Overview of Representation theory

Lecture 4 — Representation of finite groups (II)

Xiong Rui

July 20, 2020

Young diagrams

• A partition λ of n is a series of integers $\lambda_1 \geq \lambda_2 \geq \cdots \geq 0$ such that

$$\lambda_1 + \lambda_2 + \cdots = n$$
.

Denote $|\lambda| = n$ and $\lambda \vdash n$. Call the number of nonzero λ_i the **length**.

• A partition λ can be presented by Young diagrams with *i*-boxes in *i*-th row.

$$8 = 4 + 3 + 1,$$

• We can define its transpose

Symmetric groups

- Denote \mathfrak{S}_n the *n*-th symmetric group.
- Let λ be a partition of n, denote

$$\mathbf{c}(\lambda) = \text{the conj.class of } \underbrace{(\cdots)\cdots(\cdots)}_{\lambda_1},$$

and

$$z(\lambda) = |\mathbf{c}(\lambda)| = \frac{n!}{1^{i_1} i_1! \cdots d^{i_d} i_d!}$$

where $i_j = \#\{k : \lambda_k = j\}.$

Row sum and column sum

- We denote the sign function to be $\sigma \mapsto (-1)^{\sigma}$.
- Let λ be a partition λ of length n, and fix some filling of λ from 1 to $|\lambda|$ (no repetition) and denote again by λ . We define two elements in $\mathbb{C}[\mathfrak{S}_n]$

$$r_{arphi} = \sum_{\sigma \in \mathfrak{S}_n: \sigma ext{ permutes inside each row}} \sigma$$

$$c_{arphi} = \sum_{\sigma \in \mathfrak{S}_n: \sigma ext{ permutes inside each column}} (-1)^{\sigma} \sigma.$$

Row sum and column sum

• If by lexicographical order $\lambda < \mu$, then

$$c_{\lambda} \cdot \mathbb{C}[\mathfrak{S}_n] \cdot r_{\mu} = 0.$$

• For the same λ ,

$$c_{\lambda} \cdot \mathbb{C}[\mathfrak{S}_n] \cdot r_{\lambda} = \mathbb{C} \cdot c_{\lambda} \cdot r_{\lambda}.$$

Specht moduless

One can define permutation modules and specht modules by

$$M^{\lambda} = \mathbb{C}[\mathfrak{S}_n] \cdot r_{\lambda} \quad \supseteq \quad S^{\lambda} = \mathbb{C}[\mathfrak{S}_n] \cdot c_{\lambda} \cdot r_{\lambda} \neq 0.$$

Theorem

 $M^{\lambda}=1\!\!\!1\!\!\uparrow_{\mathfrak{S}_{\lambda_1} imes\cdots imes\mathfrak{S}_{\lambda_n}}^{\mathfrak{S}_n}$, and S^{λ} is irreducible.

• If by lexicographical order $\lambda < \mu$, then S^{λ} does not appear in M^{μ} , since

$$\mathsf{Hom}_{\mathfrak{S}_n}(S^\lambda, M^\mu) = c_\lambda \cdot r_\lambda \cdot \mathbb{C}[\mathfrak{S}_n] \cdot r_\mu = 0.$$

In particular, $S^{\lambda} \cong S^{\mu}$ if and only if the underlying Young diagram of λ and μ are the same.

The character

• It is not very hard to compute the character of M^{λ} ,

$$\begin{array}{ll} \psi_{\lambda}(\mathbf{c}(\mu)) &= \frac{1}{|\mathfrak{S}_{\lambda}|} \# \{ y : y^{-1} c y \in \mathfrak{S}_{\lambda} \} \\ &= \cdots \\ &= (\mathsf{computation}) \\ &= \cdots \\ &= \mathsf{coefficient} \ \mathsf{of} \ x_1^{\lambda_1} \cdots x_n^{\lambda_n} \ \mathsf{in} \\ &\qquad \qquad (x_1^{\mu_1} + \cdots + x_n^{\mu_1}) \cdots (x_1^{\mu_*} + \cdots + x_n^{\mu_*}). \end{array}$$

where $c \in \mathbf{c}(\mu)$, and $\mathfrak{S}_{\lambda} = \mathfrak{S}_{\lambda_1} \times \cdots \times \mathfrak{S}_{\lambda_n}$. Lastly

$$\mu = \mu_1 \ge \cdots \ge \underbrace{\mu_*}_{>0} \ge 0 \ge 0.$$

Symmetric polynomials

- A polynomial $f \in \mathbb{C}[x_1, \dots, x_n]$ is called **symmetric** if it is fixed by the index-permutation-action of \mathfrak{S}_n .
- Define the **elementary symmetric polynomials** $\{e_k : k = 1, \dots, n\}$,

$$e_k = \sum_{1 \leq i_1 < \dots < i_k \leq n} x_{i_1} \cdots x_{i_k}.$$

• Define the **complete symmetric polynomials** $\{h_k : k = 1, \dots, n, \dots\},$

$$h_k = \sum_{1 \le i_1 \le \dots \le i_k \le n} x_{i_1} \cdots x_{i_k}.$$

Symmetric polynomials

Theorem (Fundamental theorem of symmetric polynomials)

Every symmetric function is a unique polynomial of elementary symmetric polynomials.

