, we get the following.
Theorem (Frobenius character formula)
xx(c(n)) = coefficient ofxl)‘lJr"_:l o in A - py,
where A = [];_;(xi — x;) = det(x").
@ We also get the following which can be used to do computation.

Theorem

The linear space of symmetric polynomials of degree n is isomorphic to the
space of class function over S,,, with sy <+ S*, and hy <> M*.
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Hook length

@ One can show that
{o-cy-ry:o)is astandard Young tableau}

forms a basis of S*.

@ An amazing formula is

|
dim S$* = #{standard Young tableaux of \} = —

where () is the length of "hook”.
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Remarks

Hook length

] ol
di - = = 216.
im S Tx4x3x1xbx2x1x2x1
= =l =] 0|
] il Lif ]
7[4[3[1]  [ge= [l [
521 U a 0
1] +
=
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Remarks

Branching rule

@ Generally, it is interesting to ask, if V, U are two representations of
S, and &,,, what is

W=V UISTE,:

The result sounds amazing, if we denote the corresponding symmetric
polynomial by f. (in enough variables), then simply fiy = f - fy.
Note that it suffices to check for M* = IITGZ.

@ The coefficient
(58, 50) = dim Home,,,(S* © SM4gm . S¥)

is called Littlewood—Richardson coefficients, which can be
computed by Littlewood—Richardson rule.
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Branching rule

@ In particular, if S be one of irreducible representation of G,, how to

decompose SATg:“ ?

Theorem (Pieri Rule)

5>\ 6n+1: Z S,u S)\\LG:_lz Z SH.

p=A0 p=X\0O
[ 1] [ HH J‘H
u Hﬂ@J % u
S +=5 ®S ®S oSE
7JH JH. 7.\\\ 7JH

S =5 ®S— ®S’
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