• For a partition λ of length $\leq n$, define the **complete symmetric** polynomials

$$h_{\lambda} = h_{\lambda_1} \cdots h_{\lambda_n}$$
.

If $\lambda^{\top} = \mu$, define the elementary symmetric polynomials

$$e_{\lambda}=e_{\mu_1}\cdots e_{\mu_*}.$$

define the monomial symmetric polynomials

 $m_{\lambda} = \sum$ the orbit of the monomial $x_1^{\lambda_1} \cdots x_n^{\lambda_n}$ under \mathfrak{S}_n

Schur polynomials

• For a partition λ of length $\leq n$, define the **Schur polynomial**

$$s_{\lambda} = \frac{\det_{i,j}(x_j^{\lambda_i+n-i})}{\det_{i,j}(x_j^{n-i})} = \frac{\begin{vmatrix} x_1^{\lambda_1+n-1} & \cdots & x_n^{\lambda_1+n-1} \\ \vdots & \ddots & \vdots \\ x_1^{\lambda_n+n-n} & \cdots & x_n^{\lambda_n+n-n} \end{vmatrix}}{\begin{vmatrix} x_1^{n-1} & \cdots & x_n^{n-1} \\ \vdots & \ddots & \vdots \\ x_1^0 & \cdots & x_n^0 \end{vmatrix}}.$$

• It turns out that $\{s_{\lambda} : \text{length of } \lambda \leq n\}$ forms a basis too.

Power sum

• Define for $i \ge 1$, the **power sum**

$$p_i = x_1^i + \cdots x_n^i,$$

and $p_0 = 1$ for convention.

• For a partition λ of length $\leq n$, define

$$p_{\lambda}=p_{\lambda_1}\cdots p_{\lambda_n}.$$

• It turns out that $\{p_{\lambda} : \text{length of } \lambda \leq n\}$ forms a basis too.

An inner product

By a more or less interesting computation

$$\prod_{1 \leq i,j \leq n} \frac{1}{1 - x_i y_j} = \sum_{\lambda} h_{\lambda}(x) m_{\lambda}(y)
= \sum_{\lambda} s_{\lambda}(x) s_{\lambda}(y)
= \sum_{\lambda} \frac{z(\lambda)}{n!} \cdot p_{\lambda}(x) p_{\lambda}(y).$$

One can introduce a bilinear form such that

$$\langle h_{\lambda}, m_{\mu} \rangle = \langle s_{\lambda}, s_{\mu} \rangle = \frac{z(\lambda)}{n!} \langle p_{\lambda}, p_{\mu} \rangle = \delta_{\lambda,\mu}.$$

The character of M^{λ}

So

$$\psi_{\lambda}(\mathbf{c}(\mu)) = \text{coefficient of } x_1^{\lambda_1} \cdots x_n^{\lambda_n} \text{ in } p_{\mu}.$$
 $\iff p_{\mu} = \sum_{\lambda} \psi_{\lambda}(\mathbf{c}(\mu)) \cdot m_{\lambda} \iff \psi_{\lambda}(\mathbf{c}(\mu)) = \langle p_{\mu}, h_{\lambda} \rangle.$

• For any class function φ ,

 \exists !degree-*n* symmetric polynomial f, such that $\varphi(\mathbf{c}(\mu)) = \langle p_{\mu}, f \rangle$.

• If $\varphi \leftrightarrow f$ and $\psi \leftrightarrow g$, then

$$\frac{1}{n!} \sum_{\sigma \in \mathfrak{S}_n} \overline{\varphi(\sigma)} \cdot \psi(\sigma) = \langle f, g \rangle.$$

Jacobi-Trudy identity

Theorem (Jacobi-Trudy identity, Giambelli formula)

$$s_{\lambda} = \begin{vmatrix} h_{\lambda_1} & \cdots & h_{\lambda_1+n-1} \\ \vdots & \ddots & \vdots \\ h_{\lambda_n-n+1} & \cdots & h_{\lambda_n} \end{vmatrix}.$$

Convention: $h_0 = 1$, and $h_{<0} = 0$.

So

$$s_{\lambda} = \sum_{\mu \geq \lambda} \mathcal{K}_{\mu\lambda} \cdot h_{\mu} \quad \xrightarrow{\text{upper triangle matrix}} \quad h_{\lambda} = \sum_{\mu \geq \lambda} \mathcal{K}_{\mu\lambda} \cdot s_{\mu}$$

with $K_{\lambda\lambda}=1>0$.

In particular,

 $h_{\lambda} \stackrel{\mathsf{GramSchmidt\ process\ along}}{=\!=\!=\!=\!=\!=} s_{\lambda}$

The character of S^{λ}

• Since $\operatorname{Hom}_{\mathfrak{S}_n}(S^\mu, M^\lambda) = 0$ when $\mu < \lambda$,

$$M^{\lambda} = \bigoplus_{\mu \geq \lambda} k_{\mu\lambda} S^{\mu} \qquad k_{\mu\mu} \geq 1.$$

In particular,

$$\psi_{\lambda} \quad \stackrel{\mathsf{GramSchmidt\ process\ along}}{=\!=\!=\!=\!=} \geq \quad \chi_{\lambda}$$

So we get

$$\chi_{\lambda}(\mathbf{c}(\mu)) = \langle p_{\mu}, s_{\lambda} \rangle$$
.

The character of S^{λ}

• By the definition of Schur polynomial, we get the following.

Theorem (Frobenius character formula)

$$\chi_\lambda(\mathbf{c}(\mu))=$$
 coefficient of $\mathsf{x}_1^{\lambda_1+\mathsf{n}-1}\cdots \mathsf{x}_n^{\lambda_n}$ in $\Delta\cdot \mathsf{p}_\mu$

where
$$\Delta = \prod_{i < j} (x_i - x_j) = \det(x_i^{n-j})$$
.

• We also get the following which can be used to do computation.

Theorem

The linear space of symmetric polynomials of degree n is isomorphic to the space of class function over \mathbb{S}_n , with $s_\lambda \leftrightarrow S^\lambda$, and $h_\lambda \leftrightarrow M^\lambda$.

Hook length

One can show that

$$\{\sigma \cdot c_{\lambda} \cdot r_{\lambda} : \sigma \lambda \text{ is a standard Young tableau}\}$$

forms a basis of S^{λ} .

An amazing formula is

$$\dim S^{\lambda} = \#\{\text{standard Young tableaux of } \lambda\} = \frac{n!}{\prod_{\square \in \lambda} \Gamma(\square)}$$

where $\Gamma(\Box)$ is the length of "hook".

Hook length

Branching rule

• Generally, it is interesting to ask, if V, U are two representations of \mathfrak{S}_n and \mathfrak{S}_m , what is

$$W=V\otimes U\uparrow_{\mathfrak{S}_n\times\mathfrak{S}_m}^{\mathfrak{S}_{m+n}}.$$

The result sounds amazing, if we denote the corresponding symmetric polynomial by f_* (in enough variables), then simply $f_W = f_V \cdot f_U$. Note that it suffices to check for $M^{\lambda} = 1 \uparrow_{\mathfrak{S}_n}^{\mathfrak{S}_n}$.

The coefficient

$$\langle s_{\lambda} s_{\mu}, s_{\nu} \rangle = \dim \mathsf{Hom}_{\mathfrak{S}_{m+n}} (S^{\lambda} \otimes S^{\mu} \uparrow_{\mathfrak{S}_{n} \times \mathfrak{S}_{m}}^{\mathfrak{S}_{m+n}}, S^{\nu})$$

is called **Littlewood–Richardson coefficients**, which can be computed by **Littlewood–Richardson rule**.

Branching rule

• In particular, if S^{λ} be one of irreducible representation of \mathfrak{S}_n , how to decompose $S^{\lambda} \uparrow_{\mathfrak{S}_n}^{\mathfrak{S}_{n+1}}$?

Theorem (Pieri Rule)

$$S^{\lambda} \uparrow_{\mathfrak{S}_n}^{\mathfrak{S}_{n+1}} = \sum_{\mu = \lambda \leftarrow \square} S^{\mu}, \qquad S^{\lambda} \downarrow_{\mathfrak{S}_{n-1}}^{\mathfrak{S}_n} = \sum_{\mu = \lambda \setminus \square} S^{\mu}.$$

References

- Fulton and Harris. Representation theory.
- Fulton. Young tableaux, with applications to representation theory and geometry.
- Sagan. The Symmetric Group: Representations, Combinatorial Algorithms and Symmetric Functions.
- Etingof, Golberg, Hensel, Liu, Schwendner, Vaintrob, Yudovina, Gerovitch. Introduction to representation theory.
- Prasad. An Introduction to Schur Polynomials. [arXiv]

Thanks

